
Tactical Synthesis Of Efficient Global Search Algorithms
Srinivas Nedunuri

Dept. of Computer Sciences
University of Texas at Austinnedunuri@cs.utexas.edu Douglas R. Smith

Kestrel Institutesmith@kestrel.edu William R. Cook
Dept. of Computer Sciences
University of Texas at Austincook@cs.utexas.edu

Abstract

Algorithm synthesis transforms a formal specification intoan efficient algorithm to solve a prob-
lem. Algorithm synthesis in Specware combines the formal speicifcation of a problem with a high-
level algorithm strategy. To derive an efficient algorithm,a developer must define operators that
refine the algorithm by combining the generic operators in the algorithm with the details of the prob-
lem specification. This derivation requires skill and a deepunderstanding of the problem and the
algorithmic strategy. In this paper we introduce two tactics to ease this process. The tactics serve
a similar purpose to tactics used for determining indefiniteintegrals in calculus, that is suggesting
possible ways to attack the problem.

1 Background

There have been a variety of approaches to program synthesis(e.g. see [Kre98] for a survey). The
focus of this paper is an algorithm class called Global Search (GS) [Smi88]. Using this algorithm class,
Smith and his colleagues have successfully synthesized a number of practical algorithms, including, in
one case, a scheduler that ran several orders of magnitude faster than comparable hand-written ones
[SPW95]. The starting point is a specification〈D,R,O〉, whereD is an input type,R an output type, and
O : D×R→ Booleanis an output or correctness condition, along with a global search theory extension
(described below). Then the following program, given an input x, returns a solutionz : R satisfying
the output condition, if one exists (there are some additional conditions onR which will be explained
shortly):f(x:D) : R =if propagate(x,r0(x))=None then None else gs(x,r)gs (x:D, r:R) : R =let z=Extract(r) in if z/=None && O(x,z) then z else gsAux(x,Subspaces(r))gsAux (x:D, subs:{R}) : R =if subs={} then Noneelse let (s, rest) = arbsplit(subs) inif propagate(s) = None then gsAux(x, rest)else let z= gs(x,s) inif z = None then gsAux(x,rest) else zpropagate(x, r) = if Φ(x,r) then iterateToFixedPoint(ψ, x, r) else NoneiterateToFixedPoint (f, x, r) =let fr = f(x,r) in if FP?(fr,r) then fr else iterateToFixedPoint(f, x, fr)
The program is a classic search algorithm. It works by takingan initial space of possible solutions
(corresponding to the root node of a search tree), and unlessit can immediately extract a feasible solution,
partitioning it into subspaces (corresponding to child nodes), each of which is searched in turn until a
feasible solution is found. In this paper we provide tacticsfor synthesizing the operatorsΦ andψ .

The remaining functions are defined in the global search theory extension,GS-ext,supplied by the
developer, which is an algebra overR with the following operators:r0 : D → R returns a descriptor of
the initial search space,Extract:R→ Rdetermines whether the given space is terminal and if so, returns
a solution (otherwise the distinguished element None, denoting an empty space).Subspaces: R→ {R}
returns a set of subspaces of the current space,Φ : D×R→ Booleanis a necessary filter - those spaces
that do not passΦ need not be examined. It can be any predicate overR satisfyingr v z∧ O(x,z) ⇒

1

nedunuri@cs.utexas.edu
smith@kestrel.edu
cook@cs.utexas.edu

Tactical Synthesis of Efficient Global Search Algorithms Nedunuri,Smith,Cook

Φ(x, r). v is a refinement relation overR. The intent ofv is that if rv s then s is is a subspace
of r (any solution contained ins is contained inr) and is “more defined” thanr . ψ : D×R→ R is
called a necessary propagator. It “tightens” a given space to eliminate infeasible solutions and can be
any predicate satisfying∀z. r v z∧O(x,z) ⇒ ψ(x, r) v z. When 〈R,v〉 forms a lattice, Smith et al.
[SPW95] show how a monotone inflationaryψ can be iterated from any starting space to a fixpoint
which is the tightest possible space that still preserves all the original feasible solutions. That is what the
propagatefunction in the abstract program above does. An axiomatic definition of GS theory and proof
of correctness of the abstract program can be found in [Smi88].

1.1 A Constraint Satisfaction Theory

We are developing a specialization of Global Search to solveproblems that involve multi-variable Con-
straint Satisfaction (CS) [Dec03]. Unlike generic constraint solvers [San94], which accept constraints
as input and find a solution, in our approach the constraint isthe output condition of the problem to be
solved. This constraint is the starting point of algorithm synthesis, not dynamic constraint solving. In
this way, many of the problems we will look at can be solved by constraint satisfaction,[Dec03]. For this
reason, it is useful to have a specialization of the GS class for Constraint Satisfaction (CS) problems,
which we can later extend to each specific problem as needed.

In a nutshell, constraint satisfaction does the following:: given a set of variables,{1..maxVar}, assign
a value, drawn from some domainDv, to each variable, in a manner that satisfies some set of constraints.
The theory which does this, we call CST, is defined below. All other domain specific theories we will
use will monotonically extend this theory.

R 7→ m : Map(Nat→ Dv)× tbd : {Nat}×ch : Map(Nat 7→ {Dv})
D 7→ maxVar: Nat×vals: {Dv}
O 7→ λx,z. dom(z.m) = {1..x.maxVar}
r0 7→ λx.{m= /0, tbd = {1..x.maxVar},ch = {(v 7→ x.vals)|v∈ {1..x.maxVar}})
Subspaces7→ λx, ẑ. {ẑ′ : v = pick(ẑ.tbd) ∧ a∈ ẑ.ch(v) ∧ ẑ′.m= ẑ.m⊕{v 7→ a} ∧ ẑ′.tbd = ẑ.tbd−{v}}
Extract 7→ λz. if z.tbd = /0 thenzelseNone
v7→ {(ẑ, ẑ′)| ẑ.m⊆ ẑ′.m}
Φ 7→ λx, ẑ. True
ψ 7→ λx, ẑ. ẑ

In this theory, branching occurs via thesubspacesfunction. Thesubspacesfunction, after picking a
variable from the set of variables not yet assigned a value (tbd), returns the subspaces formed by assigning
to v each of the possible values (drawn from ch(v)), adding each pair to the mapm, and removingv from
tbd. The initial spacero makes all the values inx.valsavailable to every variable. The choice of which
variable to pick does not matter functionally, but can have asignificant impact on the efficiency of the
actual program. We will often abbreviatêz.m(i) as ẑi . Now with a definition forDv, and whatever
conditions are appropriate added toO, the abstract program given earlier becomes a working constraint
satisfaction solver. The key to making it efficient are appropriate definitions forΦ andψ1 . This is what
the next section examines.

2 Tactics

In order to get an efficient final algorithm, the developer must typically find good instantiations of the
operatorsΦ andψ . The question of where to begin often arises. For this reasonwe propose to formulate

1Often, further optimizations such as context-dependent simplification, finite differencing, and data structure selection have
to be carried out before arriving at a final efficient algorithm . However, these latter operations are not the focus of thispaper.

2

Tactical Synthesis of Efficient Global Search Algorithms Nedunuri,Smith,Cook

a library of tactics that can be used by a developer attempting to instantiate oneof the operators. The
analogy is with tactics used for integration in calculus. Unlike differentiation, integration has no straight-
forward algorithm. Rather, there are a number of (some 7 or 8)tactics such as “integration by parts”,
“integration by partial fractions”, “integration by change of variable”, etc., that can be tried in order to try
and determine the integral of a given formula. There are of course differences. Unlike integration, there
is often no one “correct” answer. Also our tactics are often inspired by techniques used in algorithms in
computer science and operations research, rather than calculus. But the basic principle is the same: to
package up a number of tedious calculations into a pattern-matching rule. Furthermore, by expressing
the technique in more abstract form as a tactic, it can be applied to other problem areas,without requiring
the developer be familiar with the implicit assumptions andnotations when the technique is buried inside
a specific algorithm, The ultimate goal is that a competent developer will be ableto use the approach we
propose here to investigate a variety of solutions to their problem.

2.1 A Tactic for Calculating Φ

This tactic helps in constructingΦ (necessary) filters when the feasibility constraint takes acertain form.
TACTIC 1: If a conjunct from O matches the form

⊗
i∈I Fi(zi) � K where

⊗
is a monotone associative

operator, and� forms a meet semi-lattice over range(F), then a possibleΦ is one in which the combina-
tion of value assignments in the partial solution combined (⊗) with the least possible value assignments
for the remaining variables is�K.

The tactic is backed by the following theorem. Note,⊕ denotes extending a partial solution, that is
ẑ⊕emeanŝz.m∪e.m (unless otherwise stated, we will always be assumingdom(ẑ.m)∩dom(e.m) = /0)

Theorem 1. If O(x,z) ⇒
⊗

i∈I Fi(zi) � K for someK, some family of functions{Fi},
⊗

a monotone
associative operator, and� forms a meet semi-lattice overrng(F), then

O(x, ẑ⊕e) ⇒ (
⊗

1≤i≤#̂z

Fi(ẑi) ⊗
⊗

1≤i≤#e

fi) � K where fi = ua∈x.valsFi(a)

Proof.
O(x,z)
⇒ {assumption}⊗

1≤i≤#zFi(zi) � K
= {z= ẑ⊕eand use associativity of⊗}⊗

1≤i≤#̂zFi(ẑi) ⊗
⊗

1≤i≤#eFi(ei) � K
⇒{replace everyFi(ei) with fi = ua∈x.valsFi(a) and use polarity}⊗

1≤i≤#̂zF(ẑi) ⊗
⊗

1≤i≤#e fi � K

Additionally, if Fi is monotone, andx.valshas a least element, then, using the following Quantifier
Elimination law:uă�aFi(a)= Fi(ă), we can rewrite the last line above as:

⊗
1≤i≤#̂zFi(ẑi)⊗

⊗
1≤i≤#eFi(ă)�

K whereă is the least value ofa∈ x.vals.
A symmetrical result is obtained by replacing� with �, “meet semi-lattice” with “join semi-lattice”,

ǎ� a with â� a , andu with t everywhere in the above theorem.

Example 2. 0-1 Integer Linear Programming (01-ILP)2

2To simplify the presentation we have omitted the optimization aspect of many of the examples we discuss since none of
our tactics pertain to optimization. In our actual implementation we use a generalization of GS that incorporates optimization.

3

Tactical Synthesis of Efficient Global Search Algorithms Nedunuri,Smith,Cook

A GSO theory for 01-ILP is obtained by extending CST as follows (only the components that differ
from CST are shown):Dv 7→ {0,1}, D 7→ CST.D× l : Nat×A : Map({1..l} × {1..n} 7→ Real)× b :
Map({1..n} 7→ Real), O 7→ λ (x,z). CST.O(x,z) ∧ (x.A) · (z.m) ≤ x.b

To apply the tactic above, the operator
⊗

is interpreted as∑ andFi as (Ahi·) for appropriateh ,
over the lattice〈Real,≤,min,max〉 . Applying the tactic (but not the final simplification since(Ahi·) is
not monotone) gives the following filterΦ:∀h.1≤ h≤ 1. ∑i∈dom(ẑ.m) Ahi ·zi +∑i∈dom(e.m)(mina∈{0,1}{Ahi ·
a})≤ bh which is by case analysis:∀h.1≤ h≤ l . ∑i∈dom(ẑ.m) Ahi ·zi +∑ j∈dom(e.m)(min{Ahi ·0,Ahi ·1})≤
bh, or after simplifying:

∀h.1≤ h≤ l . ∑
i∈dom(ẑ.m)

Ahi ·zi + ∑
i∈dom(e.m)

(min{0,Ahi}) ≤ bh

Using the same tactic we have obtained a filter for the VehicleRouting Problem (VRP) equivalent to
one used in algorithm textbooks. The next example shows thatthe generalization offered by the tactic is
indeed useful enough to carry over to other qualitatively differet problems.

Example 3. The Set Covering Problem (SCP)

Suppose we are given a collection of subsets of a set S, each ofwhich has a certain cost. The SCP
is the problem of determining the minimum cost collection ofsubsets that “covers” the original set, ie.
every element in S is in at least one subset in the resulting collection. The problem has many practical
applications including airline crew scheduling, facilitylocation, and logic circuit minimization. A GSO
theory for SCP is obtained by extending CST as follows (only the components that differ from the base
theory are shown):Dv 7→ {False,True}, D 7→CST.D×ss: Map(Nat 7→ {Id}) , O 7→ λ (x,z). CST.O ∧⋃

i|zi
Si = S
Id is some user defined set element type.x.ss returns the actual subset given a variable from

{1..x.maxVar}. Si stands for the subsetx.ss(i), andSstands for
⋃

i∈{1..x.maxVar} Si . To apply the tactic, we
instantiate

⊗
as∪, Fi asλzi . zi → Si |{}, over the join semi-lattice〈{S},⊆,{},{S}〉. Certainly,

⋃
i|zi

Si =
Simplies

⋃
i|zi

Si ⊇Sthat is,
⋃

i Fi(zi)⊇S. Applying the tactic gives us a filter
⋃

i Fi(ẑi)∪
⋃

i Fi(Si)t{})⊇S
=

⋃
i Fi(ẑi)∪

⋃
i Fi(Si) ⊇ S, that is if at any point, the union of the selected sets inẑ along with all the re-

maining sets is not at leastS, then the spacêzcan be eliminated.

2.2 A Tactic for Calculating ψ

Observe that in the initial spacero all value choices (fromDv) are available to every variable. The intent,
though, is that propagation will narrow this set to only those that would lead to feasible solutions (anal-
ogous to hyper-arc consistency in CSP). If at any point a choice set becomes empty, then that space can
be abandoned. This is the idea behind the following tactic for ψ . The tactic applies when the variables
(vars) of the input can be viewed as, or represent, nodes in some kind of graph structure, so we can talk
about the “neighborhood” around a variable.
TACTIC 2: If one of the conjuncts of O matches the form∀ j ∈ Ni.zi 6= zj where Ni is some neighborhood
of points around i then a possibleψ is one in which the choice of values available to variablej does not
contain the value assigned to variablei.

The tactic is backed by the following theorem

Theorem 4. If O(x,z) ⇒∀ j ∈ Ni.zi 6= zj for some set Ni ⊆ x.vars then

ẑv z∧ O(x,z) ⇒ ψ(x, ẑ) v z whereψ(x, ẑ) = ẑ{ch(j) = ẑ.ch(j)− ẑi | j ∈ Ni}

4

Tactical Synthesis of Efficient Global Search Algorithms Nedunuri,Smith,Cook

where the notationo{ f (i) = v|P(i)} denotes the object obtained by replacing the value of theith
index of field f of objecto with v whenP(i) holds. The value is unchanged otherwise.

Example 5. Maximum Independent Segment Sum Problem (MISS), [SHT00]
This is a variant of the well-known maximum segment sum problem (MSS) in which the goal is

to maximize the sum of a selection of elements from a given array, with the restriction that no two
adjacent elements can be selected. The specification of the problem is as follows:Dv 7→ {False,True},
D 7→CST.D×data: [Int] , O 7→ λ (x,z). CST.O∧ ∀i : 1≤ i < #z.m. : zi ⇒¬zi+1

Now let Ni be the left and right neighbors ofi, i.e. i −1 andi +1, if zi and{} otherwise. Then in the
case wherezi holds,ψ(ẑ) = ẑ{ch(i +1) = ch(i +1)−{True}} which is just̂z{ch(i +1) = {True}}.

Using this tactic we have also derived aψ function for the Graph Coloring Problem and a variety of
puzzles including n-Queens and Sudoku.

2.3 Summary and Future Work

We have shown how for certain problem types, calculation of the operatorsΦ andψ can be replaced
by pattern matching and substitution. The lesson here for program synthesis is that narrowing down the
range of problem types can lead to much faster program design. We have developed a number of other
such tactics, which space does not permit us to describe here. We can also handle optimization problems
by incorporating dominance relations [Smi88] and bounds tests into our approach, and have developed a
number of tactics for their calculation. Using one such tactic, we have synthesized a previously unpub-
lished greedy solution to the Unbounded Knapsack Problem, and another tactic for dominance relations
led us to fast solutions to variants of the Maximum Segment Sum problem that improve on the work
of Sasano et al.,[SHT00]. Our eventual goal is to have a library of tactics sufficient to tackle significant
Global Search problems such as synthesizing fast planners and efficiently mapping platform independent
models to platform specific models.

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant CCF-
0724979

References

[Dec03] R Dechter.Constraint Processing. Morgan Kauffman, 2003.

[Kre98] Christoph Kreitz. Program synthesis. In W. Bibel and P. Schmitt, editors,Automated Deduction – A
Basis for Applications, volume III, chapter III.2.5, pages 105–134. Kluwer, 1998.

[San94] Michael Sannella. The skyblue constraint solver and its applications. InProceedings of the 1993
Workshop on Principles and Practice of Constraint Programming, pages 385–406. MIT Press, 1994.

[SHT00] Isao Sasano, Zhenjiang Hu, and Masato Takeichi. Make it practical: A generic linear-time algorithm
for solving maximum-weightsum problems. InProc. Intl. Conf. on Functional Prog.(ICFP), 2000.

[Smi88] D R Smith. Structure and design of global search algorithms. Technical Report Kes.U.87.12, Kestrel
Institute, 1988.

[SPW95] Douglas R. Smith, Eduardo A. Parra, and Stephen J. Westfold. Synthesis of high-performance trans-
portation schedulers. Technical report, Kestrel Institute, 1995.

5

	Background
	A Constraint Satisfaction Theory

	Tactics
	A Tactic for Calculating
	A Tactic for Calculating
	Summary and Future Work

