

The University of Texas at Austin

Partition and Reforest
for Distributed Objects:

Services and Data Access

William Cook
University of Texas at Austin

with
Eli Tilevich, Yang Jiao, Virginia Tech

Ali Ibrahim, Ben Wiedermann, UT Austin

Sun Microsystems, September 2009

The University of Texas at Austin

Standard Approach to Distribution

● Step 1: Design a language
– Clean interfaces, modules

● Step 2: Add library for distribution
– Remote procedure calls

● Stub that send calls remotely

– Distributed objects
● Proxies: pointer to remote object
● Create proxies on demand

● End result
– Clean, elegant, orthogonal … basically useless

C
C++
ML
Java
etc...

CORBA
DCOM
RMI

3

The University of Texas at Austin

interface Music {
 Album[] getAlbums();
 ...
}

interface Album {
 String getTitle();
 void play();
 int rating();
 ...
}

● Remote service which
can play music on your
home speakers.

● Fine-grained interface

● OO design

Example
Music Jukebox in the Cloud

4

The University of Texas at Austin

int minimumRating = 4;
Music musicService = ... ;
for (Album album : musicService.getAlbums())
 if (album.rating() > minimumRating) {
 System.out.println("Played: " +
 album.rating() + " " +
 album.getTitle());
 album.play();
 } else {
 System.out.println("Skipped: " +
 album.getTitle());
}}

Remote Procedure Calls (RPC)

5

The University of Texas at Austin

RPC behind the scenes

ServerClient

MusicImplInvoker

MusicProxy

AlbumImpl
AlbumProxy

3

3

6

The University of Texas at Austin

int minimumRating = 4;
Music musicService = ... ;
for (Album album : musicService.getAlbums())
 if (album.rating() > minimumRating) {
 System.out.println("Played: " +
 album.rating() + " " +
 album.getTitle());
 album.play();
 } else {
 System.out.println("Skipped: " +
 album.getTitle());
}}

n: number of albums
worst case: 4n + 1 remote calls

Too Many RPC calls

The University of Texas at Austin

● Data Transfer Objects and Server Facade
– Move data in bulk

– Specialize to particular sequence of client calls

● Document-oriented Web Services
– Stateless servers

● TCP-based command line interfaces
– POP, IMAP, FTP, HTTP, etc...

● End result
– Messy, non-compositional, rigid … fast

What do people really do?
(many many many experiments)

8

The University of Texas at Austin

Data Transfer Object

class TitleAndRatingAndCond
 implements Serializable {

 public String getTitle() { ... }
 public int getRating() { ... }
 public boolean getCond() { ... }

}

9

The University of Texas at Austin

interface MusicFacade
{
 TitleAndRatingAndCond[]
 playHighRatedAlbums(int minRating);
 ...
}

Remote Facade

10

The University of Texas at Austin

Remote Facade and
Data Transfer Objects

int minimumRating = 4;
MusicFacade musicService = ... ;
TitleAndRatingAndCond[] results =
 musicService.playHighRatedAlbums(minimumRating);
for (TitleAndRating result : results) {
 if (result.getCond()) {
 System.out.println("Played: " +
 result.getRating() + " " +
 result.getTitle());
 } else {
 System.out.println("Skipped: " + album.getTitle());
}}

“In many ways, a Data Transfer Object
is one of those objects our mothers told
us never to write. ” - Martin Fowler

The University of Texas at Austin

Insight

● We have an incorrect assumption:

Distribution can be solved
 in existing languages
 without any changes

● Goals
– Fine-grained interfaces

– Execute many remote operations in bulk

– Create Facades and Transfer objects
automatically

12

The University of Texas at Austin

Remote Batch Invocation (RBI)

int minimumRating = 4;
Service service = ... ;
batch (Music musicService : service) {
 for (Album album : musicService.getAlbums())
 if (album.rating() > minimumRating) {
 System.out.println("Played: " +
 album.rating() + " " +
 album.getTitle());
 album.play();
 } else {
 System.out.println("Skipped: " + album.getTitle());
}}}

13

The University of Texas at Austin

Generated Facade by Partitioning

int minimumRating = 4;
Service service = ... ; Music musicService = ...;
for (Album a : musicService.getAlbums())
 if (a.rating() > minimumRating) {
 // GET rating, title
 album.play();
 } else {
}
for (????) {
 if (???) {
 System.out.println("Played: " +
 rating + " " +
 title);
 } else {
 System.out.println("Skipped: " + title);
}}

Local

Remote

14

The University of Texas at Austin

Generated Code
int minimumRating = 4;
Service service = ... ; Music musicService = ...;
List<TitleAndRatingAndCond> results = new...;
for (Album a : musicService.getAlbums())
 if (a.rating() > minimumRating) {
 results.add(new TitleAndRatingAndCond(
 a.rating(), album.getTitle(), true));
 album.play();
 } else {
 results.add(new TitleAndRatingAndCond(0, null, false);

for (TitleAndRatingAndCond result : results) {
 if (result.getCond()) {
 System.out.println("Played: " +
 result.getRating() + " " +
 result.getTitle());
 } else {
 System.out.println("Skipped: " +
 result.getTitle();
}}

Local

Remote

15

The University of Texas at Austin

Remote Batch Invocation

● Clean server interface, decoupled clients
– Fine-grained interfaces

– Automatic bulk data transfer and facades

● Only primitive values can be transferred
between clients and server

– No proxies!

● One round-trip per lexical batch block
● Two kinds of exceptions:

– Remote exceptions (see paper)

– Network exceptions (reduced!)

16

The University of Texas at Austin

● Sequences and Composition
– batch (r) { r.foo(); r.foo().bar().getName(); }

● Loops and Conditions
– batch (music) {

 for (Album a : music.getAlbums())

 if (a.rating() > 5)
 print(a.getName() + “: ” + a.rating()); }

● Functional glue language, not specific to Java
– truly cross-platform (like web services)

– no assumption of internal serialization format

Asynchrony does not help!

What can be executed remotely?

17

The University of Texas at Austin

Reforestation

Introduce intermediate data structures

The University of Texas at Austin

Deforestation [Wadler 89]

● Remove intermediate data structures (trees)
sum (square (1 `to` 5))

● Deforested version
sum-square-interval(1, 5)

1,2,3,4,5 1,4,9,16,25 55square sumto1 5

55
sum-square-interval

1,5

19

The University of Texas at Austin

Identifying Remote Expressions
● Expressions: static local, non-static local, or remote.

● Remote expressions operate on data reachable from
batch root.

● Intra-procedural flow sensitive data flow analysis.

Static
Local

Expressions

Non-static
Local

Expressions

Remote
Expressions

Bulk transfer

Bulk transfer

20

The University of Texas at Austin

Grouping Remote Operations

● Restrictions
– Remote expressions should not depend on non-

static local expressions.

● Local Compiler analysis
– We want the programmer to be able to understand

and predict the results.

– Simple

– Not sound! But okay...

21

The University of Texas at Austin

Examples

batch (Music musicService : service) {
 Album a = musicService.getAlbum(1);
 final int rating = a.rating();
 // non-static local
 boolean goodEnough = System.prompt(
 "Is this rating good enough? ” + rating);
 if (goodEnough) {
 a.play(); // Can't batch with call to rating
}}

Compiler Produces Error

22

The University of Texas at Austin

Examples

private String newTitle = “foo”; // static local
void changeTitle() { newTitle = “bar”; }

batch (Music musicService : service) {
 Album a = musicService.getAlbum(1);
 changeTitle();
 a.setTitle(@newTitle);
}}

Compiler does not catch possible error

23

The University of Texas at Austin

Examples

private String newTitle = “foo”; // static local
void changeTitle() { newTitle = “bar”; }

batch (Music musicService : service) {
 Album a = musicService.getAlbum(1);
 a.setTitle(@newTitle);
 changeTitle(); // motion changed semantics
}}

Compiler does not catch possible error

The University of Texas at Austin

Memory Model
● Only transfer primitive values
● No proxies (remote pointers)

– Server is stateless, “service oriented”

– No distributed garbage collection

● Serialization through public interfaces
batch (remote) {
 RemoteSet r = remote.makeSet();
 for (int elem : localSet().items())
 r.add(elem);

– Illegal: RemoteSet r = localSet;

– Need reusable helper functions/coercions

The University of Texas at Austin

Execution Model
● Client

– Language support for batches

– Also library

● Server
– Small engine to execute scripts

● Can only call public methods
● No constructors, static methods
● Just as safe as current approach

– Similar to existing server engines

● Not completely transparent
– programmer controls batching

The University of Texas at Austin

Evaluation
RMI
CORBA

Web
Services

Remote Batch
Invocation

Clean
Interfaces

Good Bad Good

Latency Bad Good Good

Memory model Bad Good Good

Stateless No Yes Yes

Partial Failure Bad Better Better

Programming
Model

Good Bad Good... but...

The University of Texas at Austin

Generalized Batches

● Parameterize by batch handler
√ batch RMI (remoteObject) { … }

√ batch WebService (service) { … }

 batch SQL (db) { … }

batch GPU (gpu) { }

batch PartialEval (s) { … }

 batch H (r) B = B2(H(B1, in))

● Batch provides generalized program partitioning
and reforestation capability

The University of Texas at Austin

Web Services: Document = Batch
Amazon Web Service

<ItemLookup>
<AWSAccessKeyId>XYZ</AWSAccessKeyId>
<Request>
 <ItemIds>
 <ItemId>1</ItemId>
 <ItemId>2</ItemId>
 </ItemIds>
 <IdType>ASIN</ItemIdType>
 <ResponseGroup>SalesRank</ResponseGroup>
 <ResponseGroup>Images</ResponseGroup>
</Request>
</ItemLookup>

interface Amazon {
 void login(String awsKey);
 Item getItem(String ASIN);
 ...
}
interface Item {
 int getSalesRank();
 Image getSmallImage();
 ...
}

// calls specified in document
aws.login("XYZ");
Item a = aws.getItem("1");
Item b = aws.getItem("2");
return new Object[] {
 a.getSalesRank(), a.getSmallImage(),
 b.getSalesRank(), b.getSmallImage() }

The University of Texas at Austin

Batching Database Access
batch SQL (Database db : dbService) {
 for (Album album : db.getAlbums())
 if (album.rating() > 50)
 System.out.println("Played: " + album.getTitle());
}

DbResults data = dbService.executeQuery(
 "select title from albums where rating > 4");
for (item : data.items())
 System.out.println("Played: " + item.getTitle());

● Also updates, aggregation and grouping

The University of Texas at Austin

Open Issues

● How hard is to add “batch statement” to your
favorate programming language?

– try it!

● What about multiple servers in batch?
– Client → Server*

– Client → Server → Server

– Client ↔ Server

● Monadic interpretation??
● MPI

The University of Texas at Austin

Related work● Microsoft LINQ
– Batches are more general than LINQ

● Mobile code / Remote evaluation
– Does not manage returning values to client

● Implicit batching
– Performance model is not transparent

● Asynchronous remote invocations
– Asynchrony is orthogonal to batching

● Automatic program partitioning
– binding time analysis, program slicing

● Transactions (batch/atomic)
● Cloud database system that sends javascript

The University of Texas at Austin

David Maier 1987

“Whatever the database programming
model, it must allow complex, data-
intensive operations to be picked out of
programs for execution by the storage
manager, rather than forcing a record-at-
a-time interface.”

The University of Texas at Austin

Contributions

● New statement form:
batch H (r) { body }

● Interesting semantics, general applications
– Partition

– Reforest

● Unifies distribution and data access
– Can be asynchronous too

