JavarData Objects

JSR12

Version 1.0.1

JavaData Objects Expert Group

Specification Lead: Craig Russell,
SunMicrosystemsInc.

Technical comments:
jdo-comments@sun.com
Process comments:
community-process@sun.com

X Sun

microsystems

Sun Microsystems, Inc.

4140 Network Circle

Santa Clara, California 95054
408 276-5638 fax: 408 276-7191

Java Data Objects 1.0.1

Overview

This chapter introduces key concepts that are required for an understanding of the JDO ar-
chitecture. It lays down a reference framework to facilitate a formal specification of the
JDO architecture in the subsequent chapters of this document.

21
2.1.1

JDO 1.0.1

Definitions
JDO common interfaces
JDO Instance

A]DO instance is a Java programming language instance of a Java class that implements
the application functions, and represents data in a local file system or enterprise datastore.
Without limitation, the data might come from a single datastore entity, or from a collection
of entities. For example, an entity might be a single object from an object database, a single
row of a relational database, the result of a relational database query consisting of several
rows, a merging of data from several tables in a relational database, or the result of execut-
ing a data retrieval API from an ERP system.

JDO instances implement the PersistenceCapable interface, either explicitly by the
class writer, or implicitly by the results of the enhancer. The objective of JDO is that most
user-written classes, including both entity-type classes and utility-type classes, might be
persistence capable. The limitations are that the persistent state of the class must be repre-
sented entirely by the state of its Java fields, and that the class be enhanced (or otherwise
be written to implement the PersistenceCapable interface) prior to being loaded into
the execution environment of the Java Virtual Machine. Thus, system-type classes such as
System, Thread, Socket, File, and the like cannot be JDO persistence-capable, but
common user-defined classes can be.

JDO Implementation

A JDO implementation is a collection of classes that implement the JDO contracts. The JDO
implementation might be provided by an EIS vendor or by a third party vendor, collective-
ly known as JDO vendor. The third party might provide an implementation that is opti-
mized for a particular application domain, or might be a general purpose tool (such as a
relational mapping tool, embedded object database, or enterprise object database).

The primary interface to the application is PersistenceManager, with interfaces Que-
ry and Transaction playing supporting roles for application control of the execution
environment.

JDO Enhancer

A]DO enhancer, or byte code enhancer, is a program that modifies the byte codes of ap-
plication-component Java class files to enable transparent loading and storing of the fields
of their persistent instances. The JDO reference implementation (reference enhancement)
contains an approach for the enhancement of Java class files to allow for enhanced class
files to be shared among several coresident JDO implementations.

18 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

JDO 1.0.1

Alternative approaches to byte code enhancement are preprocessing or code generation. If
one of the alternatives is used instead of byte code enhancement, the PersistenceCa-
pable contract must be implemented.

A]DO implementation is free to extend the Reference Enhancement contract with imple-
mentation-specific methods and fields that might be used by its runtime environment.

Binary Compatibility Requirement: classes enhanced by the reference enhancer must be
usable by any JDO compliant implementation; classes enhanced by a JDO compliant im-
plementation must be usable by the reference implementation; and classes enhanced by a
JDO compliant implementation must be usable by any other JDO compliant implementa-
tion.

The following table determines which interface is used by a JDO implementation based on

Table 1: Which Enhancement Interface is Used

Reference Runtime ‘Vendor A Runtime ‘Vendor B Runtime
Reference Enhancer Reference Enhancement Reference Enhancement Reference Enhancement
‘Vendor A Ent Reft Enh nent ‘Vendor A Enhancement Reference Enhancement
Vendor B Ent Refk Enh nent Reference Enhancement ‘Vendor B Enhancement

the enhancement of the persistence-capable class. For example, if Vendor A runtime de-
tects that the class was enhanced by its own enhancement, then the runtime will use its en-
hancement contract. Otherwise, it will use the Reference Enhancement contract.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tion, as it details architectural features not relevant to local environments. Skip to 2.2 — Rationale.

JDO in a managed environment

This discussion provides a bridge to the Connector architecture, which JDO uses for transaction and
connection management in application server environments.

Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of ser-
vices to its clients. These services are exposed to clients as local and/or remote interfaces.
Examples of EIS include:

* relational database system;
* object database system;
* ERP system; and
» mainframe transaction processing system.
EIS Resource
An EIS resource provides EIS-specific functionality to its clients. Examples are:
* arecord or set of records in a database system;
* abusiness object in an ERP system; and
* atransaction program in a transaction processing system
Resource Manager (RM)

A resource manager manages a set of shared resources. A client requests access to a re-
source manager to use its managed resources. A transactional resource manager can par-

19 June 5, 2003

ticipate in transactions that are externally controlled and coordinated by a transaction
manager.

Connection

A connection provides connectivity to a resource manager. It enables an application client
to connect to a resource manager, perform transactions, and access services provided by
that resource manager. A connection can be either transactional or non-transactional. Ex-
amples include a database connection and a SAP R/3 connection.

Application Component

An application component can be a server-side component, such as an E]JB, JSP, or servlet,
that is deployed, managed and executed on an application server. It can be a component
executed on the web-client tier but made available to the web-client by an application serv-
er, such as a Java applet, or DHTML page. It might also be an embedded component exe-
cuted in a small footprint device using flash memory for persistent storage.

Session Beans

Session objects are E]JB application components that execute on behalf of a single client,
might be transaction aware, update data in an underlying datastore, and do not directly
represent data in the datastore.

Entity Beans

Entity objects are EJB application components that provide an object view of transactional
data in an underlying datastore, allow shared access from multiple users, including ses-
sion objects and remote clients, and directly represent data in the datastore.

Helper objects

Helper objects are application components that provide an object view of data in an un-
derlying datastore, allow transactionally consistent view of data in multiple transactions,
are usable by local session and entity beans, but do not have a remote interface.

Container

A container is a part of an application server that provides deployment and runtime sup-
port for application components. It provides a federated view of the underlying applica-
tion server services for the application components. For more details on different types of
standard containers, refer to Enterprise JavaBeans (E]JB) [see Appendix A reference 1], Java
Server Pages (JSP), and Servlets specifications.

2.2

JDO 1.0.1

Rationale

There is no existing Java platform specification that proposes a standard architecture for
storing the state of Java objects persistently in transactional datastores.

The JDO architecture offers a Java solution to the problem of presenting a consistent view
of data from the large number of application programs and enterprise information systems
already in existence. By using the JDO architecture, it is not necessary for application com-
ponent vendors to customize their products for each type of datastore.

This architecture enables an EIS vendor to provide a standard data access interface for its
EIS. The JDO implementation is plugged into an application server and provides underly-
ing infrastructure for integration between the EIS and application components.

Similarly, a third party vendor can provide a standard data access interface for locally
managed data such as would be found in an embedded device.

20 June 5, 2003

Java Data Objects 1.0.1 Java Data Objects 1.0.1

An application component vendor extends its system only once to support the JDO archi- * The JDO architecture simplifies the development of scalable, secure and
tecture and then exploits multiple data sources. Likewise, an EIS vendor provides one transactional JDO implementations for a wide range of EISes — ERP systems,
standard JDO implementation and it has the capability to work with any application com- database systems, mainframe-based transaction processing systems.

ponent that uses the JDO architecture. » The JDO architecture is implementable for a wide range of heterogeneous local file
The Figure 1.0 on page 21 shows that an application component can plug into multiple systems and EISes. The intent is that there will be various implementation choices
JDO implementations. Similarly, multiple JDO implementations for different EISes can for different EIS—each choice based on possibly application-specific
plug into an application component. This standard plug-and-play is made possible characteristics and mechanisms of a mapping to an underlying EIS.

through the JDO architecture. * The JDO architecture is suitable for a wide range of uses from embedded small

footprint systems to large scale enterprise application servers. This architecture
provides for exploitation of critical performance features from the underlying EIS,
Figure 1.0 Standard plug-and-play between application programs and ElSes using JDO such as query evaluation and relationship management.

* The JDO architecture uses the J2EE Connector Architecture to make it applicable
to all J2EE platform compliant application servers from multiple vendors.

the Java programming model to model the application domain and transparently

8 Enterprise Information » The JDO architecture makes it easy for application component developers to use
Systems retrieve and store data from various EIS systems.

JDO
implementations * The JDO architecture defines contracts and responsibilities for various roles that

~ — _ Application Program provide pieces for standard connectivity to an EIS. This enables a standard JDO
T~ 8 implementation from a EIS or third party vendor to be pluggable across multiple

-

application servers.

~ - * The connector architecture also enables an application programmer in a non-
=~ - managed application environment to directly use the JDO implementation to
=~ access the underlying file system or EIS. This is in addition to a managed access to

'-I/ T~ an EIS with the JDO implementation deployed in the middle-tier application
— server. In the former case, application programmers will not rely on the services

8 offered by a middle-tier application server for security, transaction, and

connection management, but will be responsible for managing these system-level
aspects by using the EIS connector.

JDO
implementation Enterprise Information
Application Programs System

Legend:
I:h Application program/E]B container

[I JDO implementation provided by JDO vendor

2.3 Goals
The JDO architecture has been designed with the following goals:

* The JDO architecture provides a transparent interface for application component
and helper class developers to store data without learning a new data access
language for each type of persistent data storage.

JDO 1.0.1 21 June 5, 2003 JDO 1.0.1 22 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

JDO Architecture

3

h
-

Overview

Multiple JDO implementations - possibly multiple implementations per type of EIS or lo-
cal storage - are pluggable into an application server or usable directly in a two tier or em-
bedded architecture. This enables application components, deployed either on a middle-
tier application server or on a client-tier, to access the underlying datastores using a con-
sistent Java-centric view of data. The JDO implementation provides the necessary map-
ping from Java objects into the special data types and relationships of the underlying
datastore.

Figure 2.0

Overview of non-managed JDO architecture

.

/Java Virtual Machine

J

Application
transient ’
instance
transient
instance
transient
instance

JDO PersistenceManager

Enterprise Information

System

JDO PersistenceManager

(Transaction)

Local Persistent
Storage

JDO 1.0.1

In a non-managed environment, the JDO implementation hides the EIS specific issues such
as data type mapping, relationship mapping, and data retrieval and storage. The applica-
tion component sees only the Java view of the data organized into classes with relation-
ships and collections presented as native Java constructs.

Managed environments additionally provide transparency for the application compo-
nents’ use of system-level mechanisms - distributed transactions, security, and connection
management, by hiding the contracts between the application server and JDO implemen-
tations.

23 June 5, 2003

With both managed and non-managed environments, an application component develop-
er focuses on the development of business and presentation logic for the application com-
ponents without getting involved in the issues related to connectivity with a specific EIS.

32
3.2.1

322

JDO 1.0.1

JDO Architecture
Two tier usage

For simple two tier usage, JDO exposes to the application component two primary inter-
faces: javax.jdo.PersistenceManager, from which services are requested; and
javax.jdo.spi.PersistenceCapable, which provides the management view of
user-defined persistence-capable classes.

The PersistenceManager interface provides services such as query management,
transaction management, and life cycle management for instances of persistence-capable
classes.

The PersistenceCapable interface provides services such as life cycle state manage-
ment for instances of persistence capable classes.

Readers primarily interested in JDO as a local persistence mechanism can ignore the following sec-
tions. Skip to 4 - Roles and Scenarios.

Application server usage

For application server usage, the JDO architecture uses the J2EE Connector architecture,
which defines a standard set of system-level contracts between the application server and
EIS connectors. These system-level contracts are implemented in a resource adapter from
the EIS side.

The JDO persistence manager is a caching manager as defined by the J2EE Connector ar-
chitecture, that might use either its own (native) resource adapter or a third party resource
adapter. If the JDO PersistenceManager has its own resource adapter, then imple-
mentations of the system-level contracts specified in the J2EE Connector architecture must
be provided by the JDO vendor. These contracts include ManagedConnectionFacto-
ry, XAResource, and LocalTransaction interfaces.

The JDO Transact ion mustimplement the Synchronizat ion interface so that trans-
action completion events can cause flushing of state through the underlying connector to
the EIS.

The application components are unable to distinguish between JDO implementations that
use native resource adapters and JDO implementations that use third party resource
adapters. However, the deployer will need to understand that there are two configurable
components: the JDO PersistenceManager and its underlying resource adapter.

For convenience, the PersistenceManagerFactory provides the interface necessary
to configure the underlying resource adapter.

Resource Adapter

A resource adapter provided by the JDO vendor is called a native resource adapter, and
the interface is specific to the JDO vendor. It is a system-level software driver that is used
by an application server or an application client to connect to a resource manager.

The resource adapter plugs into a container (provided by the application server). The ap-
plication components deployed on the container then use the client API exposed by jav-

ax.jdo.PersistenceManager to access the JDO PersistenceManager. The JDO
implementation in turn uses the underlying resource adapter interface specific to the data-

24 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

JDO 1.0.1

store. The resource adapter and application server collaborate to provide the underlying
mechanisms - transactions, security and connection pooling - for connectivity to the EIS.

The resource adapter is located within the same VM as the JDO implementation using it.
Examples of JDO native resource adapters are:

* Object/Relational (O/R) products that use their own native drivers to connect to
object relational databases

* Object Database (OODBMS) products that store Java objects directly in object
databases

Examples of non-native resource adapter implementations are:
* O/R mapping products that use JDBC drivers to connect to relational databases

* Hierarchical mapping products that use mainframe connectivity tools to connect
to hierarchical transactional systems

Pooling

There are two levels of pooling in the JDO architecture. JDO PersistenceManagers
might be pooled, and the underlying connections to the datastores might be independent-
ly pooled.

Pooling of the connections is governed by the Connector Architecture contracts. Pooling
of PersistenceManagers is an optional feature of the JDO Implementation, and is not
standardized for two-tier applications. For managed environments, PersistenceMan-
ager pooling is required to maintain correct transaction associations with Persis-
tenceManagers.

For example, a JDO PersistenceManager instance might be bound to a session run-
ning a long duration optimistic transaction. This instance cannot be used by any other user
for the duration of the optimistic transaction.

During the execution of a business method associated with the session, a connection might
be required to fetch data from the datastore. The PersistenceManager will request a
connection from the connection pool to satisfy the request. Upon termination of the busi-
ness method, the connection is returned to the pool but the PersistenceManager re-
mains bound to the session.

After completion of the optimistic transaction, the PersistenceManager instance
might be returned to the pool and reused for a subsequent transaction.

Contracts

JDO specifies the application level contract between the application components and the
JDO PersistenceManager.

The J2EE Connector architecture specifies the standard contracts between application
servers and an EIS connector used by a JDO implementation. These contracts are required
for a JDO implementation to be used in an application server environment. The Connector
architecture defines important aspects of integration: connection management, transaction
management, and security.

The connection management contracts are implemented by the EIS resource adapter
(which might include a JDO native resource adapter).

The transaction management contract is between the transaction manager (logically dis-
tinct from the application server) and the connection manager. It supports distributed
transactions across multiple application servers and heterogeneous data management pro-
grams.

25 June 5, 2003

The security contract is required for secure access by the JDO connection to the underlying

datastore.
Figure 3.0 Contracts between application server and native JDO resource adapter
g pp p
Transaction [/ \ I
Transaction Manager contract
Connection JDO Native I
Management Resource
| contract Adapter I
JDO API
Application T 7|~ — I
Component 100 @
ta
Security I store
Container contract I
Application Server |
Figure4.0 Contracts between application server and layered JDO implementation
1
XAR
Transaction Manager esource » I
Connector Contracts
(e.g. ManagedConnection) I
— |Resource 1
Adapter
o JDO implementation | Resource
(I?pphcatwlt1 4»[Manager
omponen B — —
P s I (EIS datastore)
EIS-
JDO API speci
g pecifi
Container APls I
Synch zl ti]] |
s ynchronizatio
Application Server contract
DO 1.0.1 26 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

Life Cycle of JDO Instances

This chapter specifies the life cycle for persistence capable class instances, hereinafter
“JDO instances”. The classes include behavior as specified by the class (bean) developer,
and additional behavior as provided by the reference enhancer or JDO vendor’s deploy-
ment tool. The enhancement of the classes allows application developers to treat JDO in-
stances as if they were normal instances, with automatic fetching of persistent state from
the JDO implementation.

5.1

JDO 1.0.1

Overview

JDO instances might be either transient or persistent. That is, they might represent the per-
sistent state of data contained in a transactional datastore. If a JDO instance is transient
(and not transactional), then there is no difference between its behavior and the behavior
of an instance of the unmodified (unenhanced) persistence capable class.

If a JDO instance is persistent, its behavior is linked to the transactional datastore with
which it is associated. The JDO implementation automatically tracks changes made to the
values in the instance, and automatically refreshes values from the datastore and saves
values into the datastore as required to preserve transactional integrity of the data. Persis-
tent instances stored in the datastore retain their class and the state of their persistent
fields. Changing the class of a persistent instance is not supported explicitly by the JDO
APIL However, it might be possible for an instance to change class based on external mod-
ifications to the datastore.

During the life of a JDO instance, it transitions among various states until it is finally gar-
bage collected by the JVM. During its life, the state transitions are governed by the behav-
iors executed on it directly as well as behaviors executed on the JDO
PersistenceManager by both the application and by the execution environment (in-
cluding the TransactionManager).

During the life cycle, instances at times might be inconsistent with the datastore as of the
beginning of the transaction. If instances are inconsistent, the notation for that instance in
JDOis “dirty”. Instances made newly persistent, deleted, or modified in the transaction are
dirty.

At times, the JDO implementation might store the state of persistent instances in the data-
store. This process is called “flushing”, and it does not affect the “dirty” state of the in-
stances.

Under application control, transient JDO instances might observe transaction boundaries,
in which the state of the instances is either preserved (on commit) or restored (on rollback).
Transient instances that observe transaction boundaries are called transient transactional
instances. Support for transient transactional instances is a JDO option; that is, a JDO com-
pliant implementation is not required to implement the APIs that cause the state transi-
tions associated with transient transactional instances.

Under application control, persistent JDO instances might not observe transaction bound-
aries. These instances are called persistent-nontransactional instances, and the life cycle of

33 June 5, 2003

these instances is not affected by transaction boundaries. Support for nontransactional in-
stances is a JDO option.

If a JDO instance is persistent or transactional, it contains a non-null reference to a JDO

StateManager instance which is responsible for managing the JDO instance state
changes and for interfacing with the JDO PersistenceManager.

5.2

Goals
The JDO instance life cycle has the following goals:

» The fact of persistence should be transparent to both JDO instance developer and
application component developer

* DO instances should be able to be used efficiently in a variety of environments,
including managed (application server) and non-managed (two-tier) cases

* Several]DO PersistenceManagers might be coresident and might share the
same persistence capable classes (although a JDO instance can be associated with
only one PersistenceManager at a time)

53

JDO 1.0.1

Architecture:
JDO Instances

For transient JDO instances, there is no supporting infrastructure required. That is, tran-
sient instances will never make calls to methods to the persistence infrastructure. There is
no requirement to instantiate objects outside the application domain. There is no differ-
ence in behavior between transient instances of enhanced classes and transient instances
of the same non-enhanced classes, with some exceptions:

* additional methods and fields added by the enhancement process are visible to
Java core reflection,

* timing of method execution is different because of added byte codes,
* extra methods for registration of metadata are executed at class load time.

Persistent JDO instances execute in an environment that contains an instance of the JDO
PersistenceManager responsible for its persistent behavior. The JDO instance con-
tains a reference to an instance of the JDO StateManager responsible for the state tran-
sitions of the instance as well as for managing the contents of the fields of the instance. The
PersistenceManager and the StateManager might be implemented by the same in-
stance, but their interfaces are distinct.

The contract between the persistence capable class and other application components ex-
tends the contract between the associated non-persistence capable class and application
components. These contract extensions support interrogation of the life cycle state of the
instances and are intended for use by management parts of the system.

JDO State Manager

Persistent and transactional JDO instances contain a reference to a JDO StateManager
instance to which all of the JDO interrogatives are delegated. The associated JDO State-
Manager instance maintains the state changes of the JDO instance and interfaces with the
JDO PersistenceManager to manage the values of the datastore.

34 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

JDO Managed Fields

Only some fields are of interest to the persistence infrastructure: fields whose values are
stored in the datastore are called persistent; fields that participate in transactions (their val-
ues may be restored during rollback) are called transactional; fields of either type are
called managed.

54

JDO 1.0.1

JDO Identity

Java defines two concepts for determining if two instances are the same instance (identity),
or represent the same data (equality). JDO extends these concepts to determine if two in-
memory instances represent the same stored object.

Java object identity is entirely managed by the Java Virtual Machine. Instances are identi-
cal if and only if they occupy the same storage location within the JVM.

Java object equality is determined by the class. Distinct instances are equal if they repre-
sent the same data, such as the same value for an integer, or same set of bits fora Bit -
Set.

The interaction between Java object identity and equality is an important one for JDO de-
velopers. Java object equality is an application specific concept, and JDO implementations
must not change the application’s semantic of equality. Still, JDO implementations must
manage the cache of JDO instances such that there is only one JDO instance associated with
each JDO PersistenceManager representing the persistent state of each correspond-
ing datastore object. Therefore, JDO defines object identity differently from both the Java
VM object identity and from the application equality.

Applications should implement equals for persistence-capable classes differently from
Object’s default equals implementation, which simply uses the Java VM object identi-
ty. This is because the JVM object identity of a persistent instance cannot be guaranteed be-
tween PersistenceManagers and across space and time, except in very specific cases
noted below.

Additionally, if persistence instances are stored in the datastore and are queried using the
== query operator, or are referred to by a persistent collection that enforces equality (Set,
Map) then the implementation of equals should exactly match the JDO implementation
of equality, using the primary key or ObjectId as the key. This policy is not enforced,
but if it is not correctly implemented, semantics of standard collections and JDO collec-
tions may differ.

To avoid confusion with Java object identity, this document refers to the JDO concept as
JDO identity.

Three Types of JDO identity

JDO defines three types of JDO identity:

» Application identity - JDO identity managed by the application and enforced by
the datastore; JDO identity is often called the primary key

* Datastore identity - JDO identity managed by the datastore without being tied to
any field values of a JDO instance

* Nondurable identity - JDO identity managed by the implementation to guarantee
uniqueness in the JVM but not in the datastore

The type of JDO identity used is a property of a JDO PersistenceCapable class and
is fixed at enhancement time.

35 June 5, 2003

The representation of JDO identity in the JVM is via a JDO object id. Every persistent in-
stance (Java instance representing a persistent object) has a corresponding object id. There
might be an instance in the JVM representing the object id, or not. The object id JVM in-
stance corresponding to a persistent instance might be acquired by the application at run
time and used later to obtain a reference to the same datastore object, and it might be saved
to and retrieved from durable storage (by serialization or other technique).

The class representing the object id for datastore and nondurable identity classes is defined
by the JDO implementation. The implementation might choose to use any class that satis-
fies the requirements for the specific type of JDO identity for a class. It might choose the
same class for several different JDO classes, or might use a different class for each JDO
class.

The class representing the object id for application identity classes is defined by the appli-
cation in the metadata, and might be provided by the application or by a JDO vendor tool.

The application-visible representation of the JDO identity is an instance that is completely
under the control of the application. The object id instances used as parameters or returned
by methods in the JDO interface (getObjectId, getTransactionalObjectId, and
getObjectById) will never be saved internally; rather, they are copies of the internal
representation or used to find instances of the internal representation.

Therefore, the object returned by any call to get Obj ect Id might be modified by the us-
er, but that modification does not affect the identity of the object that was originally re-
ferred. That is, the call to getObjectId returns only a copy of the object identity used
internally by the implementation.

It is a requirement that the instance returned by a call to getObjectById(Object) of
different PersistenceManager instances returned by the same PersistenceMan-
agerFactory represent the same persistent object, but with different Java object identity
(specifically, all instances returned by getObjectId from the instances must return
true to equals comparisons with all others).

Further, any instances returned by any calls to getObjectById(Object) with the
same object id instance to the same PersistenceManager instance must be identical
(assuming the instances were not garbage collected between calls).

The JDO identity of transient instances is not defined. Attempts to get the object id for a
transient instance will return null.

Uniquing

JDO identity of persistent instances is managed by the implementation. For a durable JDO
identity (datastore or application), there is only one persistent instance associated with a

specific datastore object per PersistenceManager instance, regardless of how the per-
sistent instance was put into the cache:

* PersistenceManager.getObjectById (Object oid, boolean
validate);

* query via a Query instance associated with the PersistenceManager
instance;

* navigation from a persistent instance associated with the
PersistenceManager instance;

e PersistenceManager.makePersistent (Object pc);

36 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

54.1

JDO 1.0.1

Change of identity

Change of identity is supported only for application identity, and is an optional feature of
a JDO implementation. An application attempt to change the identity of an instance (by
writing a primary key field) where the implementation does not support this optional fea-
ture results in JDOUnsupportedOpt ionException being thrown.

NOTE: Application developers should take into account that changing primary
key values changes the identity of the instance in the datastore. In production
environments where audit trails of changes are kept, change of the identity of
datastore instances might cause loss of audit trail integrity, as the historical
record of changes does not reflect the current identity in the datastore.

JDO instances using application identity may change their identity during a transaction if
the application changes a primary key field. In this case, there is a new JDO Identity asso-
ciated with the JDO instance immediately upon completion of the statement that changes
a primary key field. If a JDO instance is already associated with the new JDO Identity, then
aJDOUserException is thrown and the statement that attempted to change the prima-
ry key field does not complete.

Upon successful commit of the transaction, the existing datastore instance will have been
updated with the changed values of the primary key fields.

JDO Identity Support

A JDO implementation is required to support either or both of application (primary key)
identity or datastore identity, and may optionally support nondurable identity.
Application (primary key) identity

This is the JDO identity type used for datastores in which the value(s) in the instance de-
termine the identity of the object in the datastore. Thus, JDO identity is managed by the
application. The class provided by the application that implements the JDO object id has
all of the characteristics of an RMI remote object, making it possible to use the JDO object
id class as the EJB primary key class. Specifically:

* the ObjectId class must be public;
* the ObjectId class must implement Serializable;

* the ObjectId class must have a public no-arg constructor, which might be the
default constructor;

the field types of all non-static fields in the ObjectId class must be serializable,
and for portability should be primitive, String, Date, Byte, Short,
Integer, Long, Float, Double, BigDecimal, or BigInteger
types; JDO implementations are required to support these types and might
support other reference types;

all serializable non-static fields in the Obj ect Id class must be public;

¢ the names of the non-static fields in the ObjectId class must include the names
of the primary key fields in the JDO class, and the types of the corresponding fields
must be identical;

* the equals () and hashCode () methods of the ObjectId class must use the
value(s) of all the fields corresponding to the primary key fields in the JDO class;

* if the ObjectIdclass is an inner class, it must be static;

37 June 5, 2003

54.2

JDO 1.0.1

¢ the ObjectIdclass mustoverride the toString () method defined in Object,
and return a String that can be used as the parameter of a constructor;

* the ObjectId class must provide a String constructor that returns an instance
that compares equal to an instance that returned that String by the
toString () method.

These restrictions allow the application to construct an instance of the primary key class
providing values only for the primary key fields, or alternatively providing only the result
of toString () from an existing instance. The JDO implementation is permitted to ex-
tend the primary key class to use additional fields, not provided by the application, to fur-
ther identify the instance in the datastore. Thus, the JDO object id instance returned by an
implementation might be a subclass of the user-defined primary key class. Any JDO im-
plementation must be able to use the JDO object id instance from any other JDO implemen-
tation.

A primary key identity is associated with a specific set of fields. The fields associated with
the primary key are a property of the persistence-capable class, and cannot be changed af-
ter the class is enhanced for use at runtime. When a transient instance is made persistent,
the implementation uses the values of the fields associated with the primary key to con-
struct the JDO identity.

A primary key instance must have none of its primary key fields set to nul1 when used to
find a persistent instance. The persistence manager will throw JDOUserException if the
primary key instance contains any null values when the key instance is the parameter of
getObjectById.

Persistence-capable classes that use application identity have special considerations for in-
heritance. To be portable, the key class must be the same for all classes in the inheritance
hierarchy, and key fields must be declared only in the least-derived (topmost) persistence-
capable class in the hierarchy.

Datastore identity

This is the JDO identity type used for datastores in which the identity of the data in the
datastore does not depend on the values in the instance. The implementation guarantees
uniqueness for all instances.

A JDO implementation might choose one of the primitive wrapper classes as the Objec-
tIdclass (Short, Integer,Long, or String), or might choose an implementation-spe-
cific class. Implementation-specific classes used as JDO ObjectId have the following
characteristics:

the ObjectId class must be public;

the ObjectId class must implement Serializable;

the ObjectId class must have a public no-arg constructor, which might be the
default constructor;

all serializable fields in the ObjectId class must be public;

the field types of all non-static fields in the Object Id class must be serializable;

the Object Id class must override the toString () method defined in Object,
and return a String that can be used as the parameter of a constructor;

the ObjectId class must provide a String constructor that returns an instance
that compares equal to an instance that returned that String by the
toString () method.

38 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

543

JDO 1.0.1

Note that, unlike primary key identity, datastore identity ObjectId classes are not re-
quired to support equality with Object Id classes from other JDO implementations. Fur-
ther, the application cannot change the JDO identity of an instance of a class using
datastore identity.

Nondurable JDO identity

The primary usage for nondurable JDO identity is for log files, history files, and other sim-
ilar files, where performance is a primary concern, and there is no need for the overhead
associated with managing a durable identity for each datastore instance. Objects are typi-
cally inserted into datastores with transactional semantics, but are not accessed by key.
They may have references to instances elsewhere in the datastore, but often have no keys
or indexes themselves. They might be accessed by other attributes, and might be deleted
in bulk.

Multiple objects in the datastore might have exactly the same values, yet an application
program might want to treat the objects individually. For example, the application must
be able to count the persistent instances to determine the number of datastore objects with
the same values. Also, the application might change a single field of an instance with du-
plicate objects in the datastore, and the expected result in the datastore is that exactly one
instance has its field changed. If multiple instances in memory are modified, then instances
in the datastore are modified corresponding one-to-one with the modified instances in
memory. Similarly, if the application deletes some number of multiple duplicate objects,
the same number of the objects in the datastore must be deleted.

As another example, if a datastore instance using nondurable identity is loaded twice into
the VM by the same PersistenceManager, then two separate instances are instantiat-
ed, with two different JDO identities, even though all of the values in the instances are the
same. It is permissible to update or delete only one of the instances. At commit time, if only
one instance was updated or deleted, then the changes made to that instance are reflected
in the datastore by changing the single datastore instance. If both instances were changed,
then the transaction will fail at commit, with a JDOUserException because the changes
must be applied to different datastore instances.

Because the]DO identity is not visible in the datastore, there are special behaviors with re-
gard to nondurable JDO identity:

* the ObjectId is not valid after making the associated instance hollow, and
attempts to retrieve it will throw a JDOUserException;

* the ObjectId cannot be used in a different instance of PersistenceManager
from the one that issued it, and attempts to use it even indirectly (e.g.
getObjectById with a persistence-capable object as the parameter) will throw
aJDOUserException;

* the persistent instance might transition to persistent-nontransactional or hollow
but cannot transition to any other state afterward;

* attempts to access the instance in the hollow state will throw a
JDOUserException;

the results of a query in the datastore will always return instances that are not
already in the Java VM, so multiple queries that find the same objects in the
datastore will return additional JDO instances with the same values and different
JDO identities;

* makePersistent will succeed even though another instance already has the
same values for all persistent fields.

39 June 5, 2003

For JDO identity that is not managed by the datastore, the class that implements JDO Ob-
ject Id has the following characteristics:

* the ObjectId class must be public;

* the ObjectId class must have a public constructor, which might be the default
constructor or a no-arg constructor;

* all fields in the ObjectId class must be public;
* the field types of all fields in the Object Id class must be serializable.

55

5.5.1

5.5.2

JDO 1.0.1

Life Cycle States

There are ten states defined by this specification. Seven states are required, and three states
are optional. If an implementation does not support certain operations, then these three
states are not reachable.

Datastore Transactions

The following descriptions apply to datastore transactions with retainValues=false. Opti-
mistic transaction and retainValues=true state transitions are covered later in this chapter.
Transient (Required)

JDO instances created by using a developer-written constructor that do not involve the
persistence environment behave exactly like instances of the unenhanced class.

There is no JDO identity associated with a transient instance.
There is no intermediation to support fetching or storing values for fields. There is no sup-

port for demarcation of transaction boundaries. Indeed, there is no transactional behavior
of these instances, unless they are referenced by transactional instances at commit time.

When a persistent instance is committed to the datastore, instances referenced by persis-
tent fields of the flushed instance become persistent. This behavior propagates to all in-
stances in the closure of instances through persistent fields. This behavior is called
persistence by reachability.

No methods of transient instances throw exceptions except those defined by the class de-
veloper.

A transient instance transitions to persistent-new if it is the parameter of makePersis-
tent, or if it is referenced by a persistent field of a persistent instance when that instance
is committed or made persistent.

Persistent-new (Required)

JDO instances that are newly persistent in the current transaction are persistent-new. This
is the state of an instance that has been requested by the application component to become
persistent, by using the PersistenceManager makePersistent method on the in-
stance.

During the transition from transient to persistent-new

* the associated PersistenceManager becomes responsible to implement state
interrogation and further state transitions.

* if the transaction flag restoreValues is true, the values of persistent and
transactional non-persistent fields are saved for use during rollback.

40 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

553

JDO 1.0.1

* the values of persistent fields of mutable SCO types (e.g. java.util.Date,
java.util.HashSet, etc) are replaced with JDO implementation-specific
copies of the field values that track changes and are owned by the persistent
instance.

* a]DO identity is assigned to the instance by the JDO implementation. This identity
uniquely identifies the instance inside the PersistenceManager and might
uniquely identify the instance in the datastore. A copy of the JDO identity will be
returned by the PersistenceManager method getObjectId (Object).

* instances reachable from this instance by fields of persistence-capable types and
collections of persistence-capable types become provisionally persistent and
transition from transient to persistent-new. If the instances made provisionally
persistent are still reachable at commit time, they become persistent. This effect is
recursive, effectively making the transitive closure of transient instances
provisionally persistent.

A persistent-new instance transitions to persistent-new-deleted if it is the parameter of
deletePersistent.

A persistent-new instance transitions to hollow when it is flushed to the datastore during
commit when retainvalues is false. This transition is not visible during before-
Completion, and is visible during afterComplet ion. DuringbeforeCompletion,
the user-defined jdoPreStore method is called if the class implements Instance-
Callbacks.

A persistent-new instance transitions to transient at rollback. The instance loses its JDO
Identity and its association with the PersistenceManager. If restorevalues is
false, the values of managed fields in the instance are left as they were at the time roll-
back was called.

Persistent-dirty (Required)

JDO instances that represent persistent data that was changed in the current transaction
are persistent-dirty.

A persistent-dirty instance transitions to persistent-deleted if it is the parameter of
deletePersistent.

Persistent-dirty instances transition to hollow during commit when retainvalues is
false or during rollback when restorevalues is false. During beforeComple-
tion, the user-defined jdoPreStore method is called if the class implements In-
stanceCallbacks.

If an application modifies a managed field, but the new value is equal to the old value, then
it is an implementation choice whether the JDO instance is modified or not. If no modifi-
cation to any managed field was made by the application, then the implementation must
not mark the instance as dirty. If a modification was made to any managed field that
changes the value of the field, then the implementation must mark the instance as dirty.

Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-
type managed field marks the field as dirty, even if the new value is identical to the old
value. This special case is required to allow the user to mark an array-type field as dirty
without having to call the JDOHelper method makeDirty.

41 June 5, 2003

55.4

555

5.5.6

JDO 1.0.1

Hollow (Required)

JDO instances that represent specific persistent data in the datastore but whose values are
not in the JDO instance are hollow. The hollow state provides for the guarantee of unique-
ness for persistent instances between transactions.

This is permitted to be the state of instances committed from a previous transaction, ac-
quired by the method getObjectById, returned by iterating an Extent, returned in
the result of a query execution, or navigating a persistent field reference. However, the
JDO implementation may choose to return instances in a different state reachable from
hollow.

A JDO implementation is permitted to effect a legal state transition of a hollow instance at
any time, as if a field were read. Therefore, the hollow state might not be visible to the ap-
plication.

During the commit of the transaction in which a dirty persistent instance has had its values
changed (including a new persistent instance), the underlying datastore is changed to have
the transactionally consistent values from the JDO instance, and the instance transitions to
hollow.

Requests by the application for an instance with the same JDO identity (query, navigation,
or lookup by Objectld), in a subsequent transaction using the same PersistenceMan-
ager instance, will return the identical Java instance, assuming it has not been garbage
collected. If the application does not hold a strong reference to a hollow instance, the in-
stance might be garbage collected, as the PersistenceManager must not hold a strong
reference to any hollow instance.

The hollow JDO instance maintains its JDO identity and its association with the JDO Per-
sistenceManager. If the instance is of a class using application identity, the hollow in-
stance maintains its primary key fields.

A hollow instance transitions to persistent-deleted if it is the parameter of deletePer-
sistent.

A hollow instance transitions to persistent-dirty if a change is made to any managed field.

It transitions to persistent-clean if a read access is made to any persistent field other than
one of the primary key fields.

Persistent-clean (Required)

JDO instances that represent specific transactional persistent data in the datastore, and
whose values have not been changed in the current transaction, are persistent-clean. This
is the state of an instance whose values have been requested in the current datastore trans-
action, and whose values have not been changed by the current transaction.

A persistent-clean instance transitions to persistent-dirty if a change is made to any man-
aged field.

A persistent-clean instance transitions to persistent-deleted if it is the parameter of
deletePersistent.

A persistent-clean instance transitions to hollow at commit when retainvalues is
false; or rollback when restorevalues is false. It retains its identity and its associa-
tion with the PersistenceManager.

Persistent-deleted (Required)

JDO instances that represent specific persistent data in the datastore, and that have been
deleted in the current transaction, are persistent-deleted.

42 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

5.5.7

Read access to primary key fields is permitted but any other access to persistent fields will
throw a JDOUserException.

Before the transition to persistent-deleted, the user-written jdoPreDelete is called if the
persistence-capable class implements InstanceCallbacks.

A persistent-deleted instance transitions to transient at commit. During the transition, its
persistent fields are written with their Java default values, and the instance loses its JDO
Identity and its association with the PersistenceManager.

A persistent-deleted instance transitions to hollow at rollback when restorevalues is
false. The instance retains its JDO Identity and its association with the Persistence-
Manager.

Persistent-new-deleted (Required)

JDO instances that represent instances that have been newly made persistent and deleted
in the current transaction are persistent-new-deleted.

Read access to primary key fields is permitted but any other access to persistent fields will
throw a JDOUserException.

Before the transition to persistent-new-deleted, the user-written jdoPreDelete is called
if the persistence-capable class implements InstanceCallbacks.

A persistent-new-deleted instance transitions to transient at commit. During the transi-
tion, its persistent fields are written with their Java default values, and the instance loses
its JDO Identity and its association with the PersistenceManager.

A persistent-new-deleted instance transitions to transient at rollback. The instance loses its
JDO Identity and its association with the PersistenceManager.

If RestoreValues is true, the values of managed fields in the instance are restored to
their state as of the call to makePersistent. If RestoreValues is false, the values
of managed fields in the instance are left as they were at the time rollback was called.

5.6

JDO 1.0.1

Nontransactional (Optional)

Management of nontransactional instances is an optional feature of a JDO implementation.
Usage is primarily for slowly changing data or for optimistic transaction management, as
the values in nontransactional instances are not guaranteed to be transactionally consis-
tent.

The use of this feature is governed by the PersistenceManager options Nontrans-
actionalRead, NontransactionalWrite, Optimistic, and RetainValues.
An implementation might support any or all of these options. For example, an implemen-
tation might support only Nontransact ionalRead. For options that are not support-
ed, the value of the unsupported property is false and it may not be changed.

If a PersistenceManager does not support this optional feature, an operation that
would result in an instance transitioning to the persistent-nontransactional state or a re-
quest to set the NontransactionalRead, NontransactionalWrite, Optimis-
tie, or RetainValues option to true, throws a
JDOUnsupportedOptionException.

NontransactionalRead, NontransactionalWrite, Optimistic, and Reta-
inValues are independent options. A JDO implementation must not automatically
change the values of these properties as a side effect of the user changing other properties.

With NontransactionalRead set to true:

43 June 5, 2003

5.6.1

JDO 1.0.1

» Navigation and queries are valid outside a transaction. It is a JDO implementation
decision whether the instances returned are in the hollow or persistent-
nontransactional state.

* When a managed, non-key field of a hollow instance is read outside a transaction,
the instance transitions to persistent-nontransactional.

* If a persistent-clean instance is the parameter of makeNontransactional, the
instance transitions to persistent-nontransactional.

With NontransactionalWriteset to true:

* Modification of persistent-nontransactional instances is permitted outside a
transaction. The changes do not participate in any subsequent transaction.

With RetainValues set to true:

* At commit, persistent-clean, persistent-new, and persistent-dirty instances
transition to persistent-nontransactional. Fields defined in the XML metadata as
containing mutable second-class types are examined to ensure that they contain
instances that track changes made to them and are owned by the instance. If not,
they are replaced with new second class object instances that track changes,
constructed from the contents of the second class object instance. These include
java.util.Date, and Collection and Map types.

NOTE: This process is not required to be recursive, although an
implementation might choose to recursively convert the closure of the collection
to become second class objects. JDO requires conversion only of the affected
persistence-capable instance’s fields.

With RestoreValues set to true:

* Ifthe JDO implementation does not support persistent-nontransactional instances,
at rollback persistent-deleted, persistent-clean and persistent-dirty instances
transition to hollow.

» If the JDO implementation supports persistent-nontransactional instances, at
rollback persistent-deleted, persistent-clean and persistent-dirty instances
transition to persistent-nontransactional. The state of each managed field in
persistent-deleted and persistent-dirty instances is restored:

o fields of primitive types (int, £1loat, etc.), wrapper types (Integer, Float,
etc.), immutable types (Locale, etc.), and references to persistence-capable types
are restored to their values as of the beginning of the transaction and the fields are
marked as loaded.

* fields of mutable types (Date, Collection, array-type, etc.) are set to null
and the fields are marked as not loaded.

Persistent-nontransactional (Optional)

NOTE: The following discussion applies only to datastore transactions. See section 5.8 for
a discussion on how optimistic transactions change this behavior.

JDO instances that represent specific persistent data in the datastore, whose values are cur-
rently loaded but not transactionally consistent, are persistent-nontransactional. There is a
JDO Identity associated with these instances, and transactional instances can be obtained
from the object ids.

44 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

The persistent-nontransactional state allows persistent instances to be managed as a shad-
ow cache of instances that are updated asynchronously.

As long as a transaction is not in progress:

¢ if NontransactionalRead is true, persistent field values might be retrieved
from the datastore by the PersistenceManager;

* ifNontransactionalWriteis true, the application might make changes to the
persistent field values in the instance, and

» There is no state change associated with either of the above operations.

A persistent-nontransactional instance transitions to persistent-clean if it is the parameter
of amakeTransactional method executed when a transaction is in progress. The state
of the instance in memory is discarded (cleared) and the state is loaded from the datastore.

A persistent-nontransactional instance transitions to persistent-clean if any managed field
is accessed when a datastore transaction is in progress. The state of the instance in memory
is discarded and the state is loaded from the datastore.

A persistent-nontransactional instance transitions to persistent-dirty if any managed field
is written when a transaction is in progress. The state of the instance in memory is saved
for use during rollback, and the state is loaded from the datastore. Then the change is ap-
plied.

A persistent-nontransactional instance transitions to persistent-deleted if it is the parame-

ter of deletePersistent. The state of the instance in memory is saved for use during
rollback.

If the application does not hold a strong reference to a persistent-nontransactional in-
stance, the instance might be garbage collected. The PersistenceManager must not
hold a strong reference to any persistent-nontransactional instance.

5.7

5.71

JDO 1.0.1

Transient Transactional (Optional)

Management of transient transactional instances is an optional feature of a JDO implemen-
tation. The following sections describe the additional states and state changes when using
transient transactional behavior.

A transient instance transitions to transient-clean if it is the parameter of makeTransac-
tional.

Transient-clean (Optional)

JDO instances that represent transient transactional instances whose values have not been
changed in the current transaction are transient-clean. This state is not reachable if the JDO
PersistenceManager does not implement makeTransactional.

Changes made outside a transaction are allowed without a state change. A transient-clean
instance transitions to transient-dirty if any managed field is changed in a transaction.
During the transition, values of managed fields are saved by the PersistenceManager
for use during rollback.

A transient-clean instance transitions to transient if it is the parameter of makeNon-
transactional.

45 June 5, 2003

JDO instances that represent transient transactional instances whose values have been
changed in the current transaction are transient-dirty. This state is not reachable if the JDO
PersistenceManager does not implement makeTransactional.

A transient-dirty instance transitions to transient-clean at commit. The values of managed
fields saved (for rollback processing) at the time the transition was made from transient-
clean to transient-dirty are discarded. None of the values of fields in the instance are mod-

A transient-dirty instance transitions to transient-clean at rollback. The values of managed
fields saved at the time the transition was made from transient-clean to transient-dirty are

A transient-dirty instance transitions to persistent-new at makePersistent. The values
of managed fields saved at the time the transition was made from transient-clean to tran-
sient-dirty are used as the before image for the purposes of rollback.

Optimistic Transactions (Optional)
Optimistic transaction management is an optional feature of a JDO implementation.
The Optimistic flag set to true changes the state transitions of persistent instances:

If a persistent field other than one of the primary key fields is read, a hollow
instance transitions to persistent-nontransactional instead of persistent-clean.
Subsequent reads of these fields do not cause a transition from persistent-

A persistent-nontransactional instance transitions to persistent-deleted if it is a
parameter of deletePersistent. The state of the managed fields of the
instance in memory is saved for use during rollback, and for verification during
commit. The values in fields of the instance in memory are unchanged. If fresh
values need to be loaded from the datastore, then the user should first call

A persistent-nontransactional instance transitions to persistent-clean if it is a
parameter of a makeTransactional method executed when an optimistic
transaction is in progress. The values in managed fields of the instance in memory
are unchanged. If fresh values need to be loaded from the datastore, then the user
should first call refresh on the instance.

A persistent-nontransactional instance transitions to persistent-dirty if a managed
field is modified when an optimistic transaction is in progress. If Restorevalues
is true, a before image is saved before the state transition. This is used for
restoring field values during rollback. Depending on the implementation the
before image of the instance in memory might be saved for verification during
commit. The values in fields of the instance in memory are unchanged before the
update is applied. If fresh values need to be loaded from the datastore, then the
user should first call refresh on the instance.

5.7.2 Transient-dirty (Optional)
ified as a result of commit.
restored.

58
nontransactional.
refresh on the instance.
JDO 1.0.1

46 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

Table 2: State Transitions

Table 2: State Transitions method \ current state | Transient P-new P-clean P-dirty Hollow
method \ current state Transient P-new P-clean P-dirty Hollow retrieve outside or with unchanged | unchanged | unchanged | unchanged | P-nontrans
active Optimistic transac-
makePersistent P-new unchanged | unchanged | unchanged | unchanged tion
deletePersistent error P-new-del | P-del P-del P-del retrieve with active Datas- | unchanged | unchanged | unchanged | unchanged | P-clean
tore transaction
makeTransactional T-clean unchanged | unchanged | unchanged | P-clean
makeNontransactional | error error P-nontrans | error unchanged method \ current state T-clean T-dirty P-new-del P-del P-nontrans
makeTransient unchanged | error Transient error Transient makePersistent P-new P-new unchanged | unchanged | unchanged
commit unchanged | Hollow Hollow Hollow unchanged deletePersistent error error unchanged | unchanged | P-del
retainValues=false -
makeTransactional unchanged | unchanged | unchanged | unchanged | P-clean
commit unchanged | P-nontrans | P-nontrans | P-nontrans | unchanged - -
retainValues=true makeNontransactional | Transient error error error unchanged
rollback unchanged | Transient | Hollow Hollow unchanged makeTransient unchanged | unchanged | error error Transient
restoreValues=false commit unchanged | T-clean Transient Transient unchanged
rollback unchanged | Transient | P-nontrans | P-nontrans | unchanged retainValues=false
restoreValues=true commit unchanged | T-clean Transient Transient unchanged
refresh with active unchanged | unchanged | unchanged | P-clean unchanged retainValues=true
Datastore transaction rollback unchanged | T-clean Transient Hollow unchanged
refresh with active Opti- | unchanged | unchanged | unchanged | P-nontrans | unchanged restoreValues=false
mistic transaction rollback unchanged | T-clean Transient P-nontrans | unchanged
evict n/a unchanged | Hollow unchanged | unchanged restoreValues=true
read field outside transac- | unchanged | impossible | impossible | impossible | P-nontrans refresh unchanged | unchanged | unchanged | unchanged | unchanged
tion
- - evict unchanged | unchanged | unchanged | unchanged | Hollow
read field with active unchanged | unchanged | unchanged |unchanged | P-nontrans
Optimistic transaction read field outside transac- | unchanged | impossible | impossible | impossible | unchanged
tion
read field with active | unchanged | unchanged | unchanged | unchanged | P-clean
Datastore transaction read field with Optimistic | unchanged | unchanged | error error unchanged
transaction
- : . : bl : ble | P- ‘ ‘
vnvlr;ltz]f)iie:t(:/(:)rutSi de unchanged | impossible | impossible | impossible nonfrans read field with active | unchanged | unchanged | error error P-clean
transaction Datastore transaction
write field or unchanged | unchanged | P-dirty unchanged | P-dirty write field or unchanged | impossible | impossible | impossible | unchanged
makeDirty with makeDirty outside
active transaction transaction
JDO 1.0.1 47 June 5, 2003 JDO 1.0.1 48 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

method \ current state

T-clean

T-dirty

P-new-del

P-del

P-nontrans

write field or
makeDirty with
active transaction

Todirty

unchanged

€Iror

€1ror

P-dirty

retrieve outside or with
active Optimistic transac-
tion

unchanged

unchanged

unchanged

unchanged

unchanged

retrieve with active Datas-
tore transaction

unchanged

unchanged

unchanged

unchanged

P-clean

error: a JDOUserException is thrown; the state does not change

unchanged: no state change takes place; no exception is thrown due to the state change

n/a: not applicable; if this instance is an explicit parameter of the method, a JDOUserException
is thrown; if this instance is an implicit parameter, it is ignored.
impossible: the state cannot occur in this scenario

Figure 7.0 Life Cycle: New Persistent Instances
makePersistent
Transient Persistent- commit
. rollback new
y =
deletePersistent

commit, Persistent-
rollback new-deleted

JDO 1.0.1

49

Hollow

June 5, 2003

Figure 8.0 Life Cycle: Transactional Access
. read field,
Active write field
Persistent <
Transient Instances Hollow
comimit, >
rollback
deletePersjstént
deletePersistent
commit
Persistent-
deleted
Figure 9.0 Life Cycle: Datastore Transactions
read field
Plersistent— T
et commit,
writefield rollback Hollow
A/write,ﬁel‘ﬂ/
Persistent- /
) tommit,
dirty rollback
Figure 10.0 Life Cycle: Optimistic Transactions
Persistent- read field
nontransactional
commit,
writd field rollback Hollow
‘/writaw
Persistent- /
dirty commit,
rollback

JDO 1.0.1

50 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

Figure 11.0 Life Cycle: Access Outside Transactions

read field,
write field
read field, Persistent-
write field nontransactional Hollow
- -
evict
Figure 12.0 Life Cycle: Transient Transactional
Transient
makeTransactional $ f makeNontransactional
Transient-
clean
write field commit,
rollback
Transient-
dirty
JDO 1.0.1 51 June 5, 2003

Figure 13.0 JDO Instance State Transitions

10

=

READ-OK N\

persistent- clean

er31stent-

nontransactlonal

.

persistent-
new

-

-

18.
TRANSIENT

17.

20. :
V\—(persistent-deleted 1.

persistent-
new-deleted

PERSISTENT

JDO 1.0.1

NOTE: Not all possible state transitions are shown in this diagram.

L.

NS n kW

%

10.

11.

A transient instance transitions to persistent-new when the instance is the
parameter of a makePersistent method.

A persistent-new instance transitions to hollow when the transaction in which it
was made persistent commits.

A hollow instance transitions to persistent-clean when a field is read.

A persistent-clean instance transitions to persistent-dirty when a field is written.
A persistent-dirty instance transitions to hollow at commit or rollback.

A persistent-clean instance transitions to hollow at commit or rollback.

A transient instance transitions to transient-clean when it is the parameter of a
makeTransactional method.

A transient-clean instance transitions to transient-dirty when a field is written.
A transient-dirty instance transitions to transient-clean at commit or rollback.

A transient-clean instance transitions to transient when it is the parameter of a
makeNontransactional method.

A hollow instance transitions to persistent-dirty when a field is written.

52 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

12. A persistent-clean instance transitions to persistent-nontransactional at commit
when RetainValues is set to true, at rollback when RestoreValues is set
to true, or when it is the parameter of a makeNontransactional method.

13. A persistent-nontransactional instance transitions to persistent-clean when it is
the parameter of a makeTransactional method.

14. A persistent-nontransactional instance transitions to persistent-dirty when a
field is written in a transaction.

15. A persistent-new instance transitions to transient on rollback.

16. A persistent-new instance transitions to persistent-new-deleted when it is the
parameter of deletePersistent.

17. A persistent-new-deleted instance transitions to transient on rollback. The
values of the fields are restored as of the makePersistent method.

18. A persistent-new-deleted instance transitions to transient on commit. No
changes are made to the values.

19. A hollow, persistent-clean, or persistent-dirty instance transitions to persistent-
deleted when it is the parameter of deletePersistent.

20. A persistent-deleted instance transitions to transient when the transaction in
which it was deleted commits.

21. A persistent-deleted instance transitions to hollow when the transaction in
which it was deleted rolls back.

22. A hollow instance transitions to persistent-nontransactional when the
Nontransact ionalRead option is set to true, a field is read, and there is
either an optimistic transaction or no transaction active.

23. A persistent-dirty instance transitions to persistent-nontransactional at commit
when RetainValues issetto true or at rollback when RestoreValues is
set to true.

24. A persistent-new instance transitions to persistent-nontransactional at commit
when RetainValues is set to true.

53 June 5, 2003

6 The Persistent Object Model

This chapter specifies the object model for persistence capable classes. To the extent possi-
ble, the object model is the same as the Java object model. Differences between the Java ob-
ject model and the JDO object model are highlighted.

6.1 Overview

The Java execution environment supports different kinds of classes that are of interest to
the developer. The classes that model the application and business domain are the primary
focus of JDO. In a typical application, application classes are highly interconnected, and
the graph of instances of those classes includes the entire contents of the datastore.

Applications typically deal with a small number of persistent instances at a time, and it is
the function of JDO to allow the illusion that the application can access the entire graph of
connected instances, while in reality only small subset of instances needs to be instantiated
in the JVM. This concept is called transparent data access, transparent persistence, or sim-
ply transparency.

Figure 14.0 Instantiated persistent objects

a, 0
O«

C)l Instamgtes\gersiste objects

Persistent ot}iéts I Datastore virtual objects

¢-0-9-0

Transient objects

Java VM

JDO 1.0.1 54 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

Within a JVM, there may be multiple independent units of work that must be isolated from
each other. This isolation imposes requirements on JDO to permit the instantiation of the
same datastore object into multiple Java instances. The connected graph of Java instances
is only a subset of the entire contents of the datastore. Whenever a reference is followed
from one persistent instance to another, the JDO implementation transparently instanti-
ates the required instance into the JVM.

The storage of objects in datastores might be quite different from the storage of objects in
the JVM. Therefore, there is a mapping between the Java instances and the objects in the
datastore. This mapping is performed by the JDO implementation, using metadata that is
available at runtime. The metadata is generated by a JDO vendor-supplied tool, in coop-
eration with the deployer of the system. The mapping is not standardized by JDO.

JDO instances are stored in the datastore and retrieved, possibly field by field, from the
datastore at specific points in their life cycle. The class developer might use callbacks at
certain points to make a JDO instance ready for execution in the JVM, or make a JDO in-
stance ready to be removed from the JVM. While executing in the JVM, a JDO instance
might be connected to other instances, both persistent and transient.

There is no restriction on the types of non-persistent fields of persistence-capable classes.
These fields behave exactly as defined by the Java language. Persistent fields of persis-
tence-capable classes have restrictions in JDO, based on the characteristics of the types of
the fields in the class definition.

The JDO Object Model has the following objectives:

* All field types supported by the Java language, including primitive types,
reference types and interface types should be supported by JDO instances.

* All class and field modifiers supported by the Java language including private,
public, protected, static, transient, abstract, final, synchronized, and volatile,
should be supported by JDO instances.

All user-defined classes should be allowed to be persistence-capable.

» Some system-defined classes (especially those for modeling state) should be

6.2 Goals
persistence-capable.
6.3 Architecture

JDO 1.0.1

In Java, variables (including fields of classes) have types. Types are either primitive types
or reference types. Reference types are either classes or interfaces. Arrays are treated as
classes.

An object is an instance of a specific class, determined when the instance is constructed.
Instances may be assigned to variables if they are assignment compatible with the variable
type.

PersistenceCapable interface

The JDO Object Model distinguishes between two kinds of classes: those that implement
PersistenceCapable and those that don’t. A user-defined class can implement Per -
sistenceCapable unless its state depends on the state of inaccessible or remote objects
(e.g. it extends java.net.SocketImpl or uses JNI (native calls) to implement ja-

55 June 5, 2003

JDO 1.0.1

va.net .SocketOptions). A non-static inner class cannot be persistence-capable be-
cause the state of its instances depends on the state of their enclosing instances.

Except for system-defined classes specially addressed by the JDO specification, system-de-
fined classes (those defined in java.lang, java.io, java.util, java.net, etc.) are
not persistence-capable, nor is a system-defined class allowed to be the type of a persistent
field.

First Class Objects and Second Class Objects

A First Class Object (FCO) is an instance of PersistenceCapable that has JDO Identity
and can be stored in a datastore, and independently deleted and queried. A Second Class
Object (SCO) has no JDO Identity of its own and is stored in the datastore only as part of
a First Class Object. In some JDO implementations, some SCO instances are actually arti-
facts that have no literal datastore representation at all, but are used only to represent re-
lationships. For example, a Collection of a PersistenceCapable class might not be
stored in the datastore, but created when needed to represent the relationship in memory.
At commit time, the memory artifact is discarded and the relationship is represented en-
tirely by datastore relationships.

First Class Objects

FCOs support uniquing; whenever an FCO is instantiated into memory, there is guaran-
teed to be only one instance representing that FCO managed by the same Persistence-
Manager instance. They are passed as arguments by reference.

An FCO can be shared among multiple FCOs, and if an FCO is changed (and the change
is committed to the datastore), then the changes are visible to all other FCOs that refer to it.

Second Class Objects

Second Class Objects are either instances of immutable system classes (java.lang.In-
teger, java.lang.String, etc), JDO implementation subclasses of mutable system
classes that implement the functionality of their system class (java.util.Date, ja-
va.util.HashSet, etc.), or PersistenceCapable classes.

Second Class Objects of mutable system classes and persistence-capable classes track
changes made to them, and notify their owning FCO that they have changed. The change
is reflected as a change to the owning FCO (e.g. the owning instance might change state
from persistent-clean to persistent-dirty). They are stored in the datastore only as part of a
FCO. They do not support uniquing, and the Java object identity of the values of the per-
sistent fields containing them is lost when the owning FCO is flushed to the datastore.
They are passed as arguments by reference.

SCO fields must be explicitly or by default identified in the metadata as embedded. If a
field, or an element of a collection or a map key or value is identified as embedded (em-
bedded-element, embedded-key, or embedded-value) then any instances so identified in
the collection or map are treated as SCO during commit. That is, the value is stored with
the owning FCO and the value loses its own identity if it had one.

SCO fields of persistence-capable types are identified as embedded. The behavior of em-
bedded persistence-capable types is intended to mirror the behavior of system types, but
this is not standard, and portable applications must not depend on this behavior.

It is possible for an application to assign the same instance of a mutable SCO class to mul-
tiple FCO embedded fields, but this non-portable behavior is strongly discouraged for the
following reason. If the assignment is done to persistent-new, persistent-clean, or persis-
tent-dirty instances, then at the time that the FCOs are committed to the datastore, the Java
object identity of the owned SCOs might change, because each FCO might have its own

56 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

JDO 1.0.1

unshared SCO. If the assignment is done before makePersistent is called to make the
FCOs persistent, the embedded fields are immediately replaced by copies, and no sharing
takes place.

When an FCO is instantiated in the JVM by a JDO implementation, and an embedded field
of a mutable type is accessed, the JDO implementation assigns to these fields a new in-
stance that tracks changes made to itself, and notifies the owning FCO of the change. Sim-
ilarly, when an FCO is made persistent, either by being the parameter of
makePersistent or makePersistentAll or by being reachable from a parameter of
makePersistent or makePersistentAll at the time of the execution of the makeP-
ersistent or makePersistentAll method call, the JDO implementation replaces the
field values of mutable SCO types with instances of JDO implementation subclasses of the
mutable system types.

Therefore, the application cannot assume that it knows the actual class of instances as-
signed to SCO fields, although it is guaranteed that the actual class is assignment compat-
ible with the type.

There are few differences visible to the application between a field mapped to an FCO and
an SCO. One difference is in sharing. If an FCOL is assigned to a persistent field in FCO2
and FCQO3, then any changes at any time to instance FCO1 will be visible from FCO2 and
FCO3.

If an SCOL1 is assigned to a persistent field in persistent instances FCO1 and FCO2, then
any changes to SCO1 will be visible from instances FCO1 and FCO2 only until FCO1 and
FCO2 are committed. After commit, instance SCO1 might not be referenced by either
FCO1 or FCO2, and any changes made to SCO1 might not be reflected in either FCO1 or
FCO2.

Another difference is in visibility of SCO instances by queries. SCO instances are not add-
ed to Extents. If the SCO instance is of a PersistenceCapable type, it is not visible to
queries of the Extent of the PersistenceCapable. Furthermore, the field values of
SCO instances of PersistenceCapable types might not be visible to queries at all.

Sharing of immutable SCO fields is supported in that it is good practice to assign the same
immutable instance to multiple SCO fields. But the field values should not be compared
using Java identity, but only by Java equality. This is the same good practice used with
non-persistent instances.

Arrays

Arrays are system-defined classes that do not necessarily have any JDO Identity of their
own, and support by a JDO implementation is optional. If an implementation supports
them, they might be stored in the datastore as part of an FCO. They do not support uniqu-
ing, and the Java object identity of the values of the persistent fields containing them is lost
when the owning FCO is flushed to the datastore. They are passed as arguments by refer-
ence.

Tracking changes to Arrays is not required to be done by a JDO implementation. If an Ar-
ray owned by an FCO is changed, then the changes might not be flushed to the datastore.
Portable applications must not require that these changes be tracked. In order for changes
to arrays to be tracked, the application must explicitly notify the owning FCO of the
change to the Array by calling the jdoMakeDirty method of the PersistenceCa-
pable interface (or makeDirty of the JDOHelper class), or by replacing the field value
with its current value.

Since changes to array-type fields cannot be tracked by JDO, setting the value of an array-
type managed field marks the field as dirty, even if the new value is identical to the old

57 June 5, 2003

value. This special case is required to allow the user to mark an array-type field as dirty
without having to call the JDOHelper method makeDirty.

Furthermore, an implementation is permitted, but not required to, track changes to Arrays
passed as references outside the body of methods of the owning class. There is a method
defined on interface PersistenceCapable that allows the application to mark the field
containing such an Array to be modified so its changes can be tracked. Portable applica-
tions must not require that these changes be tracked automatically. When a reference to
the Array is returned as a result of a method call, a portable application first marks the Ar-
ray field as dirty.

It is possible for an application to assign the same instance of an Array to multiple FCOs,
but after the FCO is flushed to the datastore, the Java object identity of the Array might
change.

When an FCO is instantiated in the JVM, the JDO implementation assigns to fields with an
Array type a new instance with a different Java object identity from the instance stored.

Therefore, the application cannot assume that it knows the identity of instances assigned
to Array fields, although it is guaranteed that the actual value is the same as the value
stored.

Primitives

Primitives are types defined in the Java language and comprise boolean, byte, short,
int, long, char, float, and double. They might be stored in the datastore only as part
of an FCO. They have no Java identity and no datastore identity of their own. They are
passed as arguments by value.

Interfaces

Interfaces are types whose values may be instances of any class that declare that they im-
plement that interface.

6.4
6.4.1

6.4.2

6.4.3

JDO 1.0.1

Field types of persistence-capable classes
Nontransactional non-persistent fields

There are no restrictions on the types of nontransactional non-persistent fields. These
fields are managed entirely by the application, not by the JDO implementation. Their state
is not preserved by the JDO implementation, although they might be modified during ex-
ecution of user-written callbacks defined in interface InstanceCallbacks at specific
points in the life cycle, or any time during the instance’s existence in the JVM.

Transactional non-persistent fields

There are no restrictions on the types of transactional non-persistent fields. These fields are
partly managed by the JDO implementation. Their state is preserved and restored by the
JDO implementation during certain state transitions.

Persistent fields

Primitive types

JDO implementations must support fields of any of the primitive types
* boolean, byte, short, int, long, char, f£loat, and double.

Primitive values are stored in the datastore associated with their owning FCO. They have
no JDO Identity.

58 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

JDO 1.0.1

Immutable Object Class types

JDO implementations must support fields that reference instances of immutable object
classes, and may choose to support these instances as SCOs or FCOs:

» package java.lang: Boolean, Character, Byte, Short, Integer, Long,
Float, Double, and String;

* package java.util: Locale;

* package java.math: BigDecimal, BigInteger.
Portable JDO applications must not depend on whether instances of these classes are treat-
ed as SCOs or FCOs.
Mutable Object Class types

JDO implementations must support fields that reference instances of the following muta-
ble object classes, and may choose to support these instances as SCOs or FCOs:

* package java.util:Date, HashSet.

JDO implementations may optionally support fields that reference instances of the follow-
ing mutable object classes, and may choose to support these instances as SCOs or FCOs:

* package java.util:ArraylList, HashMap, Hashtable, LinkedList,
TreeMap, TreeSet, and Vector.
Because the treatment of these fields may be as SCO, the behavior of these mutable object

classes when used in a persistent instance is not identical to their behavior in a transient
instance.

Portable JDO applications must not depend on whether instances of these classes refer-
enced by fields are treated as SCOs or FCOs.
PersistenceCapable Class types

JDO implementations must support references to FCO instances of PersistenceCa-
pable and are permitted, but not required, to support references to SCO instances of
PersistenceCapable.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.
Object Class type

JDO implementations must support fields of Object class type as FCOs. The implemen-
tation is permitted, but is not required, to allow any class to be assigned to the field. If an
implementation restricts instances to be assigned to the field, a ClassCastException
must be thrown at the time of any incorrect assignment.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.
Collection Interface types

JDO implementations must support fields of interface types, and may choose to support
them as SCOs or FCOs: package java.util: Collection, Map, Set, and List. Col-
lection and Set are required; Map and List are optional.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

59 June 5, 2003

Other Interface types

JDO implementations must support fields of interface types other than Collection in-
terface types as FCOs. The implementation is permitted, but is not required, to allow any
class that implements the interface to be assigned to the field. If an implementation further
restricts instances that can be assigned to the field, a ClassCastException must be
thrown at the time of any incorrect assignment.

Portable JDO applications must treat these fields as FCOs.

Arrays

JDO implementations may optionally support fields of array types, and may choose to
support them as SCOs or FCOs. If Arrays are supported by JDO implementations, they are
permitted, but not required, to track changes made to Arrays that are fields of persistence
capable classes in the methods of the classes. They need not track changes made to Arrays
that are passed by reference as arguments to methods, including methods of persistence-
capable classes.

Portable JDO applications must not depend on whether these fields are treated as SCOs or
FCOs.

6.5

JDO 1.0.1

Inheritance

A class might be persistence-capable even if its superclass is not persistence-capable. This
allows users to extend classes that were not designed to be persistence-capable. If a class
is persistence-capable, then its subclasses might or might not be persistence-capable them-
selves.

Further, subclasses of such classes that are not persistence-capable might be persistence-
capable. That is, it is possible for classes in the inheritance hierarchy to be independently
persistence-capable and not persistence-capable. It is not sufficient to test if a class imple-
ments PersistenceCapable (e.g. testing anInstance instanceof Persis-
tenceCapable) to determine whether an instance is allowed to be stored.

Fields identified in the XML metadata as persistent or transactional in persistence-capable
classes must be fields declared in that Java class definition. That is, inherited fields cannot
be named in the XML metadata.

Fields identified as persistent in persistence-capable classes will be persistent in subclass-
es; fields identified as transactional in persistence-capable classes will be transactional in
subclasses; and fields identified as non-persistent in persistence-capable classes will be
non-persistent in subclasses.

Of course, a class might define a new field with the same name as the field declared in the
superclass, and might define it with a different persistence-modifier from the inherited
field. But Java treats the declared field as a different field from the inherited field, so there
is no conflict.

All persistence-capable classes must have a no-arg constructor. This constructor might be
a private constructor, as it is only used from within the jdoNewInstance methods. The
constructor might be the default no-arg constructor created by the compiler when the
source code does not define any constructors.

The identity type of the least-derived persistence-capable class defines the identity type for
all persistence-capable classes that extend it.

Persistence-capable classes that use application identity have special considerations for in-
heritance:

60 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

JDO 1.0.1

Key fields may be declared only in abstract superclasses and least-derived concrete classes
in inheritance hierarchies. Key fields declared in these classes must also be declared in the
corresponding objectid classes, and the objectid classes must form an inheritance hierar-
chy corresponding to the inheritance hierarchy of the persistence-capable classes. A per-
sistence-capable class can only have one concrete objectid class anywhere in its inheritance
hierarchy.

For example, if an abstract class Component declares a key field masterId, the objectid
class ComponentKey must also declare a field of the same type and name. If Compo-
nentKey is concrete, then no subclass is allowed to define an objectid class.

If ComponentKey is abstract, an instance of a concrete subclass of ComponentKey must
be used to find a persistent instance. A concrete class Part that extends Component must
declare a concrete objectid class (for example, PartKey) that extends ComponentKey.
There might be no key fields declared in Part or PartKey. Persistence-capable subclass-
es of Part must not have an objectid class.

Another concrete class Assembly that extends Component must declare a concrete ob-
jectid class (for example, AssemblyKey) that extends ComponentKey. If there is a key
field, it must be declared in both Assembly and Assemb1yKey. Persistence-capable sub-
classes of Assembly must not have an objectid class.

There might be other abstract classes or non-persistence-capable classes in the inheritance
hierarchy between Component and Part, or between Component and Assembly.
These classes are ignored for the purposes of objectid classes and key fields.

61 June 5, 2003

14

Query

This chapter specifies the query contract between an application component and the JDO
PersistenceManager.

The query facility consists of two parts: the query API, and the query language. The query
language described in this chapteris “JDOQL”.

An application component requires access to JDO instances so it can invoke specific behav-
ior on those instances. From a JDO instance, it might navigate to other associated instances,
thereby operating on an application-specific closure of instances.

However, getting to the first JDO instance is a bootstrap issue. There are three ways to get
an instance from JDO. First, if the users have or can construct a valid Object Id, then they
can get an instance via the persistence manager’'s get ObjectById method. Second, us-
ers can iterate a class extent by calling getExtent. Third, the JDO Query interface pro-
vides the ability to acquire access to JDO instances from a particular JDO persistence
manager based on search criteria specified by the application.

The persistent manager instance is a factory for query instances, and queries are executed
in the context of the persistent manager instance.

The actual query execution might be performed by the JDO PersistenceManager or
might be delegated by the JDO PersistenceManager to its datastore. The actual query
executed thus might be implemented in a very different language from Java, and might be
optimized to take advantage of particular query language implementations.

For this reason, methods in the query filter have semantics possibly different from those

The JDO Query interface has the following goals:

* Query language neutrality. The underlying query language might be a relational
query language such as SQL; an object database query language such as OQL; or
a specialized API to a hierarchical database or mainframe EIS system.

» Optimization to specific query language. The Query interface must be capable of
optimizations; therefore, the interface must have enough user-specified
information to allow for the JDO implementation to exploit data source specific

* Accommodation of multi-tier architectures. Queries might be executed entirely in
memory, or might be delegated to a back end query engine. The JDO Query
interface must provide for both types of query execution strategies.

14.1 Overview
in the Java VM.
142 Goals
query features.
JDO 1.0.1

104 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

* Large result set support. Queries might return massive numbers of JDO instances
that match the query. The JDO Query architecture must provide for processing
the results within the resource constraints of the execution environment.

* Compiled query support. Parsing queries may be resource-intensive, and in many
applications can be done during application development or deployment, prior to
execution time. The query interface allows for compiling queries and binding run-
time parameters to the bound queries for execution.

14.3

JDO 1.0.1

Architecture: Query

The JDO PersistenceManager instance is a factory for JDO Query instances, which
implement the JDO Query interface. Multiple JDO Query instances might be active si-
multaneously in the same JDO PersistenceManager instance. Multiple queries might
be executed simultaneously by different threads, but the implementation might choose to
execute them serially. In either case, the execution must be thread safe.

There are three required elements in any query:

* the class of the candidate instances. The class is used to scope the names in the
query filter. All of the candidate instances are of this class or a subclass of this class.

the collection of candidate JDO instances. The collection of candidate instances is
either ajava.util.Collection, or an Extent of instances in the datastore.
Instances that are not of the required class or subclass will be silently ignored. The
Collection might be a previous query result, allowing for subqueries.

the query filter. The query filter is a Java boolean expression that tells whether
instances in the candidate collection are to be returned in the result. If not
specified, the filter defaults to true.

Other elements in queries include:

» parameter declarations. The parameter declaration is a St ring containing one or
more query parameter declarations separated with commas. It follows the syntax
for formal parameters in the Java language. Each parameter named in the
parameter declaration must be bound to a value when the query is executed.

» parameter values to bind to parameters. Values are specified as Java Objects, and
might include simple wrapper types or more complex object types. The values are
passed to the execute methods and are not preserved after a query executes.

variable declarations: Variables might be used in the filter, and these variables
must be declared with their type. The variable declaration is a St ring containing
one or more variable declarations. Each declaration consists of a type and a
variable name, with declarations separated by a semicolon if there are two or more
declarations. It is similar to the syntax for local variables in the Java language.

* import statements: Parameters and variables might come from a different class
from the candidate class, and the names might need to be declared in an import
statement to eliminate ambiguity. Import statements are specified as a String
with semicolon-separated statements. The syntax is the same as in the Java
language import statement.

ordering specification. The ordering specification includes a list of expressions
with the ascending/descending indicator. The expression’s type must be one of:

105 June 5, 2003

* primitive types except boolean;

* wrapper types except Boolean;

* BigDecimal;

* BigInteger;

* String;

* Date.
The class implementing the Query interface must be serializable. The serialized fields in-
clude the candidate class, the filter, parameter declarations, variable declarations, imports,
and ordering specification. If a serialized instance is restored, it loses its association with
its former PersistenceManager.

The query namespace is modeled after methods in Java:
* setClass corresponds to the class definition
* declareParameters corresponds to formal parameters of a method
* declareVariables corresponds to local variables of a method
* setFilter and setOrdering correspond to the method body

There are two namespaces in queries. Type names have their own namespace that is sep-
arate from the namespace for fields, variables and parameters.

The method set Class introduces the name of the candidate class in the type namespace.
The method declareImports introduces the names of the imported class or interface
types in the type namespace. When used (e.g. in a parameter declaration, cast expression,
etc.) a type name must be the name of the candidate class, the name of a class or interface
imported by the parameter to declareImports, denote a class or interface from the
same package as the candidate class, or must be declared by exactly one type-import-on-
demand declaration (“import <packages.*;“).Itis valid to specify the same import

The names of the public types declared in the package java.lang are automatically im-
ported as if the declaration “import java.lang.*;” appeared indeclareImports.
It is a JDOQL-compile time error (reported during compile() or execute(...) methods) if a
used type name is declared by more than one type-import-on-demand declaration.

The method setClass also introduces the names of the candidate class fields.

The method declareParameters introduces the names of the parameters. A name in-
troduced by declareParameters hides the name of a candidate class field if equal. Pa-

The method declareVariables introduces the names of the variables. A name intro-
duced by declareVariables hides the name of a candidate class field if equal. Variable
names must be unique and must not conflict with parameter names.

A hidden field may be accessed using the this qualifier: this.fieldName.

Query Factory in PersistenceManager interface

The PersistenceManager interface contains Query factory methods.

144 Namespaces in queries
multiple times.
rameter names must be unique.
14.5
Query newQuery () ;
JDO1.0.1

106 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

Construct an empty query instance.
Query newQuery (Object query);

Construct a query instance from another query. The parameter might be a serialized/re-
stored Query instance from the same JDO vendor but a different execution environment,
or the parameter might be currently bound to a PersistenceManager from the same
JDO vendor. Any of the elements Class, Filter, IgnoreCache flag, Import declarations, Vari-
able declarations, Parameter declarations, and Ordering from the parameter Query are
copied to the new Query instance, but a candidate Collection or Extent element is
discarded.

Query newQuery (String language, Object query);

Construct a query instance using the specified language and the specified query. The que-
ry instance will be of a class defined by the query language. The language parameter for
the JDO Query language as herein documented is “javax.jdo.query.JDOQL”. Other
languages’ parameter is not specified.

Query newQuery (Class cls);
Construct a query instance with the candidate class specified.
Query newQuery (Extent cln);

Construct a query instance with the candidate Extent specified; the candidate class is
taken from the Extent.

Query newQuery (Class cls, Collection cln);

Construct a query instance with the candidate class and candidate Collection speci-
fied.

Query newQuery (Class cls, String filter);
Construct a query instance with the candidate class and filter specified.
Query newQuery (Class cls, Collection cln, String filter);

Construct a query instance with the candidate class, the candidate Collection, and fil-
ter specified.

Query newQuery (Extent cln, String filter);

Construct a query instance with the candidate Extent and filter specified; the candidate
class is taken from the Extent.

14.6

JDO 1.0.1

Query Interface

package javax.jdo;

interface Query extends Serializable {
Persistence Manager

PersistenceManager getPersistenceManager() ;

Return the associated PersistenceManager instance. If this Query instance was re-
stored from a serialized form, then nul1l is returned.

Query element binding

The Query interface provides methods to bind required and other elements prior to exe-
cution.

107 June 5, 2003

JDO 1.0.1

All of these methods replace the previously set query element, by the parameter. [The
methods are not additive.] For example, if multiple variables are needed in the query, all
of them must be specified in the same call to declareVariables.

void setClass (Class candidateClass) ;
Bind the candidate class to the query instance.
void setCandidates (Collection candidateCollection);

Bind the candidate Collection to the query instance. If the user adds or removes ele-
ments from the Collection after this call, it is not determined whether the added/re-
moved elements take part in the Query, or whether a NoSuchElementException is
thrown during execution of the Query.

For portability, the elements in the collection must be persistent instances associated with
the same PersistenceManager as the Query instance. An implementation might sup-
port transient instances in the collection. If persistent instances associated with another
PersistenceManager are in the collection, JDOUserException is thrown during
execute ().

If the candidates are not specified explicitly by newQuery, setCandidates (Collec-
tion),or setCandidates (Extent), then the candidate extent is the extent of instances
of the candidate class in the datastore including subclasses. That is, the candidates are the
result of getPersistenceManager () .getExtent (candidateClass, true).

void setCandidates (Extent candidateExtent) ;
Bind the candidate Extent to the query instance.

void setFilter (String filter);

Bind the query filter to the query instance.

void declareImports (String imports) ;

Bind the import statements to the query instance. All imports must be declared in the same
method call, and the imports must be separated by semicolons.

void declareVariables (String variables) ;

Bind the variable statements to the query instance. This method defines the types and
names of variables that will be used in the filter but not provided as values by the exe-
cute method.

void declareParameters (String parameters) ;

Bind the parameter statements to the query instance. This method defines the parameter
types and names that will be used by a subsequent execute method.

void setOrdering (String ordering) ;
Bind the ordering statements to the query instance.
Query options

void setIgnoreCache (boolean flag);
boolean getIgnoreCache () ;

The IgnoreCache option, when set to true, is a hint to the query engine that the user
expects queries be optimized to return approximate results by ignoring changed values in
the cache. This option is useful only for optimistic transactions and allows the datastore to
return results that do not take modified cached instances into account. An implementation

108 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

14.6.1

JDO 1.0.1

may choose to ignore the setting of this flag, and always return exact results reflecting cur-
rent cached values, as if the value of the flag were false.

Query compilation
The Query interface provides a method to compile queries for subsequent execution.
void compile() ;

This method requires the Query instance to validate any elements bound to the query in-
stance and report any inconsistencies by throwing a JDOUserException. It is a hint to
the Query instance to prepare and optimize an execution plan for the query.

Query execution

The Query interface provides methods that execute the query based on the parameters
given. They return an unmodifiable Collect ion which the user can iterate to get results.
Executing any operation on the Collect ion that might change it throws Unsupport -
edOperat ionException. For future extension, the signature of the execute methods
specifies that they return an Object that must be cast to Collection by the user.

Any parameters passed to the execute methods are used only for this execution, and are
not remembered for future execution.

For portability, parameters of persistence-capable types must be persistent or transactional
instances. Parameters that are persistent or transactional instances must be associated with
the same PersistenceManager as the Query instance. An implementation might sup-
port transient instances of persistence-capable types as parameters. If a persistent instance
associated with another PersistenceManager is passed as a parameter, JDOUserEx-
ception is thrown during execute ().

Queries may be constructed at any time before the PersistenceManager is closed, but
may be executed only at certain times. If the PersistenceManager that constructed the
Query is closed, then the execute methods throw JDOUserException. If the Non-
transactionalRead property is false, and a transaction is not active, then the exe -
cute methods throw JDOUserException.

Object execute ();

Object execute (Object p1l);

Object execute (Object pl, Object p2);

Object execute (Object pl, Object p2, Object p3);

The execute methods execute the query using the parameters and return the result,
which is an unmodifiable collection of instances that satisfy the boolean filter. The result
may be a large Collection, which should be iterated or possibly passed to another
Query. The size () method mightreturn Integer .MAX VALUE if the actual size of the
result is not known (for example, the Collection represents a cursored result).

When using an Ext ent to define candidate instances, the contents of the extent are subject
to the setting of the ignoreCache flag. With ignoreCache set to false:

» if instances were made persistent in the current transaction, the instances will be
considered part of the candidate instances.

« if instances were deleted in the current transaction, the instances will not be
considered part of the candidate instances.

With ignoreCache set to true:

109 June 5, 2003

14.6.2

JDO 1.0.1

» if instances were made persistent in the current transaction, the new instances
might not be considered part of the candidate instances.

« if instances were deleted in the current transaction, the instances will not be
considered part of the candidate instances.

Each parameter of the execut e method(s) is an Object that is either the value of the cor-
responding parameter or the wrapped value of a primitive parameter. The parameters as-
sociate in order with the parameter declarations in the Query instance.

Object executeWithMap (Map m);

The executeWithMap method is similar to the execute method, but takes its parame-
ters from a Map instance. The Map contains key/value pairs, in which the key is the de-
clared parameter name, and the value is the value to use in the query for that parameter.
Unlike execute, there is no limit on the number of parameters.

Object executeWithArray (Object[] a);

The executeWithArray method is similar to the execute method, but takes its pa-
rameters from an array instance. The array contains Objects, in which the positional Ob-
ject is the value to use in the query for that parameter. Unlike execute, there is no limit
on the number of parameters.

Filter specification

The filter specification is a St ring containing a boolean expression that is to be evaluated
for each of the instances in the candidate collection. If the filter is not specified, then it de-
faults to "true™", and the input Collection is filtered only for class type.

An element of the candidate collection is returned in the result if:
* it is assignment compatible to the candidate Class of the Query; and

» for all variables there exists a value for which the filter expression evaluates to
true. The user may denote uniqueness in the filter expression by explicitly
declaring an expression (for example, e1 != e2). For example, a filter for a
Department where there exists an Employee with more than one dependent
and an Employee making more than 30,000 might be:
" (emps.contains (el) & el.dependents > 1) &
(emps.contains (e2) & e2.salary > 30000)". The same Employee
might satisfy both conditions. But if the query required that there be two different
Employees satisfying the two conditions, an additional expression could be
added: " (emps.contains(el) & el.dependents > 1) &
(emps.contains (e2) & (e2.salary > 30000 & el != e2))".

Rules for constructing valid expressions follow the Java language, except for these differ-
ences:
» Equality and ordering comparisons between primitives and instances of wrapper
classes are valid.
* Equality and ordering comparisons of Dat e fields and Dat e parameters are valid.

* Equality and ordering comparisons of St ring fields and St ring parameters are
valid. The comparison is done according to an ordering not specified by JDO. This
allows an implementation to order according to a datastore-specified ordering,
which might be locale-specific.

» White space (non-printing characters space, tab, carriage return, and line feed) is a
separator and is otherwise ignored.

110 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

JDO 1.0.1

» The assignment operators =, +=, etc. and pre- and post-increment and -decrement
are not supported.

* Methods, including object construction, are not supported, except for
Collection.contains (Object o), Collection.isEmpty(),
String.startsWith(String s), and String.endsWith(String e).
Implementations might choose to support non-mutating method calls as non-
standard extensions.

* Navigation through a null-valued field, which would throw
NullPointerException, is treated as if the subexpression returned false.
Similarly, a failed cast operation, which would throw ClassCastException,is
treated as if the subexpression returned false. Other subexpressions or other
values for variables might still qualify the candidate instance for inclusion in the
result set.

 Navigation through multi-valued fields (Collection types) is specified using a
variable declaration and the Collection.contains (Object o) method.

* The following literals are supported, as described in the Java Language

Specification: IntegerLiteral, FloatingPointLiteral,
BooleanlLiteral, CharacterLiteral, StringLiteral, and
NullLiteral.

Note that comparisons between floating point values are by nature inexact. Therefore,
equality comparisons (== and !=) with floating point values should be used with caution.

Identifiers in the expression are considered to be in the name space of the specified class,
with the addition of declared imports, parameters and variables. As in the Java language,
this is areserved word, and it refers to the element of the collection being evaluated.

Identifiers that are persistent field names are required to be supported by JDO implemen-
tations. Identifiers that are not persistent field names (including final and static field
names) might be supported but are not required. Portable queries must not use non-per-
sistent, final, or static field names in filter expressions.

Navigation through single-valued fields is specified by the Java language syntax of
field name.field name....field_name.

A JDO implementation is allowed to reorder the filter expression for optimization purpos-
es.

The following are minimum capabilities of the expressions that every implementation
must support:

* operators applied to all types where they are defined in the Java language:
Table 4: Query Operators

Operator Description
= equal
1= not equal
> greater than
< less than
>= greater than or equal

111 June 5, 2003

JDO 1.0.1

Table 4: Query Operators

Operator Description

<= less than or equal

& boolean logical AND
(not bitwise)

&& conditional AND

| boolean logical OR
(not bitwise)

Il conditional OR

~ integral unary bitwise
complement

+ binary or unary addi-
tion or String concate-
nation

- binary subtraction or
numeric sign inversion

* times

/ divide by

! logical complement

* exceptions to the above:
* String concatenation is supported only for String + String, not String +
<primitives;
* parentheses to explicitly mark operator precedence

cast operator (class)

» promotion of numeric operands for comparisons and arithmetic operations. The
rules for promotion follow the Java rules (see chapter 5.6 Numeric Promotions of
the Java language spec) extended by BigDecimal, BigInteger and numeric
wrapper classes:

o if either operand is of type BigDecimal, the other is converted to
BigDecimal.

* otherwise, if either operand is of type BigInteger, and the other type is a

floating point type (float, double) or one of its wrapper classes (Float,

Double) both operands are converted to BigDecimal.

otherwise, if either operand is of type BigInteger, the other is converted to

BigInteger.

otherwise, if either operand is of type doub1le, the other is converted to double.

otherwise, if either operand is of type £1oat, the other is converted to f1oat.

otherwise, if either operand is of type 1ong, the other is converted to 1ong.

otherwise, both operands are converted to type int.

112 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

14.6.3

14.6.4

14.6.5

JDO 1.0.1

* operands of numeric wrapper classes are treated as their corresponding primitive
types. If one of the operands is of a numeric wrapper class and the other operand
is of a primitive numeric type, the rules above apply and the result is of the
corresponding numeric wrapper class.

* equality comparison among persistent instances of PersistenceCapable
types use the JDO Identity comparison of the references. Thus, two objects will
compare equal if they have the same JDO Identity.

* comparisons between persistent and non-persistent instances return not equal.

* equality comparison of instances of non-PersistenceCapable reference types
uses the equals method of the type.

* String methods startsWith and endsWith support wild card queries. JDO
does not define any special semantic to the argument passed to the method; in
particular, it does not define any wild card characters.

* Null-valued fields of Collection types are treated as if they were empty if a
method is called on them. In particular, they return true to i sEmpty and return
false to all contains methods. For datastores that support null values for
Collectiontypes, it is valid to compare the field to null. Datastores that do not
support null values for Collection types, will return false if the query
compares the field to null. Datastores that support null values for
Collection types should include the option
"javax.jdo.option.NullCollection" in their list of supported options
(PersistenceManagerFactory.supportedOptions ()).

Parameter declaration

The parameter declaration is a String containing one or more parameter type declara-
tions separated by commas. This follows the Java syntax for method signatures.

Parameter types for primitive values can be specified as either the primitive types or the

corresponding wrapper types. If a parameter type is specified as a primitive, the parame-
ter value passed to execute () must not be null.

Import statements

The import statements follow the Java syntax for import statements.

Variable declaration
The type declarations follow the Java syntax for local variable declarations.

If the variable is not named in a contains clause, that variable’s scope while evaluating the
filter expression is the Extent (including subclasses) of the class of the variable. If the
class does not manage an Extent, then no results will satisfy the query.

A portable query will constrain all variables with a contains clause in each “OR” expres-
sion of the filter where the variable is used. Further, the contains clause must be the left
expression of an “AND” expression where the variable is used in the right expression. That
is, for each occurrence of an expression in the filter using the variable, there is a contains
clause “ANDed” with the expression that constrains the possible values by the elements
of a collection.

A variable that is not constrained with an explicit contains clause is constrained by the
extent of the persistence capable class in the database.

The semantics of contains is “exists”. The meaning of the expression “emps.contains(e) &&
e.salary < param” is “there exists an e in the emps collection such that e.salary is less than

113 June 5, 2003

14.6.6

14.6.7

JDO 1.0.1

param”. This is the natural meaning of contains in the Java language, except where the ex-
pression is negated.

If the expression is negated, then “!(emps.contains(e) && e.salary < param)” means “there
does not exist an employee e in the collection emps such that e.salary is less than param”.
Another way of expressing this is “for each employee e in the collection emps, e.salary is
greater than or equal to param”.

Ordering statement

The ordering statement is a St ring containing one or more ordering declarations sepa-
rated by commas. Each ordering declaration is a Java expression of an orderable type:

* primitives except boolean;
* wrappers except Boolean;
* BigDecimal;
* BigInteger;
* String;
e Date
followed by one of the following words: “ascending” or “descending”.

Ordering might be specified including navigation. The name of the field to be used in or-
dering via navigation through single-valued fields is specified by the Java language syntax
of field name.field_name...field_name.

The result of the first (leftmost) expression is used to order the results. If the leftmost ex-
pression evaluates the same for two or more elements, then the second expression is used
for ordering those elements. If the second expression evaluates the same, then the third ex-
pression is used, and so on until the last expression is evaluated. If all of the ordering ex-
pressions evaluate the same, then the ordering of those elements is unspecified.

The ordering of instances containing null-valued fields specified by the ordering is not
specified. Different JDO implementations might order the instances containing null-val-
ued fields either before or after instances whose fields contain non-null values.

Closing Query results

When the application has finished with the query results, it might optionally close the re-
sults, allowing the JDO implementation to release resources that might be engaged, such
as database cursors or iterators. The following methods allow early release of these re-
sources.

void close (Object queryResult);

This method closes the result of one execute (. ..) method, and releases resources as-
sociated with it. After this method completes, the query result can no longer be used, for
example to iterate the returned elements. Any elements returned previously by iteration
of the results remain in their current state. Any iterators acquired from the queryResult
will return false to hasNext () and will throw NoSuchElementException to
next ().

void closelAll ();

This method closes all results of execute (...) methods on this Query instance, as
above. The Query instance is still valid and can still be used.

114 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

14.7

14.7.1

14.7.2

14.7.3

JDO 1.0.1

Examples:

The following class definitions for persistence capable classes are used in the examples:
package com.xyz.hr;

class Employee {

String name;

Float salary;

Department dept;

Employee boss;

} 14.7.4
package com.xyz.hr;

class Department {

String name;

Collection emps;

}

Basic query.

This query selects all Employee instances from the candidate collection where the salary is
greater than the constant 30000.

Note that the f1oat value for salary is unwrapped for the comparison with the literal
int value, which is promoted to float using numeric promotion. If the value for the
salary field in a candidate instance is null, then it cannot be unwrapped for the com-
parison, and the candidate instance is rejected.

Class empClass = Employee.class;

Extent clnEmployee = pm.getExtent (empClass,
“salary > 30000”;

Query q = pm.newQuery (empClass,

fal ;

alse) 1475
String filter =
clnEmployee, filter);

Collection emps = (Collection) g.execute ();

Basic query with ordering.

This query selects all Employee instances from the candidate collection where the salary is
greater than the constant 30000, and returns a Collection ordered based on employee
salary.

Class empClass = Employee.class;

Extent clnEmployee = pm.getExtent (empClass,
“salary > 30000”;

Query q = pm.newQuery (clnEmployee,

false) ;
String filter =
filter) ;
g.setOrdering (“salary ascending”) ;

Collection emps = (Collection) g.execute ();

14.7.6
Parameter passing.

This query selects all Employee instances from the candidate collection where the salary is
greater than the value passed as a parameter.

115 June 5, 2003 JDO 1.0.1

If the value for the salary field in a candidate instance is null, then it cannot be un-

wrapped for the comparison, and the candidate instance is rejected.
Class empClass = Employee.class;

Extent clnEmployee = pm.getExtent (empClass, false);
String filter = “salary > sal”;
Query q = pm.newQuery (clnEmployee, filter);
String param = “Float sal”;
g.declareParameters (param);

Collection emps = (Collection) g.execute (new Float (30000.));

Navigation through single-valued field.

This query selects all Employee instances from the candidate collection where the value of
the name field in the Department instance associated with the Employee instance is equal
to the value passed as a parameter.

If the value for the dept field in a candidate instance is null, then it cannot be navigated
for the comparison, and the candidate instance is rejected.

Class empClass = Employee.class;

Extent clnEmployee = pm.getExtent (empClass, false);
String filter = “dept.name == dep”;
String param = “String dep”;

Query q = pm.newQuery (clnEmployee, filter);
g.declareParameters (param);

String rnd = “R&D”;

Collection emps = (Collection) g.execute (rnd);

Navigation through multi-valued field.

This query selects all Department instances from the candidate collection where the col-
lection of Employee instances contains at least one Employee instance having a salary
greater than the value passed as a parameter.

Class depClass = Department.class;

Extent clnDepartment = pm.getExtent (depClass, false);
String vars = “Employee emp”;

String filter = “emps.contains (emp) & emp.salary > sal”;
String param = “float sal”;

Query q = pm.newQuery (clnDepartment, filter);
g.declareParameters (param);
g.declareVariables (vars);

Collection deps = (Collection) g.execute (new Float (30000.));

Membership in a collection

This query selects all Department instances where the name field is contained in a pa-
rameter collection, which in this example consists of three department names.

116 June 5, 2003

Java Data Objects 1.0.1

Java Data Objects 1.0.1

Class depClass = Department.class;

Items deferred to the next release

Extent clnDepartment = pm.getExtent (depClass, false); 24
String filter = “depts.contains (name)”;
List depts =

Arrays.asList (new String [] {“R&D”, “Sales”, “Marketing”};
String param = “Collection depts”;
Query q = pm.newQuery (clnDepartment, filter);
g.declareParameters (param);
Collection deps = (Collection) g.execute (depts);

This chapter contains the list of items that were raised during the development of JDO but
were not resolved.

241

Nested Transactions

Define the semantics of nested transactions.

24.2

Savepoint, Undosavepoint

Related to nested transactions, savepoints allow for making changes to instances and then
undoing those changes without making any datastore changes. It is a single-child nested
transaction.

24.3

Inter-PersistenceManager References

Explain how to establish and maintain relationships between persistent instances man-
aged by different PersistenceManagers.

244

Enhancer Invocation APT
A standard interface to call the enhancer will be defined.

245

Prefetch API

A standard interface to specify prefetching of instances by policy will be defined. The in-
tended use it to allow the application to specify a policy whereby instances of persistence
capable classes will be prefetched from the datastore when related instances are fetched.
This should result in improved performance characteristics if the prefetch policy matches
actual application access patterns.

24.6

BLOB/CLOB datatype support

JDO implementations can choose to implement mapping from java.sql.Blob datatype to
byte arrays, and java.sql.Clob to String or other java type; but these mappings are not stan-
dard, and may not have the performance characteristics desired.

24.7

JDO 1.0.1
JDO 1.0.1 117 June 5, 2003

Managed (inverse) relationship support

In order for JDO implementations to be used for container managed persistence entity
beans, relationships among persistent instances need to be explicitly managed. See the E]B
Specification 2.0, sections 9.4.6 and 9.4.7 for requirements. The intent is to support these
semantics when the relationships are identified in the metadata as inverse relationships.

179 June 5,2003

Java Data Objects 1.0.1

Use of String.toLowerCase() as a supported method in query filters would allow case-in-

Supported String constructors String(<integer expression>) and String(<floating-point ex-
pression>) would make queries more flexible.

Support (probably marking the fields in the XML metadata) for read-only fields would al-
low better support for databases where modification of data elements is proscribed. The
metadata annotation would permit earlier detection of incorrect modification of the corre-

The enumeration pattern is a powerful technique for emulating enums. The pattern in
summary allows for fields to be declared as:

Bar someBar = new Bar(“illegal”); // doesn’t compile

private Bar(String s) {

public static Bar ONE = new Bar (“one”);

public static Bar TWO = new Bar (“two”);

The advantage of this pattern is that fields intended to contain only certain values can be
constrained to those values. Supporting this pattern explicitly allows for classes that use
this pattern to be supported as persistence-capable classes.

Allow non-static inner classes to be persistence-capable. The implication is that the enclos-
ing class must also be persistence-capable, and there is a one-many relationship between
the enclosing class and the inner class.

248 Case-Insensitive Query
sensitive queries.
249 String conversion in Query
24.10 Read-only fields
sponding fields.
24.11 Enumeration pattern
class Foo {
Bar myBar = Bar.ONE;
}
class Bar {
private String istr;
istr = s;
}
}
24.12 Non-static inner classes
JDO 1.0.1

180 June 5,2003

Java Data Objects 1.0.1

Currently the only return value from a JDOQL query is a Collection of persistent instances.
Many applications need values returned from queries, not instances. For example, to prop-
erly support EJBQL, projections are required. One way to provide projections is to model
what EJBQL has already done, and add a method setResult (String projection) to jav-
ax.jdo.Query. This method would take as a parameter a single-valued navigation expres-
sion. The result of execute for the query would be a Collection of instances of the

Currently, there is no direct support for writing log messages from an implementation, al-
though there is a connection factory property that can be used for this purpose. A future
revision could define how an implementation should use a log writer.

Some exceptions might be added to more clearly define the cause of an exception. Candi-
dates include JDODuplicateObjectIdException, JDOClassNotPersis-
JDOExtentNotManagedException,
JDOConcurrentModificationException, JDOQueryException, JDOQue-
rySyntaxException, JDOUnboundQueryParameterException, JDOTrans-
actionNotActiveException, JDODeletedObjectFieldAccessException.

Provide for remote object graph support, including instance reconciliation, relationship
graph management, instance insertion ordering, etc.

Extend the current xml metadata to include optional O/R mapping information. This
could include tables to map to classes, columns to map to fields, and foreign keys to map

Other O/R mapping issues include sequence generation for primary key support.

24.13 Projections in query
expression.

24.14 LogWriter support

24.15 New Exceptions
tenceCapableException,

24.16 Distributed object support

24.17 Object-Relational Mapping
to relationships.

JDO 1.0.1

181 June 5,2003

Java Data Objects 1.0.1

Appendix B: Design Decisions

This appendix outlines some of the design decisions that were considered and not taken,
along with the rationale.

B.1 Enhancer

The enhancer could generate code that would delegate to the associated StateManager ev-
ery access (read or write) for every field. This design was rejected because of several fac-
tors.

* Code bloat: the enhanced code would add an extra method call to every access to
a persistent field.

* Performance: the calls to the StateManager would add extra cycles to every
access to a persistent field, even if the field were already fetched into the persistent
instance.

The enhancer could require complete metadata descriptions for all persistence-capable
classes and persistent and transactional fields, and further require that all classes be avail-
able during enhancement of any class.

This would allow the enhancer to generate the most efficient code, but imposes an extra
burden on the user to keep the metadata and class definition absolutely in sync. If a field
were declared in a class after the metadata was defined, the user would have to update the
metadata to add the new field.

Requiring access to all classes during enhancement of any class was also seen as an extra
burden on the user, who would have to execute the enhancement in an environment that
did not necessarily reflect the runtime environment. There is also a performance penalty
and additional complexity for the enhancer.

The decision that was taken was that the enhancer must be able to determine the persis-
tence-modifier (persistent or none) from the Java modifiers and type of afield. Further, the
information needed to enhance a class is only the class file for the class being enhanced,
plus the metadata for the class and classes directly reachable (via references or inheritance)
from the class.

The java byte codes generated in a class for a field in another class do not contain much
information about the modifiers (final or transient) of the field. They do have the field
name and the field type, and whether the field is static. There is an implied access control
that permits the generated access (package, protected, or public) but no distinction among
the choices.

Therefore, a field that is not declared in the metadata must be enhanced to generate an ac-
cessor and mutator even though the field is not persistent. For example, for a final int field
declared in a class, the field is not persistent, so it is not included in the list of persistent/
transactional fields, but an accessor is generated for it. This accessor will be used only by
other classes’ accesses, and access will not be mediated (the StateManager will never be
called). Accesses within the class are not enhanced.

B.2 PersistenceCapable

JDO 1.0.1

The PersistenceCapable interface could be eliminated entirely in favor of having all inter-
rogatives operate via the PersistenceManager, not directly on the JDO instance. This
would make the JDO instance entirely user-written. However, the impact would be that to
find out which PersistenceManager, if any, was responsible for the JDO instance, a new

183 June 5,2003

Java Data Objects 1.0.1

singleton would have to be provided. The singleton would have to register all Persistence-
Manager instances and ask each if it managed a specific JDO instance.

This was deemed too complex to manage, as well as too slow to find simple information
that should be easily available.

B.3 Collection Factory

JDO 1.0.1

The collection factory could be defined as methods on PersistenceManager or as methods
on a separate interface. Also, a single method that takes a type, or multiple methods, one
for each type could be defined.

The decision was taken to define two methods on PersistenceManager based on the re-
quirement to create an instance of a collection based on the type of an existing instance.
This operation would be complex if individual methods were used, one per type.

A convenience interface can easily be created using the defined methods.

184 June 5,2003

