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Abstract
In 1985 Luca Cardelli and Peter Wegner, my advisor, pub-
lished an ACM Computing Surveys paper called “On un-
derstanding types, data abstraction, and polymorphism”.
Their work kicked off a flood of research on semantics and
type theory for object-oriented programming, which contin-
ues to this day. Despite 25 years of research, there is still
widespread confusion about the two forms of data abstrac-
tion, abstract data types and objects. This essay attempts to
explain the differences and also why the differences matter.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract
data types; D.3.3 [Programming Languages]: Language
Constructs and Features—Classes and objects

General Terms Languages

Keywords object, class, abstract data type, ADT

1. Introduction
What is the relationship between objects and abstract data
types (ADTs)? I have asked this question to many groups of
computer scientists over the last 20 years. I usually ask it at
dinner, or over drinks. The typical response is a variant of
“objects are a kind of abstract data type”.

This response is consistent with most programming lan-
guage textbooks. Tucker and Noonan [57] write “A class
is itself an abstract data type”. Pratt and Zelkowitz [51] in-
termix discussion of Ada, C++, Java, and Smalltalk as if
they were all slight variations on the same idea. Sebesta [54]
writes “the abstract data types in object-oriented languages...
are called classes.” He uses “abstract data types” and “data
abstraction” as synonyms. Scott [53] describes objects in de-
tail, but does not mention abstract data types other than giv-
ing a reasonable discussion of opaque types.
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So what is the point of asking this question? Everyone
knows the answer. It’s in the textbooks. The answer may be
a little fuzzy, but nobody feels that it’s a big issue. If I didn’t
press the issue, everyone would nod and the conversation
would move on to more important topics. But I do press the
issue. I don’t say it, but they can tell I have an agenda.

My point is that the textbooks mentioned above are
wrong! Objects and abstract data types are not the same
thing, and neither one is a variation of the other. They are
fundamentally different and in many ways complementary,
in that the strengths of one are the weaknesses of the other.
The issues are obscured by the fact that most modern pro-
gramming languages support both objects and abstract data
types, often blending them together into one syntactic form.
But syntactic blending does not erase fundamental semantic
differences which affect flexibility, extensibility, safety and
performance of programs. Therefore, to use modern pro-
gramming languages effectively, one should understand the
fundamental difference between objects and abstract data
types.

While objects and ADTs are fundamentally different,
they are both forms of data abstraction. The general con-
cept of data abstraction refers to any mechanism for hiding
the implementation details of data. The concept of data ab-
straction has existed long before the term “data abstraction”
came into existence. In mathematics, there is a long history
of abstract representations for data. As a simple example,
consider the representation of integer sets. Two standard ap-
proaches to describe sets abstractly are as an algebra or as a
characteristic function. An algebra has a sort, or collection
of abstract values, and operations to manipulate the values1.
The characteristic function for a set maps a domain of values
to a boolean value, which indicates whether or not the value
is included in the set. These two traditions in mathematics
correspond closely to the two forms of data abstraction in
programming: algebras relate to abstract data types, while
characteristic functions are a form of object.

In the rest of this essay, I elaborate on this example
to explain the differences between objects and ADTs. The

1 The sort, or carrier set, of an algebra is often described as a set, making
this definition circular. Our goal is to define specific set abstractions with
restricted operations, which may be based on and assume a more general
concept of sets



examples focus on non-mutable objects, because they are
sufficient to explain the main points. Other topics, including
inheritance and reflection, are also ignored in order to focus
on the basic idea of data abstraction.

When I’m inciting discussion of this topic over drinks,
I don’t tell the the full story up front. It is more fun to keep
asking questions as the group explores the topic. It is a lively
discussion, because most of these ideas are documented in
the literature and all the basic facts are known. What is
interesting is that the conclusions to be drawn from the
facts are not as widely known. Most groups eventually work
through the differences between objects and ADTs, but I
can tell they walk away feeling uneasy, as if some familiar
signposts now point in different directions. One source of
unease is that the fundamental distinctions are obscured,
but not eliminated, in real programming languages. Also,
the story is quite complex and multi-faceted. This essay is
only an introduction to a large body of literature on the
relationship between objects and ADTs.

In my conversations about objects and ADTs, my next
step is to push the discussion towards a more precise under-
standing of data abstraction. What is an abstract data type?
What is an object? For abstract data types, there is general
agreement.

2. Abstract Data Types
An abstract data type (ADT) has a public name, a hidden
representation, and operations to create, combine, and ob-
serve values of the abstraction. The familiar built-in types in
most languages, for example the integer and boolean data
types in Algol, Pascal, ML, Java and Haskell, are abstract
data types.

In addition to built-in abstract data types, some languages
support user-defined abstract data types. User-defined ab-
stract data types that resemble built-in data types were first
realized in CLU [37, 36] and Alphard [61] in the 1970s.
There were also strong connections to algebraic specification
of data types [24, 7] The core ideas introduced in CLU were
adapted for ML [42], Ada [49], Modula-2 [60]. As an exam-
ple, Figure 1 defines an abstraction for integer sets, adapted
from the CLU reference manual [36].

The representation type is a list of integers. In discussions
of CLU, these values are called “objects” or “data objects”,
although they are not necessarily the same as objects in
object-oriented programming.

CLU used explicit syntax and operators to manage the
hiding of the representation. The cvt type represents the
public view of the representation type, while the functions
up and down convert between public and private views of
the type. Rather than explain CLU in detail, it is easier to
give the same abstraction in ML, as in Figure 2, where the
hiding mechanism is simplified and type inference simplifies
the types.

set = cluster is empty, contains, insert
rep = oneof[empty: null,

pair: struct[first:int, rest:rep]]
empty = proc() returns (cvt)

return(rep$make empty(nil));
end empty;

insert = proc(s: cvt, i: int) returns (cvt)
if contains(up(s), i) then
return(rep$make pair(pair$(first:i,rest:s))

else
return(s);

end
end insert

isEmpty = proc(s: cvt) returns (bool)
typecase s
tag empty: return(true)
tag pair(p:pair): return(false);

end
end empty;

contains = proc(s: cvt, i: int)
typecase s
tag empty: return(false)
tag pair(p:pair):
if p.first = i then return(true)
else return(contains(up(p.rest), i))

end
end contains

union = proc(s1: cvt, s2: cvt)
typecase s1
tag empty: return(s2)
tag pair(p:pair):
return insert(union(up(p.rest), s2), p.first)

end
end union

end set

Figure 1. CLU cluster for integer sets

Figure 3 gives the signature of the resulting abstract data
type. A signature defines the type name (but not its repre-
sentation) and the types of the operations. The signature can
be extended with a full specification of the behavior of inte-
ger sets. Abstract data types support very powerful specifica-
tion and verification techniques, including equational theo-
ries [20, 3, 7] and axiomatic specifications [26, 40, 17]. The
specifications work well in this context; they are intuitive,
elegant and sound.

Clients can declare values of type set and use operations
to manipulate the values.

let a = empty()
b = insert(a, 3)

in
if contains(b, 2) then ”yes” else ”no”



abstype set = EMPTY | INS of int * set where

val empty = EMPTY

fun insert(s, i) =
if not contains(s, i)
then INS(i, s)
else s

fun isEmpty(s) = (s == EMPTY)

fun contains(s, i) =
case s of

EMPTY ⇒ false
| INS(n, r) ⇒

if i = n then true
else contains(r, i)

end

fun union(s1, s2) =
case s1 of

EMPTY ⇒ s2
| INS(n1, r1) ⇒ insert(union(r1, s2), n1)
end

end

Figure 2. ML abstract data type (ADT) for integer sets

type set
val empty : set
val isEmpty : set → bool
val insert : set × int → set
val contains : set × int → bool
val union : set × set → set

Figure 3. Signature for integer set abstract data type

But clients cannot inspect the representation. This is why
the isEmpty function is needed, because the following pro-
gram is illegal when written outside of the abstraction:

fun test(a : set) = (a == EMPTY);

The function test is attempting to break the encapsulation
of the data abstraction to peek at its internal representation.
There is also no predefined notion of equality on integer
sets. If equality is desired, it must be programmed and made
explicit in the ADT interface.

2.1 Representation Independence
The name set is abstract because it has a public name but its
details are hidden. This is a fundamental characteristic of ab-
straction: something is visible on the surface, but the details
are hidden. In the case of type abstraction, the type name
is public, but the representation is hidden. With procedural
abstraction, the procedure interface (name and arguments) is
public, but the operational details are hidden. Type abstrac-

tion is a technical mechanism that can be used to support
data abstraction.

One of the practical benefits of data abstraction is that it
allows internal implementation details to be changed with-
out affecting the users of the abstraction. For example, we
could modify the code for set to represent integer sets as
hash tables or balanced binary trees. For example, Figure 4
is an alternative implementation based on a sorted list repre-
sentation.

2.2 Optimization
A different implementation opens up the possibility for op-
timizing some of the operations. For example, the union op-
eration in Figure 2 is quite expensive to compute. With a
sorted list representation union is computed in linear time.
Insertion is faster in some cases, but it may require copying
more nodes. Deciding what representations to use, based on
the associated algorithmic trade-offs, is a standard software
engineering activity.

These optimizations depend critically upon an important
feature of abstract data types: the ability to inspect the rep-
resentation of more than one abstract value at the same time.
Multiple representations are inspected in the union opera-
tion. There is nothing surprising about inspecting multiple
representations. It is a natural side-effect of the type sys-
tem and the fact that all values of type set belong to the
abstract data type implementation that created them. As we
shall see, the ability to inspect multiple representations does
have some important consequences.

2.3 Unique Implementations
With ML abstypes, CLU clusters, Ada packages and Modula-
2 modules there can only be one implementation of an ab-
stract data type in any given program. The implementation
is a construct that manages a collection of values that inhabit
the type. All the values from a given implementation share
the same representation type, although there can be multiple
different representational variants within the type. This is
usually accomplished by defining the representation type as
a labeled sum. The type name set is a globally bound name
that refers to a single hidden representation. The type system
ensures that it is sound for the implementation to inspect any
set value.

Having only one implementation of a data abstraction is
limiting. There is already a name clash between the defini-
tions in Figures 2 and 4. One of them had to be given a differ-
ent name, set2, even though they are really just two different
versions of the same abstraction. Client programs have to be
edited to choose one or the other implementation.

ADTs are also frequently used in C programming [32],
using header files as a simple module system. The signature
of the type is given in a header file as a forward reference to
a structure that is only defined in the implementation file. An
example header file for integer sets is given in Figure 5. This
trick works because the C compiler does not need to know



abstype set2 = EMPTY | INS of int * set2 where

val empty = EMPTY

fun insert(s, i) =
case s of

EMPTY ⇒ INS(i, s)
| INS(n, r) ⇒

if i = n then s
else if i < n then INS(i, s)
else let t = insert(r, i) in
if r = t then s else INS(n, t)

fun isEmpty(s) = (s == EMPTY)

fun contains(s, i) =
case s of

EMPTY ⇒ false
| INS(n, r) ⇒

if i = n then true
else if i > n then false
else contains(r, i)

end

fun union(s1, s2) =
case s1 of

EMPTY ⇒ s2
| INS(n1, r1) ⇒

case s2 of
EMPTY ⇒ s1
| INS(n2, r2) ⇒

if n1 = n2 then
insert(union(r1, r2), n1)

else if n1 < n2 then
insert(union(r1, s2), n1)

else
insert(union(s1, r2), n2)

end
end

end

Figure 4. Integer set ADT with sorted list representation

struct set rep; // representation is not defined in header
typedef struct set rep* set;
set empty();
bool isEmpty(set s);
set insert(set s, int i);
bool contains(set s, int i);
set union(set s1, set s2);

Figure 5. Abstract data type in C header file

type SetImp = ∃ rep . {
empty : rep,
isEmpty : rep → bool,
insert : rep × Int → rep,
contains : rep × Int → Bool,
union : rep × rep → rep
}

Figure 6. Type of first-class ADT set implementations

the format of the representation type, it only needs to know
the size of a pointer to the representation.

2.4 Module Systems
The problem of unique implementation is solved by putting
abstract data types into modules. ML [39] has a module sys-
tem that allows multiple implementations for a given signa-
ture. The signature of an abstraction can be defined once,
and multiple implementations written in separate modules.
A client program can then be parameterized over the sig-
nature, so that a particular implementation can be selected
during module binding. There can be multiple implementa-
tions in software repository, but one implementation is used
in a given program.

Allowing multiple implementations is good, but it is still
not as flexible as might be desired. Consider a case where
one part of a program needs to use the sorted list representa-
tion for integer sets, and another part of the program needs
to use a binary tree representation. Having two different im-
plementations for an abstraction is possible in ML, Ada, or
Module-2. However, the two different parts of the program
cannot interoperate. The different parts of the program can-
not exchange integer sets. As a result the following program
is illegal:

fun f(a : set, b : set2) = union(a, b)

There is no union operation to combine a set with a set2.
Given the signature we have defined, it is not even possible
to write such an operation.

The ML module system also allows multiple inter-related
abstract types to be defined in a single module. For example,
a personnel application might have data abstractions Em-
ployee and Department with operations to associate employ-
ees with departments.

2.5 Formal Models
Formal models of abstract data types are based on existential
types [44]. In this model, ADT implementations are first
class values with existential type, as defined in Figure 6.

A value of type SetImp is not a set, it is an implementa-
tion of a set abstraction. This two-level structure is essential
to abstract data types: the first level is an implementation
(SetImp) which publishes an abstract type name and a set of
operations. Within that implementation, at the second level,



are the values that represent elements of the named abstract
type (set).

This existential type is nearly identical to the signature
in Figure 3. Intuitively, it asserts that “a type locally identi-
fied as rep exists such that the following operations are de-
fined...”.

Most practical languages do not support the full general-
ity of first-class ADT implementations. Thus existential val-
ues and their usage are not familiar to most programmers.
Explaining the mechanics of existential types is beyond the
scope of this essay. They are described in Cardelli and Weg-
ner’s paper [10], and also covered thoroughly in Pierce’s
book, Types and Programming Languages [50].

To use an existential value, it must be opened to declare a
name for the representation type and access the operations.
Each time an existential value is opened, it creates a com-
pletely new type name. Thus if an ADT implementation is
opened twice, the values from one instance cannot be mixed
with values from the other instance. In practice, it is stan-
dard to open all ADTs once in the global scope of the pro-
gram. The ML module system has more sophisticated shar-
ing mechanisms that allow multiple implementations to co-
exist, while allowing interoperability between multiple uses
of the same abstractions. Even in this case values from the
two different implementations cannot be mixed.

2.6 Summary
An abstract data type is a structure that implements a new
type by hiding the representation of the type and supplying
operations to manipulate its values. There are several ways
in which abstract data types seem fundamentally right.

• They work just like built-in types.
• They have sound proof techniques.
• ADTs can be implemented efficiently, even for complex

operations that require inspection of multiple abstract
values.

• From a type theory viewpoint, abstract data types have a
fundamental model based on existential types. Existential
types are the dual of universal types, which are the basis
for parametric polymorphism (called generics in Java
and C#). The duality of universal and existential types
is fundamental, and it leaves little room for any other
alternative. What else could there be?

• There is a solid connection to mathematics. An ADT has
the same form as an abstract algebra: a type name rep-
resenting an abstract set of values together with opera-
tions on the values. The operations can be unary, binary,
multi-ary, or nullary (that is, constructors) and they are
all treated uniformly.

All of these observations lead to the general conclusion
that abstract data types are the way to define data abstrac-
tions. This belief is so deep-seated, so obviously correct, that

it is almost impossible to think of any alternative. Many peo-
ple take “abstract data type” and “data abstraction” as syn-
onyms.

But abstract data types are not the only way to define data
abstractions. The alternative is fundamentally different.

3. Objects
Object-oriented programming has its origin in the language
Simula 67 [16]. Zilles published a paper describing a form
of objects [62] before he started working with Liskov and
switched his focus to ADTs. At the same time, Smalltalk [55,
28], Actors [25] and Scheme [56, 1] all explored objects
in an untyped setting. Smalltalk especially formulated these
ideas into a philosophically and practically compelling lan-
guage and environment for object-oriented programming.
As these languages were all dynamically typed, they did not
immediately contribute to the ongoing dialog about statically
typed data abstraction in the form of ADTs.

There is not a single universally accepted model of
object-oriented programming. The model that I present here
is recognized as valid by experts in the field, although there
certainly are other valid models. In particular, I present ob-
jects in a denotational style which I believe exposes their
core concepts in an intuitive way. I believe that operational
approaches obscure the essential insights.

In this section I discuss a pure form of object-oriented
programming with interfaces [9, 8]. The practical realities
of popular languages are discussed in Section 5.

To begin with, let us reconsider the idea of integer sets.
One alternative way to formulate integer sets is as the char-
acteristic function:

type ISet = Int → Boolean

The type Int → Boolean is the type of functions from
integer to boolean. It is clear that this is a different way to
think about sets than the abstract data types presented in the
previous section. Consider a few values of this type:

Empty = λi. false
Insert(s, n) = λi. (i = n or s(i))
Union(s1, s2) = λi. (s1(i) or s2(i))

The expression λi.e represents a function with a parame-
ter named i and a result expression e. The empty set is just
a function that always returns false. Inserting n into a set s
creates a function that tests for equality with n or member-
ship in the functional set s. Given these definitions, it is easy
to create and manipulate sets:

a = Insert(Empty, 1)
b = Insert(a, 3)
print a(3) – results in true

In what sense could ISet be understood as defining a data
abstraction for integer sets? We have been conditioned to
think in terms of representations and operations. But these



interface ISet = {
isEmpty : bool,
contains : int → bool,
insert : int → ISet,
union : ISet → ISet
}

Figure 7. Object-oriented integer set interface

concepts do not apply in this case. One might say that
this approach represents sets as functions from integers to
booleans. But this ‘representation’ looks like an interface,
not a concrete representation.

Note that there is no “contains” operation, because the
set itself is the contains operation. Although it may not seem
like it, the characteristic function is the pure object-oriented
approach to defining integer sets. You may not accept this
statement immediately, because I have not talked about any
classes, methods, or inheritance, which are supposed to be
characteristic of objects.

3.1 Object Interfaces
ISet is an object-oriented interface to an integer set data ab-
straction. The function is an observation of the set, and a set
is ‘represented’ by the observations that can be performed
upon it. One problem with this interface is that there is no
way to tell if the set is empty. A more complete interface is
given in Figure 7. It is a record type with four components
corresponding to methods. The field names of the record are
in lowercase, to distinguish them from other uses of the same
names. The result is a standard object-oriented interface for
immutable integer set objects.

An essential observation is that object interfaces do not
use type abstraction: there is no type whose name is known
but representation is hidden. The type ISet is defined as a
record type containing functions from known types to known
types. Instead, objects use procedural abstraction to hide
behavior. This difference has significant consequences for
use of the two forms of data abstraction.

Object interfaces are essentially higher-order types, in the
same sense that passing functions as values is higher-order.
Any time an object is passed as a value, or returned as a
value, the object-oriented program is passing functions as
values and returning functions as values. The fact that the
functions are collected into records and called methods is
irrelevant. As a result, the typical object-oriented program
makes far more use of higher-order values than many func-
tional programs.

The empty operation in the ADT is not part of the object-
oriented ISet interface. This is because it is not an observa-
tion on sets, it is a constructor of sets.

Empty = µ this. {
isEmpty = true,
contains = λi. false
insert = λi. Insert(this, i)
union = λs. s
}

Insert(s, n) = if s.contains(n) then s else µ this. {
isEmpty = false,
contains = λi. (i = n or s.contains(i))
insert = λi. Insert(this, i)
union = λs. Union(this, s)
}

Union(s1, s2) = µ this. {
isEmpty = s1.isEmpty and s2.isEmpty,
contains = λi. s1.contains(i) or s2.contains(i)
insert = λi. Insert(this, i)
union = λs. Union(this, s)
}

Figure 8. Object-oriented integer set implementations

3.2 Classes
Several implementations for the ISet interface are defined
in Figure 8. The contains method is the same as the simple
functions given above. The definitions have the same types,
after redefining ISet.

The special symbol µ is used to define recursive val-
ues [50]. The syntax µx.f defines a recursive value where
the name x can appear in the expression f . The meaning of
µx.f is the value of f where occurences of x represent recur-
sive references within f to itself. Objects are almost always
self-referential values, so every object definition uses µ. As
a convention, we use this as the name x, but any name could
be used. The bound name x corresponds to self in Smalltalk
or this in C++.

Each of these definitions correspond to a class in object-
oriented programming. In this encoding, classes are only
used to construct objects. The use of classes as types is
discussed later.

The definition of class state, or member variables, is dif-
ferent from Java [21]. In this encoding, the member variables
are listed as parameters on the class, as in Scala [47].

Several of the method bodies are repeated in these defi-
nitions. The insert method simply invokes the Insert class to
create a new ISet object with one more member. Inheritance
could be used to reuse a single method definition. Inheri-
tance is often mentioned as one of the essential character-
istics of object-oriented programming. However, inheritance
will not be used in this section because it is neither necessary
for, nor specific to, object-oriented programming [13].



A client of these classes looks just like a Java program,
with the familiar method invocation style:

Empty.insert(3).union(Empty.insert(1))
.insert(5).contains(4)

Selecting a function to invoke from a record containing
function values is usually called dynamic binding. This term
is not a very intuitive description of what is essentially an
invocation of a higher-order function.

Just as the ADT version of integer sets had two levels (set
implementations and set values), the object-oriented version
has two levels as well: interfaces and classes. A class is a
procedure that returns a value satisfying an interface. Al-
though Java allows class constructors to be overloaded with
more than one definition, it is clear that one of the primary
purposes of a class is to construct objects.

3.3 Autognosis
A careful examination of the union operator in the object
interface, in Figure 7, reveals that the parameter is typed
by an interface. This means that the union method in a set
object cannot know the representation of the other set being
unioned. Fortunately, the union operator does not need to
know the representation of other sets, it just needs to be able
to test membership. The Union class in Figure 8 constructs
an object that represents the union of two sets s1 and s2.

To me, the prohibition of inspecting the representation of
other objects is one of the defining characteristics of object-
oriented programming. I term this the autognostic principle:

An object can only access other objects through their
public interfaces.

Autognosis means ‘self knowledge’. An autognostic ob-
ject can only have detailed knowledge of itself. All other
objects are abstract.

The converse is quite useful: any programming model
that allows inspection of the representation of more than one
abstraction at a time is not object-oriented.

One of the most pure object-oriented programming mod-
els yet defined is the Component Object Model (COM) [5,
22]. It enforces all of these principles rigorously. Program-
ming in COM is very flexible and powerful as a result. There
is no built-in notion of equality. There is no way to determine
if an object is an instance of a given class.

Autognosis has a profound impact on the software engi-
neering properties of a system. In particular, an autognostic
system is much more flexible. But at the same time, it can
be more difficult to optimize operations. More significantly,
there can be subtle relationships between the public interface
of a class and the ability to implement behavior, as discussed
in Section 3.5.

3.4 Flexibility
Object interfaces do not prescribe a specific representation
for values, but instead accept any value that implements

the required methods. As a result, objects are flexible and
extensible with new representations. The flexibility of object
interfaces can be illustrated easily by defining several new
kinds of set. For example, the set of all even integers, and
the set of all integers, are easily defined:

Even = µ this. {
isEmpty = false,
contains = λi. (i mod 2 = 0)
insert = λi. Insert(this, i)
union = λs. Union(this, s)
}

Full = µ this. {
isEmpty = false,
contains = λi. true
insert = λi. this
union = λs. this
}

The Full set returns itself as the result of any insert or
union operation. This example also illustrates that objects
can easily represent infinite sets easily.

These new sets can be intermixed with the sets defined
above. Other specialized sets can also be defined, including
the set of prime numbers or sets representing intervals.

Interval(n, m) = µ this. {
isEmpty = (n > m),
contains = λi. (n ≤ i and i ≤ m)
insert = λi. Insert(this, i)
union = λs. Union(this, s)
}

There is no direct equivalent to this kind of flexibility
when using abstract data types. This difference is fundamen-
tal: abstract data types have a private, protected representa-
tion type that prohibits tampering or extension. Objects have
behavioral interfaces which allow definition of new imple-
mentations at any time.

The extensibility of objects does not depend upon inheri-
tance, but rather is an inherent property of object interfaces.

3.5 Interface Trade-Offs
The choice of interfaces to an object can affect which opera-
tions are efficient, which are slow, and also which operations
are impossible to define.

For example, it is not possible to augment the integer set
interface with an intersect operation, because it is not possi-
ble to determine if the intersection of two sets is empty with-
out iterating over the sets. It is commonplace to include iter-
ator methods in collection classes like the ones given here.
But iterators do not interact well with infinite sets. Signifi-
cant software engineering decisions must be made when de-
signing interfaces, but these issues are rarely discussed in
programming language textbooks.



One problem with object interfaces is that efficiency con-
siderations often allow implementation issues to influence
the design of interfaces. Adding public methods that in-
spect the hidden representation can significantly improve ef-
ficiency. But it also restricts the flexibility and extensibility
of the resulting interface.

3.6 Optimization
The optimization of the union method based on sorted lists is
not possible in the object-oriented implementation, without
modifying the interfaces. The optimization would be possi-
ble if the interfaces included a method to iterate the set con-
tents in sorted order. Extending an object interface with more
public methods can significantly improve performance, but
it also tends to reduce flexibility. If the sets used a more so-
phisticated representation, optimizations might require more
representational details to be exposed in the public interface.

There are several optimizations in the object implementa-
tion in Figure 8. The first is that the union method on empty
sets is the identity function. The second is that the insert
class does not always construct a new value. It only creates
a new value if the number being inserted is not in the set
already.

It is not necessary to include insert and union as methods
inside the object interface, because they can be defined as
classes that operate on any sets. The optimization of union
in the empty set class is one reason why it is useful to
internalize the creation operations in the object interface.

3.7 Simulation
Object-oriented programming was first invented in the con-
text of the simulation language Simula [16, 4]. The original
intent was to simulate real-world systems, but I believe that
simulation also allows one object to simulate, or pretend to
be, another object.

For example, the set Interval(2, 5) simulates a set that
has integers 2 through 5 inserted into it. According to the
principle of autognosis, there should be no way for any
part of the program to distinguish between the interval and
the inserted set. There are many operations that violate this
principle, including pointer equality and instanceof tests.

Simulation also provides a basis for verification of object-
oriented programs. If two objects simulate each other, form-
ing a bisimulation, then they are equivalent [41]. The con-
cept of simulation and bisimulation are powerful mathemat-
ical concepts for analyzing the behaviors.

3.8 Specifications and Verification
Object-oriented programming has caused significant prob-
lems for verification efforts [34, 45, 2]. This is not surpris-
ing if you understand that object-oriented programming is
high-order procedural programming; objects are a form of
first-class procedure value, which are passed as arguments
and returned as values everywhere. It is difficult to verify

programs that combine first-class higher-order functions and
imperative state.

A common complaint is that it is impossible to determine
what code will execute when invoking a method. This is no
different from common uses of first-class functions. If this
objection is taken seriously, then similar complaints must be
leveled against ML and Haskell, because it is impossible (in
general) to determine what code will run when invoking a
function value.

More significantly, it is possible to create bad objects
easily. For example, the following object does not meet the
specification for integer sets:

Bad = µ this. {
isEmpty = (random() > 0.5),
contains = λi. (time() mod i = 1)
insert = λi. this
union = λs. Insert(3, s)
}

It reports that it is empty 50% of the time, and includes
integers randomly based on time of day. Object interfaces
can be given behavioral specifications, which can be verified
to prohibit bad objects.

A more subtle problem is that objects do not necessarily
encapsulate state effectively [27]. The problem arises when
the state of an object is itself a collection of objects. There
is a tendency for the internal objects to leak out and become
external, at which point the abstract boundary is lost. This
problem motivates the ongoing research effort on ownership
types [6].

One particularly difficult problem is that methods can be
re-entered while they are running [46]. This causes problems
for the standard Hoare-style approach to verification. In this
approach, the class enforces an invariant, and every proce-
dure (method) is given a precondition and a post-condition.
The problem is that any method calls within the body of
the method may loop back around and invoke some other
method of the object being verified. In this case the other
method may be called while the object is in an inconsistent
state. It may also modify the object state, to invalidate the
assumptions used to verify the original method.

Abstract data types do not usually have this problem be-
cause they are built in layers; each layer invokes lower lay-
ers, but lower layers do not invoke higher layers. Not all
systems can be organized in this fashion, however. Complex
systems often require notifications, or call-backs, which al-
low lower layers to call into higher layers. This can cause
problems for verification if call-backs are included in ADTs.

Object-oriented programming is designed to be as flexi-
ble as possible. It is almost as if it were designed to be as
difficult to verify as possible.

3.9 Some More Theory
The object interface has some interesting relationships to the
abstract data type signature in Figures 3 and 6. First, the



methods have one fewer argument than the corresponding
operations in the ADT signature. In each case, the rep ar-
gument is missing. Second, the rep in the ADT operations
corresponds to a recursive reference to ISet in each method
of the object interface. The similarity can be expressed by
the following type function:

type F(t) = {
isEmpty : bool,
contains : int → bool,
insert : int → t,
union : t → t
}

The types given above can be rewritten in terms of F:

ISet = F(ISet)
SetImp = ∃ rep. rep × (rep → F(rep))

The original definition of SetImp is isomorphic to this
new definition. To see the relationship, note that in rep →
F(rep) the function type with domain rep supplies the miss-
ing argument that appears in all the ADT operations. The
cartesian product with rep supplies the empty constructor.

The definition of SetImp above is the encoding of a final
coalgebraX → F (X) into the polymorphic λ-calculus [19].
The only problem is that F is not a covariant functor, be-
cause of the union method. This encoding also corresponds
to the greatest fixedpoint of F , which corresponds to the re-
cursive type ISet. The relationship between coalgebra and
objects is an active research topic [29].

3.10 Summary
An object is a value exporting a procedural interface to data
or behavior. Objects use procedural abstraction for informa-
tion hiding, not type abstraction. Object and and their types
are often recursive. Objects provide a simple and powerful
form of data abstraction. They can be understood as clo-
sures, first-class modules, records of functions, or processes.
Objects can also be used for procedural abstraction.

Unlike abstract data types, many people find objects to
be deeply disturbing. They are fundamentally higher-order,
unlike abstract data types. With an object, you are never
quite certain what it is going to do: What method is being
called? What kind of object is it really?

On the other hand, many people find objects to be deeply
appealing in their simplicity and flexibility. They do not
require complex type systems. Inheritance allows recursive
values to be extended in powerful ways.

The fact that objects are autognostic, so that they can only
know themselves, is also confusing. On the one hand, it in-
terferes with desirable optimizations that require inspection
of multiple representations. One solution is to expose repre-
sentational details in the object’s interface, which limits flex-
ibility. The benefits of autognosis are often subtle and only
realized as a system grows and evolves.

Finally, as parts of a long and rich tradition of abstraction,
objects too—not just ADTs—are fundamentally grounded in
mathematics

4. Relationships between ADTs and OOP
Although object-oriented programming and abstract data
types are two distinct forms of data abstraction, there are
many relationships between them. Many simple abstractions
can be implemented in either style, although the usages of
the resulting programs is quite different.

4.1 Static Versus Dynamic Typing
One of the most significant differences between abstract data
types and objects is that objects can be used to define data
abstractions in a dynamically typed language.

Objects do not depend upon a static type system; all they
need is some form of first-class functions or processes.

Abstract data types depend upon a static type system to
enforce type abstraction. It is not an accident that dynamic
languages use objects instead of user-defined abstract data
types. Dynamic languages typically support built-in abstract
data types for primitive types; the type abstraction here is
enforced by the runtime system.

Type systems only enforce structural properties of pro-
grams; they do not ensure conformance to a specification.
But with ADTs, the type system can ensure that if the ADT
implementation is correct, then all programs based on it will
operate correctly. The type system prevents outside clients
from tampering with the implementation. Pure object in-
terfaces allow any structurally compatible implementation,
thus the type system does not prohibit bad implementations
from being used.

4.2 Simple and Complex Operations
One point of overlap between objects and abstract data types
is that simple data abstractions can be implemented equally
well in either style. The difference between simple and com-
plex data abstractions is whether or not they have operations,
like the union operation in the set ADT, that inspect the rep-
resentation of multiple abstract values.

In this essay I call an operation “complex” if it inspects
multiple representations. In some of the literature complex
operations are called “binary”. Literally speaking, a binary
operation is one that accepts two inputs of the abstract type.
For an object, a binary method is one that takes a second
value of the abstract type, in addition to the abstract value
whose method is being invoked. According to these defini-
tions, union is always binary.

However, not all binary methods are complex. This de-
pends on how the operation is implemented. A binary opera-
tion can be implemented by invoking public methods on the
abstract arguments. Doing so does not require the represen-
tation of the two values to be inspected. The union operation
in Figures 1 and 2 are simple. But the union operation in
Figure 4 is complex.



Pure object-oriented programming does not support com-
plex operations. Doing so requires inspection of another ob-
ject’s representation, using instance-of or similar means.

Any abstract data type with only simple operations can be
implemented without loss of functionality, but more simply
and extensibly, with objects.

Consider an ADT implementation with the following
type, where t does not appear in σi, τj , ρj , or δk.

F(t) = {
ci : σi → t,
oj : t ×τj → ρj ,
mk : t ×δk → t
}

ADT : ∃ t.F(t)

The methods have been partitioned into constructors, ob-
servations and mutators. The constructors ci create values
of type t. The observations take an input of type t with addi-
tional arguments and produce values of some other type. The
mutators take an input of type t and produce a result of type
t. These patterns are exhaustive, because there are no com-
plex methods. τj or δk is unit if there are no other arguments
besides t for a given operation.

Create a new type I to represent the object interface:

interface I = {
oj : τj → ρj ,
mk : δk → I
}

For the constructors, define a family of functions that invoke
a wrap function that creates the object. The notation for this
example is that of Pierce’s book Types and Programming
Languages [50].

Ci : σi → T
Ci(x : σi) =
let {*t, p} = ADT in

wrap[t](p, p.ck(x))

wrap : ∀t. F(t) → I
wrap[t](p, x) = {

oj = λa:τj . p.mj(x, a);
mk = λa:δk. wrap[t](p, p.mk(x, a));
}

The constructors first open the ADT, construct an appro-
priate value of type t and then wrap it as an object. This
transformation is a direct corollary of the basic definitions
of ADTs [44] and objects [13].

The converse, however, is not necessarily true. It is possi-
ble to take any fixed set of object-oriented classes that imple-
ment an interface and convert them to an ADT. One simple
way to do it is to use objects as the representation type for
the ADT, but rewriting the abstractions is always possible.
However, the result is no longer extensible, so the conver-
sion incurs a loss of flexibility.

4.3 Extensibility Problem
When implementing data abstractions, there are two impor-
tant dimensions of extensibility. New representational vari-
ants can be added, or new operations can be added. This
observation suggests it is natural to organize the behaviors
into a matrix with representations on one axis and observa-
tions/actions on the other. Then extensibility can be viewed
as adding a column or row to the matrix.

In the 1970s, as work began on understanding data ab-
straction, Reynolds published a prophetic paper that iden-
tified the key differences between objects and abstract data
types [52, 23], although I think he did not realize he was
describing objects. Reynolds noticed that abstract data types
facilitate adding new operations, while “procedural data val-
ues” (objects) facilitate adding new representations. Since
then, this duality has been independently discovered at least
three times [18, 14, 33],

This duality has practical implications for program-
ming [14]. Abstract data types define operations that collect
together the behaviors for a given action. Objects organize
the matrix the other way, collecting together all the actions
associated with a given representation. It is easier to add new
operations in an ADT, and new representations using ob-
jects. Although not discussed in detail here, object-oriented
programs can use inheritance to add new operations [14].

Wadler later gave the problem a catchy name, the “Ex-
pression Problem”, based on the well-known canonical ex-
ample of a data abstraction for expressions with operations
to print, evaluate, or perform other actions [58].

The extensibility problem has been solved in numerous
ways, and it still inspires new work on extensibility of data
abstractions [48, 15]. Multi-methods are another approach
to this problem [11]. More complex variations, involving
integration of independent extensions, have still not been
completely resolved.

4.4 Imperative State and Polymorphism
Issues of imperative state and polymorphism have been
avoided in this essay because they are, for the most part,
orthogonal to the issues of data abstraction. The integer sets
discussed in this paper can be generalized to polymorphic
sets, set<t>. These generalization can be carried out for
either abstract data types or objects. While there is signifi-
cant work involved in doing so, the issues of polymorphism
do not interact very much with the issues relating to data
abstraction.

Both abstract data types and objects can be defined in ei-
ther a pure functional or imperative style. Pure functional
objects are quite common, although not as common as they
could be. Issues of state are largely orthogonal from a lan-
guage design viewpoint. However, imperative programming
has a significant impact on verification.



5. Reality
The reality in practical programming languages is not so
pure and simple. It turns out that statically typed object-
oriented languages all support both pure objects and also
a form of abstract data types. They also support various
hybrids.

5.1 Object-Oriented Programming in Java
While Java is not a pure object-oriented language, it is pos-
sible to program in a pure object-oriented style by obeying
the following rules

Classes only as constructors A class name may only be
used after the keyword new.

No primitive equality The program must not use primitive
equality (==). Primitive equality exposes representation
and prevents simulation of one object by another.

In particular, classes may not be used as types to declare
members, method arguments or return values. Only inter-
faces may be used as types. Also, classes may not be used in
casts or to test with instanceof.

This is generally considered good object-oriented style.
But what if you were forced to follow this style, because
the language you were using required it? Smalltalk comes
close. Since Smalltalk is dynamically typed, classes are only
used as constructors. It does support instanceof, although it
is rarely used.

One other way to break encapsulation in Java is through
the use of reflection, although this is not common when writ-
ing most programs. Reflection is useful when writing meta-
tools (e.g. debuggers) and program generators. However, use
of reflection appears to be growing more widespread. More
research is needed to quantify the effect of reflection on data
abstraction and encapsulation.

5.2 ADTs in Java
It takes a little more work to encode abstract data types in
statically typed object-oriented programming languages.

class ASet {
// declare representation fields
// no public constructor
static ASet empty();
static ASet insert(ASet s, int n);
static bool contains(ASet s, int n);
static ASet union(ASet a, ASet b);
}

Using a class name as a type introduces type abstraction.
A class hides its representation. Object-oriented languages
do not always support the sums-of-products data structures
found in other languages, but such types can be simulated
using an abstract class with a subclass for each variant in
the sum type. Pattern matching on these types can then
be implemented by using instanceof and appropriate casts.

One direct encoding uses static methods for all the ADT
operations, and the class just holds the representation.

class CSet {
// declare representation fields
// no public constructor
static CSet empty();
CSet insert(Integer n);
bool contains(Integer n);
CSet union(CSet b);
}

To summarize, when a class name is used as a type, it
represents an abstract data type.

5.3 Haskell Type Classes
Type classes in Haskell [30] are a powerful mechanism for
parameterization and extensibility [59]. A type class is an
algebraic signature that associates a group of operations with
one or more type names. A type class for integer sets, defined
below, is very similar to the existential type in Figure 6, but
in this case uses curried functions:

class Set s where
empty :: s
isEmpty :: s → Bool
insert :: s → Int → s
contains :: s → Int → Bool
union :: s → s → s

Functions can be written using the generic operations:

test :: Set s ⇒ s → Bool
test s = contains(union(insert(s, 3), insert(empty, 4)), 5)

The qualification on the type of test indicates that the type
s is any instance of Set. Any type can made an instance of
Set by defining the appropriate operations:

instance Set [Int] where
empty = []
isEmpty = (== [])
insert = flip (:)
contains = flip elem
union = (++)

Instance definitions can connect type classes with actual
types that come from different libraries, and all three parts
can be written without prearranged knowledge of the others.
As a result, type classes are flexible and extensible.

A type can only be an instance of a class in one way.
For example, there is no way to define sorted lists and lists
as both being different instances of Set. This restriction can
always be bypassed by creating a new type that is a tagged
or labeled version of an existing type, although this can
introduce undesirable bookkeeping when tagging values.

Type classes are similar to object interfaces in allowing
a method to operate on any value that has the necessary
operations.



On the other hand, type classes are based on algebraic sig-
natures as in abstract data types. The main difference is that
type classes do not enforce any hiding of representations. As
a result, they provide parametric abstraction over type signa-
tures, without the information hiding aspect of ADTs. Given
the success of Haskell, one might argue that encapsulation is
somewhat overrated.

Type classes are not autognostic. When a function is
qualified by a type class, the same type instance must be used
for all values within that function. Type classes do not allow
different instances to interoperate. There are other ways in
which Haskell provides abstraction and information hiding,
for example, by parametericity.

On the other hand, the object-oriented data abstractions
given here can also be coded in Haskell. In addition, an exis-
tential type can be used to combine the type class operations
with a value to create a form of object [31]. In this encoding,
the type class acts as a method table for the value.

5.4 Smalltalk
There are many interesting aspects of the Smalltalk language
and system. One curious fact is that Smalltalk has no built-
in control flow and very few built in types. To see how this
works, consider the Smalltalk implementation of Booleans.

There are two Boolean classes in Smalltalk, named True
and False. They both implement a two-argument method
called ifTrue:ifFalse:.

class True

ifTrue: a ifFalse: b

^ a value

class False

ifTrue: a ifFalse: b

^ b value

Method names in Smalltalk are sequences of keyword
labels, where each keyword identifies a parameter. The body
of the True method returns the result of sending the value
message to the first argument, a. The body of the False
method returns the second argument, b.

The value method is needed because a and b represent
thunks or functions with a single dummy argument. A thunk
is created by enclosing statements in square brackets. A con-
ditional is implemented by sending two thunks to a Boolean
value.

(x > y) ifTrue: [ x print ]

ifFalse: [ y print ]

The implementation of Booleans and conditionals in
Smalltalk is exactly the same as for Church booleans in
the λ-calculus [12]. Given that objects are the only way to
implement data abstraction in an untyped language, it makes
sense that the same kind of data would be used in Smalltalk
and the untyped λ-calculus. It would be possible to imple-
ment a RandomBoolean class that acts as true or false based

on the flip of a coin, or a LoggingBoolean that traced how
many computations were performed. These booleans could
be use anywhere that the standard booleans are used, includ-
ing in low-level system code.

Smalltalk numbers are not Church numerals, although
they share some characteristics. In particular, numbers in
Smalltalk implement iteration, just as they do in the Church
encoding. Similarly, Smalltalk collections implement a re-
duce operator analogous to the Church encoding of lists.

The Smalltalk system does include a primitive integer
type, implemented as an ADT for efficiency. The primitive
types are wrapped in high-level objects, which communicate
with each to other through an ingenious interface to perform
coercions and implement both fixed and infinite precision
arithmetic. Even with these wrappers, I claim that Smalltalk
is not truly “objects all the way down” because the imple-
mentation depends upon primitive ADTs. It may be that ob-
jects are simply not the best way to implement numbers.
More analysis is needed to determine the efficiency costs and
whether the resulting flexibility is useful in practice.

One conclusion you could draw from this analysis is
that the untyped λ-calculus was the first object-oriented lan-
guage.

6. Discussion
Academic computer science has generally not accepted the
fact that there is another form of data abstraction besides ab-
stract data types. Hence the textbooks give the classic stack
ADT and then say “objects are another way to implement
abstract data types”. Sebesta focuses on imperative data ab-
stractions without complex methods, using stacks as an ex-
ample, so it is not surprising that he does not see any differ-
ence between objects and ADTs [54]. Tucker and Noonan
also illustrate data abstraction with stacks [57]. But they also
provide a Java implementation of a type-checker and evalu-
ator that appears to have been translated directly from ML
case statements, implemented using intanceof in Java. The
resulting program is a poor illustration of the capabilities of
object-oriented programming.

Some textbooks do better than others. Louden [38] and
Mitchell [43] have the only books I found that describe the
difference between objects and ADTs, although Mitchell
does not go so far as to say that objects are a distinct kind
of data abstraction.

The rise of objects interrupted a long-term project in
academia to create a formal model of data based on ADTs.
Several widely used languages were designed with ADTs as
their fundamental form of data abstraction: ML, Ada, and
Modula-2. As object-oriented programming became more
prominent, these languages have adopted or experimented
with objects.

Object-oriented programming has also been subject to ex-
tensive academic research. However, I believe the academic
community as a whole has not adopted objects as warmly as



they were received in industry. I think there are three reasons
for this situation. One is that the conceptual foundations for
objects, discussed here, are not widely known. The second
is that academics tend to be more interested in correctness
than flexibility. Finally, programming language researchers
tend to work with data abstractions that are more natural as
ADTs.

There are significant design decisions involved in choos-
ing whether to implement a given abstraction with ADTs or
with objects. In her history of CLU [35], Barbara Liskov
discussed many of these issues, and gave good arguments
for her choice of the ADT style. For example, she writes
that “although a program development support system must
store many implementations of a type..., allowing multiple
implementations within a single program seems less impor-
tant.” This may be true if the types in question are stacks
and integer sets, but when the abstractions are windows, file
systems, or device drivers, it is essential to allow multiple
implementations running within the same system.

To me it is unfortunate that Liskov also wrote that “CLU
is an object-oriented language in the sense that it focuses
attention on the properties of data objects and encourages
programs to be developed by considering abstract properties
of data.” I believe that there is no technically or historically
meaningful sense in which CLU is an object-oriented lan-
guage. I do believe that modern object-oriented languages
have been influenced by CLU (especially in the encapsula-
tion of representation) but this does not make CLU into an
object-oriented language.
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7. Conclusion
Objects and abstract data types (ADTs) are two different
forms of data abstraction. They can both implement simple
abstractions without complex methods, but objects are ex-
tensible while ADTs are easier to verify. Significant differ-
ences arise when implementing abstractions with complex
operations, for example comparisons or composition oper-
ators. Object interfaces support the same level of flexibil-
ity, but often force a trade-off between interface simplicity
and efficiency. Abstract data types support clean interfaces,
optimization, and verification, but do not allow mixing or
extending the abstractions. Mathematically oriented types,
including numbers and sets, typically involve complex oper-
ations that manipulate multiple abstract values, and are best
defined using ADTs. Most other types including files, de-
vice drivers, graphic objects, often do not require optimized
complex operations, and so are best implemented as objects.

Modern object-oriented languages support a mixture of
object-oriented and ADT functionality, allowing program-
mers to choose ADT style for specific situations. In modern
object-oriented languages, the issue boils down to whether
or not classes are used as types. In a pure object-oriented
style, classes are only used to construct objects, and inter-
faces are used for types. When classes are used as types, the
programmer is implicitly choosing to use a form of abstract
data type. The decision affects how easy it is for the program
to be extended and maintained over time, and also how easy
it is to optimize complex operations. Understanding the fun-
damental differences between objects and ADTs can help in
choosing to use them wisely.
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