
Function Inheritance

William Cook
University of Texas at Austin

Department of Computer Science

Join work with Daniel Brown, Northeastern
SBLP 2009

Goals
• Define “Inheritance”

– general definition

– captures essential characteristics

– not specific to object-oriented programming

• Illustrate use of inheritance
– For functional programming

– For types

Client

Definition

Self-reference

self

Client

Modification

Client

Modification

Modification and Self-reference

Client

self

Modification and Self-reference

Client

Problem!
Not all clients
are modified

self

Inheritance

Client

self
Inheritance:
“Consistently modify a
recursive definition”

Mixins

Client

self
mixin:
reusable modification of
self-referential structure

Formally

Recursion A = Y(G)

Modification B = M(A)

Inheritance C = Y(MG)

Where Y is standard least fixed point
In general: M(Y(G))  Y(MG)

Inheritance

• Definitions
–Modify a recursive definition
–Composition inside fixed point Y

• Fundamentally new
–Many fixed points in semantics of

ML, Pascal, C, textbooks
–Never allow composition inside Y

Observation

• Denotational semantics
–provides strong intuition

• Operational semantics
–examples

•Featherweight Java [Pierce]
•Theory of Objects [Cardelli]

–just steps, no purpose or meaning

Standard Fibonacci
fib :: N → N
fib 0 = 0
fib 1 = 1
fib n = fib(n-1) + fib(n-2)

Explicit Fixed Points
type Gen a = a → a
fix :: Gen(a) → a
fix f = f (fix f)

– creates infinite expansion
fix G = G(G(G(G(...)))))

Making Self-Reference Explicit
gFib :: Gen(N → N)
gFib self 0 = 0
gFib self 1 = 1
gFib self n = self (n-1) + self (n-2)

– gFib is not recursive
fib = fix gFib

– fix gFib = gFib(gFib(gFib(...)))

A Simple Modification
mod :: Gen(N → N)
mod9 super 9 = 34
mod9 super n = super n

Function Inheritance
mod :: Gen(N → N)
mod9 super 9 = 34
mod9 super n = super n

fib9 = mod9 fib = mod9 (fix gFib)
 optimize computation of just fib 9

fibInh9 = fix(mod9 . gFib)
 optimize computation for all n > 9

Inheritance

Summary

Mod9 Fib

Mod9 FibfibInh9

fib9

• Composable Computations
– state-based computations

– computations that can fail (exceptions)

– etc...

• Monad hides the details

Monads

• Simple computation that produces value n:
 return n
• Compound computation:
 do

 v1 ← c1

 v2 ← c2

 …

 cn

– with hidden state/errors/etc

– Looks like an imperative program

Monads

Monadification
Parameterize by arbitrary monad

gmFib :: Monad m => Gen(N → m N)
gmFib self 0 = return 0
gmFib self 1 = return 1
gmFib self n = do

a ← self (n-1)
b ← self (n-2)
return (a + b)

fibM n = runIdentity (fix gmFib n)
 runs gmFib with an no-op monad

Memoization Mixin
memo :: MonadState (Map a b) m => Gen(a → m b)
memo super a = do

b ← gets (lookup a)
case b of
 Just b → return b
 Nothing → do
 b ← super a
 modify (insert a b)
 return b

class MonadState s m where
 gets :: (s → a) → m a
 modify :: (s → s) → m ()

Memoized Fibonacci
memoMapFib :: N → State (Map N N) N
memoMapFib = fix (memo . gmFib)

fibMap :: N → N
fibMap n = evalState (memoMapFib n) empty

Inheritance

Another example: Logging
log :: (Show a, MonadWriter String m) =>
 String → Gen(a → m b)
log name super a = do
 tell (name ++ "(" ++ show a ++ ")\n")
 super a

logFib = fix (log "Fib" . gmFib)

– Prints “Fib(3)” etc for each recursive call

Inheritance

Composing Mixins

logMemoFib = fix (memo . log "Fib" . gmFib)

– combine logging and memoization

– technical details:
merge State and Writer monads

mixins

Type Inheritance
data Tree = Tree Int Tree Tree

– Add a String label at all levels of tree

data Labeled = Tree Int Labeled Labeled String

Type Inheritance

data GTree self = GTree Int self self

data Tree = Tree (GTree Tree)

data Labeled = Lab (GTree Labeled) String
– messy in Haskell

Inherited Types => Inherited Funtions

printGTree self (GTree n t1 t2) = do
print n
self t1
self t2

printTree (Tree t) = printGTree printTree t

printLabTree (Lab t lab) = do
print lab
printGTree printLabTree t

Syntax Support
• Haskell has syntax support for self-reference

– fib n = fib(n-1) + fib(n-2)

• Syntax support for inheritance?
– memoFib = memo inherit fib

– Eliminate explicit (and messy) use of “fix”

Pointers to other work
• “Memoization Mixins” technical report

– Full details, larger parsing example

• Feature-Oriented Programming
– Don Batory: Mixin Layers

• Aspect-Oriented Programming
– EffectiveAdvice: Disciplined Advice with Explicit Effects

• joint work with Bruno Oliveira & Tom Schrijvers
• Foundations of Objects

– On Understanding Data Abstraction, Revisited
• Onward! Essay 2009

Summary
• Inheritance = “modify recursive structure”

• Inheritance can be used in
– functional programming

– logic programming

– procedural programming

• Inheritance for
– types, functions, procedures, modules, classes,

specifications, grammars, makefiles,
mutual recursion...

