
Synthesis of Fast Programs for Maximum Segment Sum Problems

Srinivas Nedunuri William R. Cook

University of Texas at Austinnedunuri@cs.utexas.edu, wcook@cs.utexas.edu
Abstract
It is well-known that a naive algorithm can often be turned
into an efficient program by applying appropriate semantics-
preserving transformations. This technique has been used to
derive programs to solve a variety of maximum-sum pro-
grams. One problem with this approach is that each prob-
lem variation requires a new set of transformations to be de-
rived. An alternative approach to synthesis combines prob-
lem specifications with flexible algorithm theories to derive
efficient algorithms. We show how this approach can be im-
plemented in Haskell and applied to solve constraint satis-
faction problems. We illustrate this technique by deriving
programs for three varieties of maximum-weightsum prob-
lem. The derivations of the different programs are similar,
and the resulting programs are asymptotically faster in prac-
tice than the programs created by transformation.

1. Introduction
The idea of deriving or synthesizing an efficient algorithm
from a specification is well-known in the functional pro-
gramming community. One common technique is to start
with a simple but inefficient program, which acts as a speci-
fication, and then apply program transformations to improve
efficiency. An example of this technique is the derivation
of algorithms for variations on the maximum segment sum
problem, (SHT00; SHT01; SOH05). A drawback of this ap-
proach is that it requires the development of increasingly
complicated program transforms for each problem variation;
there is little reuse of steps in the derivation even for similar
problems. Although the three problems have similar struc-
ture, deriving linear algorithms by transformation requires a
completely different transformation for each solution.

An alternative approach to program synthesis is based on
specifications and generic algorithm theories. This approach
to algorithm synthesis is combines a pre/post condition spec-

[Copyright notice will appear here once ’preprint’ option is removed.]

ification of a problem with a high-level algorithm theory that
captures generic problem-solving knowledge. The algorithm
theory contains abstract operations that must be defined to
satisfy the requirements of the particular problem. The syn-
thesis is performed in the context of theory morphisms, en-
suring that the resulting algorithm is correct by construction
(after generated proof obligations are discharged). Smithand
his colleagues have successfully synthesized a number of
practical algorithms, including a scheduler that ran several
orders of magnitude faster than comparable hand-written
ones(SPW95)

In this paper we apply and extend Smith’s approach to
derive efficient Haskell algorithms for the three segment
sum problems mentioned above. The paper has three main
contributions:

• An implementation of the Global Search Optimization
(GSO) theory in Haskell. The search algorithm is defined
over a type class that defines the search space and appro-
priate pruning and filtering operations.

• Development of a Constraint Satisfaction Optimization
theory which specializes GSO, introducing dominance
relations (Iba77) into the abstract program.

• Derivation of efficient algorithms for solving the three
problems listed above. The algorithms are significantly
faster than those derived by Sasano et al. At least two of
their algorithms are linear in theory, but did not perform
linearly in Haskell. The algorithms derived here are all
theoretically and experimentally linear. The same basic
derivation steps are used for synthesizing all the algo-
rithms.

2. Global Search Optimization in Haskell
In this section we present a version of the Global Search
Optimization (GSO) theory (Smi88) in Haskell. A spec-
ification of a global search optimization problem is a 5-
tuple 〈D, R, C, o, p〉, whereD is an input type,R an out-
put type,C a cost type,o : D × R → Boolean is anout-
put or correctness conditionthat any result must satisfy, and
p : D × R → C is aprofit criterion to be maximized (anal-
ogously, minimized). Not all problems have an optimality
requirement. For example, the following is a specification of

1 2009/3/14

class (Eq r, Ord c) =>GlobalSearchOpt d r c| d -> r c whereprecondition :: d -> Boolok :: (d, r) -> Boolprofit :: (d, r) -> cinitial :: d -> rsubspaces :: (d, r) -> [r]possible :: (d, r) -> Booltighten :: (d, r) -> rdominates :: (d, r, r) -> BoolinitBound :: d -> cupperBound :: (d, r) -> cextract :: (d, r) -> Maybe r
−− default defsprecondition _ = Trueok _ = Truepossible (_, _) = Truetighten (_, r) = rdominates (_, _, _) = False

Figure 1. GlobalSearchOpt class methods

sorting (7→is to be read as “is instantiated as”)

D 7→ [Integer]
R 7→ [Integer]
o 7→ λ(x, z). asBag(x) = asBag(z)

∧∀i, j. 0 ≤ i, j < #x. i ≤ j ⇒ zi ≤ zj

Global Search Optimization theory consists of two parts:
a general purpose search algorithm and an abstract data type
defining a search space. The search space includes opera-
tions for generating new search nodes, testing for success,
and more advanced operators to prune and guide the search.
Algorithm 1 defines the generic search optimization algo-
rithm as a Haskell function,findOpt, contained in a type
class (See Fig. 1); the non-default class methods are the
functions the developer must instantiate. In this paper, we
show how to calculate the required instantiations.

The functionfindOpt takes an inputx : D and returns a
(possibly empty) list of solutions satisfying the output condi-
tion and optimizing the profit criterion. The search optimiza-
tion function is classic branch-and-boundsearch, augmented
with operators to help prune the search. It works by taking
an initial space(also called apartial solution) of possible
solutions (corresponding to the root node of a search tree),
and if that space passes the propagation and bounds test, ini-
tializes a list of active spaces with that space and begins the
search. The main search function selects an active space (s)
from the list it is given. If it can, it immediately extract a fea-
sible solution (the space corresponds to a leaf node) and, ifit
is optimal, adds it to the collection of optimum solutions and
returns. Otherwise, the revised collection of active spaces is
formed by first partitioning the current active space into sub-

Algorithm 1 An abstract program for GSO

−− returns 0 or more optimal solutionsfindOpt :: d -> [r]findOpt x =if not(precondition x) then error "i/p cond" elsecase propagate x (initial x) ofJust s -> if upperBound(x, s) >= initBound xthen globalSearchOpt x [s] [] 0else []Nothing -> []globalSearchOpt :: d -> [s] -> [r] -> Integer -> [r]globalSearchOpt x [] solutions = solutionsglobalSearchOpt x (s : rest) solutions =let solutions' = case extract(x, s) ofJust z -> if ok(x, z)then optima x z solutionselse solutionsNothing -> solutionsactive' = rest_undom ++ ok_subspaces_undomwhere dom s s' = dominates(x, s, s')ok_subspaces =ok_subspaces_ofx (listToMaybe solutions) sundom_siblings =rmv_dominated_siblingsdom ok_subspaces(ok_subspaces_undom,rest_undom)=rmv_dominateddom undom_siblings restin globalSearchOpt x active' solutions'ok_subspaces_of :: d -> Maybe r -> s -> [s]ok_subspaces_of x zs s =[s' | s' <- mapMaybe (propagate x)(subspaces(x, s)),zs /= Nothing ==>upperBound(x, s') >=profit(x, fromJust zs)]propagate :: d -> s -> Maybe spropagate x s =if possible(x, s)then Just (iterate2FP tighten x s)else Nothingiterate2FP :: ((d, s) -> s) -> d -> s -> siterate2FP f x z =let fz = f(x, z) inif fz == z then fz else iterate2FP f x fzoptima :: d -> r -> [r] -> [r]optima x z [] = [z]optima x z (z':zs) =if profit(x, z) > profit(x, z') then [z]else if profit(x, z) == profit(x, z')then (z:z':zs) else (z':zs)
2 2009/3/14

Algorithm 2 Dominance testingrmv_dominated_siblings f siblings =foldr (chkSibling4Dominance f) [] siblingsrmv_dominated f [] active = ([], active)rmv_dominated f (s:siblings) active =let undom = chkSibling4Dominance2f s activeactive' = snd undom(ok_sibs, ok_active) =rmv_dominated f siblings active' inif not $ fst undomthen (s:ok_sibs, ok_active)else (ok_sibs, ok_active)chkSibling4Dominance f s ss =let undom_ss = filter (not.(f s)) ss inif and (map (not.(flip f s)) undom_ss)then (s:undom_ss)else undom_sschkSibling4Dominance2 f s ss =let undom_ss = filter (not.(f s)) ss inif and (map (not.(flip f s)) ss)then (False, undom_ss)else (True, ss)
initial :: D → R

extract :: D × R → R

subspaces :: D × R → [R]
upperBound :: D × R → C

initBound :: D → C

possible :: D × R → Boolean

tighten :: D × R → R

dominates :: D × R × R → Boolean

Figure 2. Search space interface

spaces (corresponding to child nodes), selecting only those
(ok_subspaces) that aren’t emptied out by propagation and
also pass the bounds test. Then a dominance test (see Al-
gorithm 2, see also Section 4.1) is performed between ev-
ery pair of subspaces (rmv_dominated_siblings) (those
spaces that are dominated can be eliminated) followed by a
dominance test between every active space and every sub-
space (rmv_dominated). Only those that survive these tests
(rest_undominated and ok_subspaces_undominated)
are retained and passed to the next level of search.

The interface of operations that define the search space is
given in Figure 2. TheGlobalSearchOpt class combines
this interface with the specification〈D, R, C, o, p〉, in which
D, R, C become type variablesd,r,c resp. ando, p are
renamedok,profit resp. The search-space operations are
uncurried to distinguish them from other operations.

initial returns a descriptor of the initial search space.
extract determines whether the given space is terminal and
if so, returns a solution (otherwise Nothing, denoting an
empty space).subspaces returns a set of subspaces of the
current space.dominates is a predicate that determines
whether one space dominates another. The dominated space
can be pruned.upperBoundis a function that returns an up-
per bound on the best solution possible in the given space.
initBound is an initial bound.possibleis a necessary filter
- those spaces that do not passpossibleneed not be exam-
ined. Ideally, we want only those spacesr that contain fea-
sible solutions, i.e. satisfy∃z. r v z ∧ o(x, z) but find-
ing exactly those spaces often is not feasible so we settle
for a weaker test, namely some predicatepossiblesatisfying
∀z. r v z ∧ o(x, z) ⇒ possible(r). v is a refinement re-
lation overR. The intent ofv is that if rv s thens is is a
subspace ofr (any solution contained ins is contained inr)
and is “more defined” thanr . tighten is called anecessary
propagator. It “tightens” a given space to eliminate infea-
sible solutions and can be any function (of the appropriate
type) satisfying∀z. r v z ∧ O(x, z) ⇒ tighten(r) v z.
When〈R,v〉 forms a lattice, a monotone inflationarytighten
can be iterated from any starting space to a fixpoint which is
the tightest possible space that still preserves all the orig-
inal feasible solutions, (SPW95). Thepropagatefunction
in the abstract program above does that, by comparing the
space before applyingtightenwith the result after. An ax-
iomatic definition of GSO theory and proof of correctness
of the abstract program without dominance relations can be
found in (Smi88). The proof when dominance relations are
included is analogous.

3. A Theory of Constraint Satisfaction
Optimization

Many of the problems we have looked at can be solved by
constraint satisfaction (Dec03). In this paper we define a spe-
cial subclass of GSO for constraint satisfaction optimization
problems, which we call CSO theory. We then show how fast
solutions for a number of variations of the MSS problem can
be systematically derived within this theory. Constraint sat-
isfaction operates as follows: Given a set of variables,vars,
assign a value, drawn from some domainDv, to each vari-
able, in a manner that satisfies some set of constraints. Fig.3
shows an instantiation ofGlobalSearchOpt which carries
this out. The intent is that specific CSO problems will mono-
tonically extend this theory. We will just copy and paste the
necessary definitions into problem specific code.

The initial spacêzo makes all the values invals x avail-
able to every variable. Thesubspaces function picks a vari-
able from the set of variables not yet assigned a value (tbd)
and returns the subspaces formed by assigning tov each of
the possible values (drawn fromch v), adding each pair
to the mapm, and removingv from tbd anda from ch v.
The choice of which variable to pick does not matter func-

3 2009/3/14

data D = D {maxVar::Nat, vals::[Dv]}data R = R {m::Map Nat Dv, tbd::[Nat]}ok_CST(x, z) = map_keys(m z)==[0..(maxVar x)]initial(x) = R{m=empty, tbd=[0..(maxVar x)]}subspaces(x, r) =if (tbd r)==[] then [] elselet var=chooseV(tbd r)mS x s var a = mkSubspace(x,s,var,a)in map (mS x r var) (cs r)mkSubspace_CST s var val =s {m=map_insert var val (m s),tbd=delete var (tbd s)}chooseVar [] = NothingchooseVar (v:vs) = Just vextract(x, r) =if (tbd r)==[] then Just r else NothingupperBound(x, z_hat) = maxBound
v(z, z') = z.m ⊆ z'.m

Figure 3. CSOT: A partial instantiation of GSO theory for
solving CSO problems

tionally, but can have a significant impact on the efficiency
of the program. The expressionsm_lookup i (m z_hat)
and#ẑ − 1 are typically abbreviated aŝzi andm_findMax(m z_hat) resp. in derivations. The functionsm_findMax,m_lookup andm_insert are library functions, defined in
Fig. 5.

In order to get a working constraint satisfaction solver,
the developer (the user of this theory) needs to instantiate
C, c, Dv and whatever additional output conditions are ap-
propriate. We give an example of this next.

4. Maximum Independent Segment Sum
(MISS)

The maximum segment sum problem has been popular in the
FP community after Bird (Bir89) showed how to calculate a
linear-time algorithm. As (Mu08) reports, the subject is still
going strong, and attracting attention, partly because it has
important applications in filter design and bioinformatics,
and the 2-D version has applications in image processing.
So, the synthesis of fast solutions to the problem and its
variants is also important. MISS is a variant of MSS in
which the goal is to select some elements from a given array,
with the restriction that no two adjacent elements can be
selected, such that the sum of the elements in the selection
is maximized. The specification of the problem is in Fig.
4. Because we are extending CSOT, only the elements that
differ from CSOT are shown. A complete theory is obtained
by combining this partial specification with CSOT.nonAdj ensures that no two adjacent elements of the in-
put (x) are present in the final solution (z) andc' calculates
the profit of the final solution counting down from the high-
est allocated variable. These bindings instantiate the abstract
program in Fig 1 into a working (albeit inefficient) solver for

data Dv = Booldata D = D {maxVar::Nat, vals::[Dv], data::[Integer]}data C = Integerok(x, z) = ok_CST(x,z) && nonAdj z (maxVar x)profit(x, z) = c' (data x) (m z) ((map_findMax.m) z)nonAdj z 0 = TruenonAdj z (i+1) =(selected z (i+1) ==> not (selected z i))&& nonAdj z ic' x z 0 = if selected z 0 then head x else 0c' x z (i+1) =let contrib =if selected z (i+1) then x!!(i+1) else 0in contrib + c' x z i
Figure 4. A specification of the MISS problem

the MISS problem. The key to making it efficient are good
definitions for the operatorsdominates, possible, tightenand
upperBound. Often, further optimizations such as context-
dependent simplification, finite differencing, and data struc-
ture selection have to be carried out before arriving at a final
efficient algorithm. With the exception of finite differencing,
these latter operations are not the focus of this paper. For de-
tails, please refer to one of the many detailed descriptionsof
the approach and other applications (e.g. (Smi90)). Each op-
erator has the effect of drastically reducing the search space,
until the combined effect of all the operators taken together
is a highly efficient functional program. In the rest of this
section, we will show how a developer can come up with
such definitions, by way of a running example.

4.1 Dominance Relations

A dominance relation provides a way of comparing two
spaces in order to show that one will always have a cheaper
best solution than the other. The first one is said todom-
inate the second, and the second can be eliminated from
the search. Dominance relations have been used in algo-
rithm development in operations research for a long time and
researchers from Baker [?] to Allahverdi et al. (ANCK08)
report that careful use of dominance relations can consid-
erably reduce the search space. Because dominance in its
most general form is difficult to demonstrate, we restrict our-
selves to demonstrating dominance between semi-congruent
spaces (explained below). To simplify the presentation, we
assume all spaces are reachable from the initial spaceẑ0

by a finite sequence of calls to mkSubspace. Letp∗(ẑ) be
the profit of the best solution in a spaceẑ. Finally ⊕ de-
notes adding a pair to a map and is defined asm ⊕ (x, a) ,
m−{(x, a′)}∪{(x, a)}. We also overload⊕ in ẑ⊕e to be a
solutionz for which z.f=̂z.f ∪ e.f (unless otherwise stated,
we will always be assumingdom(ẑ.f)∩dom(e.f) = ∅). e is
called anextensionandz thecompletionof ẑ. If z is feasible
(satisfiesok), thene is called a feasible extension.

4 2009/3/14

Definition 1. Semi-Congruenceis a relation ⊆ R2 such
that

∀z, z′, e ∈ R, ẑ, ẑ′ ∈ R̂ : ẑ ẑ′ ⇒ O(ẑ′⊕e) ⇒ O(ẑ⊕e)

That is, semi-congruence ensures that any feasible exten-
sion of ẑ′ is also a feasible extension ofẑ. In Haskell, is
writtensemi-congruent.

Definition 2. Given a profit functionp, Weak Dominanceis
a relationδ̂ ⊆ R2 such that

∀z, z′, e ∈ R, ẑ, ẑ′ ∈ R̂ :
ẑδẑ′ ⇒ O(ẑ ⊕ e) ∧ O(ẑ′ ⊕ e) ⇒ p(ẑ ⊕ e) ≥ p(ẑ′ ⊕ e)

That is, weak dominance ensures that one feasible com-
pletion of a partial solution is at least as beneficial as the
same feasible completion of another partial solution. The
following theorem and proposition show how to combine the
two concepts.

Theorem 3. If is a semi-congruence relation, and̂δ is a
weak dominance relation, then

∀ẑ, ẑ′ ∈ R : ẑδ̂ẑ′ ∧ ẑ ẑ′ ⇒ p∗(ẑ) ≥ p∗(ẑ′)

Proof. By contradiction. Suppose that̂zδ̂ẑ′ ∧ ẑ′ ẑ but
∃z′∗ ∈ ẑ′, O(z′∗) ∧ p(z′∗) > p∗(ẑ), that is p(z′∗) >

p(z) for any feasiblez ∈ ẑ . We can writez′∗ as ẑ′ + e

for somee. Sincez′∗ is more profitable than any feasible
z ∈ ẑ, specifically it is more profitable thanz = ẑ + e,
which by the semi-congruence assumption and Definition
1, is feasible. But by the weak dominance assumption, and
Definition 2, this meansp(z) ≥ p(z′∗), contradicting the
initial assumption.

When p∗(ẑ) ≥ p∗(ẑ′) we sayẑ dominateŝz′, written
ẑδẑ′.

We can also prove a useful property that applies to all
instances of CSOT. Note that in the following proposition we
assume we can apply the profit function to partial solutions.

Proposition 4. If p distributes over⊕ thenp(ẑ) ≥ p(ẑ′) is
a weak dominance relation

Proof. We will show that Definition 2 is satisfied

p(ẑ ⊕ e) ≥ p(ẑ′ ⊕ e)
= {p distributes over⊕}
p(ẑ) + p(e) ≥ p(ẑ′) + p(e)
= {algebra}
p(ẑ) ≥ p(ẑ′)

We now show how to calculate a very useful dominance
relation for MISS. First we calculate the required semi-
congruence condition betweenẑ and ẑ′ by using the

method of derived preconditions. Starting with the conclu-
sion of Def. 1, and working backwards

O(ẑ ⊕ e)
= {unfold defn, letL = #ẑ − 1, L′ = #ẑ′ − 1}
m_keys (m ẑ) + m_keys (m e) = [0..(maxV ar x)]
∧nonAdj(ẑ) ∧ nonAdj(e) ∧ (ẑL ⇒ ¬e0)
⇐ {m_keys (m ẑ′) + m_keys(m e) = [0..(maxV ar x)]
∧nonAdj(ẑ′) ∧ nonAdj(e) ∧ (ẑ′L ⇒ ¬e0)ie. O(ẑ′ ⊕ e)}

L = L′ ∧ nonAdj(ẑ) ∧ (¬ẑ′L ⇒ ¬ẑL)
= {simplification}
L = L′ ∧ nonAdj(ẑ) ∧ (ẑL ⇒ ẑ′L)

That is, in Haskell:semiCongruent(z_hat, z_hat') =let highest_var = (map_findMax.m) z_hat inhighest_var == (map_findMax.m) z_hat'&& nonAdj z_hat&& (selected z_hat highest_var==> selected z_hat' highest_var)
Sincep is a distributive profit function, by Proposition 4 the
definition for dominates follows immediately. Dominance
has the effect of reducing the complexity from exponential
to polynomial (see Theorem 5). However, the evaluation
of nonAdj still makes the algorithm nonlinear (quadratic).
The next section shows how propagation eliminates this
expensive computation.

4.2 Necessary Propagator (tighten)

Thetightenis calculated in the same way was calculated.
However, not all calculations are as obvious. Sometimes the
calculation requires a key insight, and deciding where to
start can be a bit challenging. To ease this process, we have
been investigating the use of tactics that not only package
up the insight in the form of a pattern but also bypass the
actual calculation through the use of pattern matching rules
(analogous in intent to pattern matching rules such as “in-
tegration by parts", “integration by change of variable", etc.
used in calculus for evaluating indefinite integrals). We have
described some of these tactics in (NSC09), where the fol-
lowing tactic was introduced:
If one of the conjuncts ofO matches the form∀j ∈ Ni. zi 6=
zj whereNi is some neighborhood of points aroundi then
a possibletightenis one in which the choice of values avail-
able to variablej excludes the value assigned to variablei.

For our problem, letNi be the left and right neighbors
of i (for 0 < i < #z − 1), i.e. i − 1 and i + 1, if zi

and{} otherwise. Then in the case wherezi holds, applying
the above tactic,tighten(ẑ) = ẑ{cs(i + 1) = cs(i + 1) −
{True}} which is justẑ{cs(i + 1) = {False}}. Since the
choice set reduces to a singleton, we can just set the value
directly for thei+1th place, and dispense withcs, as shown
in the definition fortighten in Algorithm 3.

5 2009/3/14

This propagator ensures that every partial solution auto-
matically satisfiesnonAdj so it need no longer be checked
in semi-congruent or in ok.

4.3 Necessary Filter (possible)

When the propagatortightenis very efficient it can eliminate
the need for a filter . That appears to be the case for this
example so we use the default definition we inherit from the
classGlobalSearchOpt.

4.4 Upper Bound Function (upperBound)

An upper bound is a value associated with a partial solu-
tion that puts an upper limit on the value of the best possi-
ble solution that can be obtained from that partial solution.
Bounds calculation is an integral part of branch-and-bound
algorithms. A good tactic for determining a bound is similar
to Tactic 1 for deriving apossiblein (NSC09): obtained by
combining the profit of the current partial solution with the
best possible values for the remaining variables. Applying
such a tactic gives us the following upper bound function:

upperBound(x, ẑ) = p(x, ẑ) +

#x.data∑

i=#bz

max(x.data(i), 0)

written in Haskell asprofit(x, z_hat)+ c' (drop (((map_findMax.m) z_hat)+1) (data x))(max 0) (maxVar x)
All operators combined

The table below shows the cumulative effect of the operators
on the size of the search space for the input[1..10]. The
“Operator Added” column refers to the introduction of a
non-default definition for the corresponding operator.

Operator Added # of nodes in search tree

None 2047
+ dominates 486

+ tighten 12
+ upperBound 12

As the table shows, dominance and propagation are sig-
nificant in eliminating large swathes of the search space.

4.5 Finite Differencing

Finite differencing is a program optimization technique due
to Paige and Koenig (PK82). Smith (Smi90) contains an ex-
tensive discussion of finite differencing and its use in KIDS.
The basic idea behind finite differencing is as follows. Sup-
pose a program fragment contains the following recursive
definition :f(x) = P(E(x), f(U(x)))
whereE(x) is some expression dependent onx, andU is
some update ofx (e.g.x+k). Finite differencing replaces the
definition with the following one

getValueOfVar z_hat v =fromJust (map_lookup v (m z_hat))type Map a b = [(a, b)]map_empty = []map_null xs = ([] == xs)map_lookup = lookupmap_insert x v m = ((x, v):m)map_keys = sort.(map fst)map_findMax = fst.headinfix 1 ==>(==>) :: Bool -> Bool -> Boolx ==> y = (not x) || y
Figure 5. Basic library functionsf(x, Ex) = P(Ex, f(U(x), E'(Ex, U(x))))

whereE' (Ex,U(x)) is a direct update of the expressionE of U(x) which is cheaper to compute thanE (U(x))
Typically if x is of some product typeT , the update ex-
pressionE’(x) is stored as an extra field of an augmented
type,T'= T × TE so f does not take any additional argu-
ments. Of course, all existing code that usesT will need to
be updated to useT’. Given an isomorphism fromT to T’
(and in inverse fromT’ to T), the Specware tool (S) from
Kestrel can automatically carry out the necessary program
modifications. Since we are using Haskell, we have imple-
mented the finite differencing transformations by hand. As
an example, consider the calculation of the profit functionprofit. The z_hat argument to the profit function changes
whenever there is an update (byupdateSpace) . So we ex-
tend the typeR to accomodate an extra field, accum:data R= R {m::Map Nat Dv, tbd::[Nat], accum:C}. Next
we changeupdateSpace(x, z_hat, var, val) fromz_hat{m = ..., tbd = ...} toz_hat{m = ..., tbd=..., accum = (accum z_hat) + (if val then (head(data z_hat)) else 0)}. Finally, the calculation ofc
is replaced byc(x, z_hat) = accum z_hat. The re-
sult of carrying out this and other finite differencing opti-
mizations is certain tests (likeok) reduce toTrue and can
be replaced with their defaults. The final set of definitions
shown in Algorithm 3.

The definitions rely on a set of library functions defined
in Fig. 5.

We refer to the combination of the abstract program for
GSO in Algorithm 1 with the above bindings in Algorithm 3
as Algorithm MISS.

Lemma 5. Algorithm MISS gives rise to a search tree of
width at most 2

Proof. By induction on the height of the search tree. Since
the mapm is numerically indexed in order, we will represent
the state of a partial solution as a list e.g.[FTF] denotes a

6 2009/3/14

Algorithm 3 Instantiation of typeclass methods to solve
MISSdata D = D{maxVar::Nat,vals::[Dv],data::[Integer]}type Dv = Booldata R = R {m::Map Nat Dv, tbd::[Nat],accum::C,sum_tbds::C,remain::[Integer]}deriving Showtype C = Integerselected = getValueOfVarcs _ = error "cs not defined"instance ConstraintSat D R Integer Dv wheremkSubspace(x, s, var, val) =

−−NB: Must always call the parent fnlet s' = mkSubspace_CST s var valvarth_elt = head (remain s)in s'{accum =accum s +(if val then varth_elt else 0),sum_tbds =(sum_tbds s) -if varth_elt > 0then varth_elt else 0,remain = tail (remain s)}semiCongruent(x, s, s') =let highest_var = (map_findMax.m) s inhighest_var == (map_findMax.m) s' &&selected s highest_var ==>selected s' highest_var)instance Eq R wheres' == s =(map_null (m s') && map_null (m s'))||let highest_var = map_findMax (m s)in highest_var == map_findMax (m s')instance GlobalSearchOpt D R Integer whereinitial(x) = R{m=map_empty, tbd=[0..(maxVar x)],accum=0, remain=data x,sum_tbds=sum $ (filter (0<))(data x)}precondition x = length (data x) == (maxVar x)+1tighten (x, s) =if (map_null (m s)) then selselet highest_var = map_findMax (m s)next_element = head (remain s) inif highest_var < (maxVar x) &&selected s highest_varthenmkSubspace(x,s,(highest_var+1),False)else sprofit(x, z) = accum zupperBound(x, s) = profit(x, s) + (sum_tbds s)initBound _ = 0dominates(x, s, s') =semiCongruent(x, s, s') &&profit(x, s) >= profit(x, s')

partial solution in which the variable 0 has the value False,
variable 1 is True, and variable 2 is False.

Base case: A tree of height 1. There are at most 2 possible
leaves: [F] and [T].

Inductive case: Assume the theorem holds for trees of
heighth. That is there are at most 2 frontier nodes at level
h. Each such node gives rise to at most 2 children. There-
fore, after a call to subspaces, there are 4 possible configu-
rations: [...FF], [..FT], [...TF], and [...TT]. [...TT] will never
be generated because oftighten. [...FF] and [...TF] are con-
gruent ([...FF] [...TF] ∧ [...TF] [...FF]), and since
our profit function produces a total order, one must domi-
nate the other. Therefore we are left with at most 2 children
again.

Theorem 6. Algorithm MISS runs in linear time

Proof. The height of the search tree is at mostn, the number
of elements in the input list. At each level, by Lemma 5 the
dominance testing examines at most 3 pairs. All user-defined
functions are constant time. Therefore, the running time of
the program isO(n).

The results of comparing the run-time (in seconds) of our
program with that generated by Sasano et al. on sequences of
randomly generated numbers of varying lengths is shown in
the table below. All times were obtained by compiling under
GHC 6.10.1 with full optimization and run on an Intel Dual
Core 1.66MHz machine.

Input Length Ours (s) Sasano et al. (s)

1000 0.00 0.00
10,000 0.12 0.14
20,000 0.22 0.28
40,000 0.43 0.72
80,000 0.75 1.8
100,000 1.1 2.8
200,000 2.2 8.9
400,000 4.6 stack overflow

As can be seen our program outperforms theirs by a
factor of two on inputs with length over 20,000. We attribute
this difference to our propagation step. Furthermore, it is
not obvious how to incorporate such an improvement into
their program transformation. We are not certain why their
program execution time suddenly spikes on large inputs.

5. Maximum Multi Marking Problem
(MMM)

While a constant factor improvement of our synthesized
code over transformation produced code is nice, we believe
the real benefit of our approach is the flexibility it pro-
vides over program transformation. For example, the pro-
gram transformation used in (SHT00) has some shortcom-
ings. It can only handle problems in which the value set is
binary, and the propertyp (equivalent to ourok) cannot in-
clude accumulating parameters. An example of where this

7 2009/3/14

requirement does not hold is a variation of MSS called the
Maximum Multi Marking problem which is similar to the
MISS problem except that instead of an element just being
included (+) or excluded (0) from the result list, it can also
be negated (-). The problem now is to find a result sublist
of elements in which no two adjacent elements in theresult
have the same sign (+/-/0). To handle the MMM problem,
in (SHT01), Sasano et al, introduce a much more compli-
cated program transform. In contrast, we need change noth-
ing in the theory or the supporting tools. The developer just
follows the same steps outlined earlier. In fact, the revised
definitions can be obtained by small modifications to what
was already done for MISS, as shown below. First, the prob-
lem specification is nowdata Dv = Pos | Neg | Zerodata D = D {maxVar::Nat, vals::[Dv], data::[Integer]}data C = Integerok(x, z) = o_CSOT(x, z) && nonAdj z (maxVar x)profit(x, z) = c' (data x) (m z) ((map_findMax.m) z)nonAdj z 0 = TruenonAdj z (i+1) =let ith_val = getValueOfVar z ii_plus_1th_val = getValueOfVar z (i+1)in i_plus_1th_val /= ith_val && nonAdj z ic' x z 0 = wt (x!!0)c' x z (i+1) = c' x z i + wt (x!!(i+1))wt s x = case s of Pos -> x | Neg -> -x | Zero -> 0
Next, the revised semi-congruence condition between̂z
andẑ′ calculated in a similar manner to that for MISS, is :

L == L′ ∧ nonAdj(ẑ) ∧ (ẑL = ẑ′L)

There does not appear to be any interesting tightener so
this time we just use the default from the typeclass.

Finally, we changeupperBound to reflect the fact that in
the best possible case a positive number will be un-negated,
and a negative number negated. Calculation yields:

upperBound(x, ẑ) = c(x, ẑ) +

#x.data∑

i=#bz

abs(x.data(i))

The final program instantiations, after finite differencing,
are shown in Algorithm 4. To make it easier to see what the
changes are we only show the functions which are different
from those in the MISS solution.

It can be shown that this program is linear-time by us-
ing a very similar idea to that used earlier (the width of the
tree will be slightly different but still constant) The results
of comparing the run-time (in seconds) of our program with
that generated by (SHT01) on sequences of randomly gen-
erated numbers of varying lengths is shown in the following
table.

Algorithm 4 Instantiation of typeclass methods to solve
MMMdata R = R {m::Map Nat Dv, tbd::[Nat], cs::[Dv],accum::C,sum_tbds::C,remain::[Integer]}deriving Showwt :: Dv -> Integer -> Integerwt Neg varth_elt = -varth_eltwt Zero _ = 0wt Pos varth_elt = varth_eltinstance ConstraintSat D R Integer Dv wheremkSubspace(x, s, var, val) =

−−NB: Must always call the parent fnlet s' = mkSubspace_CST s var valvarth_elt = head (remain s)highest_numbered_var_in_s = var-1in s'{cs = delete val (vals x),accum = (accum s)+ wt val varth_elt,sum_tbds = (sum_tbds s) - abs varth_eltremain = tail (remain s)}semiCongruent(x, s, s') =let highest_var = (map_findMax.m) s inhighest_var == (map_findMax.m) s' &&getValueOfVar s highest_var ==getValueOfVar s' highest_var)instance GlobalSearchOpt D R Integer whereinitial(x) = R{m=map_empty, tbd=[0..(maxVar x)],cs=(vals x), accum=0, remain=data x,sum_tbds=sum $ (filter (0<))(data x)}
Input Length Ours Sasano et al.

1000 0.02 0.02
10,000 0.14 0.36
20,000 0.42 0.89
40,000 0.86 2.91
80,000 1.66 9.67

Sasano’s program appears to exhibit non-linear behaviour,
but we are not certain why this is. In contrast, our synthe-
sized program maintains its linear behavior.

6. Maximum Alternating Segment Sum
Problem (MASS)

Even the more complex program transformation introduced
in (SHT01) still falls short – it requires the weight function
be in homomorphic form. An example of where this does
not hold occurs in a version of the MSS Sasano et al. call
the Maximum Alternating Segment Sum problem (MASS)
which is identical to the MSS except that the profit of a solu-
tion is evaluated by alternately negating elements, and sum-
ming. To handle this kind of problem, in (SOH05), Sasano et
al. introduced a revised transform and associated theory. On
the other hand, we again need change nothing, except for the

8 2009/3/14

developer to revise their previous derivations. The problem
specification is obviously different:data Dv = Booldata D = D {maxVar::Nat, vals::[Dv], data::[Integer]}data C = Integerok(x, z) = o_CSOT(x, z) && contig z (maxVar x)contig z 0 = Truecontig z (i+1) =(selected z (i+1) && (not (selected z i)) && i>0==> rest_unsel z (i-1))&& contig z irest_unsel z 0 = not (selected z 0)rest_unsel z (i+1) = not (selected z (i+1))&& rest_unsel z iprofit(x, z) =c' (select (FirstTrue (m z)) (LastTrue (m z))(data x)) Falsec' [] _ = 0c' (x:xs) False = x + c' xs Truec' (x:xs) True = -x + c' xs False

Next, the revised semi-congruence condition between
ẑ andẑ′ calculated in a similar manner to that for MISS, is
(again lettingL = #ẑ − 1) :

L == L′ ∧ contig(m(ẑ))L ∧ ẑL ∧ ẑ′L

The profit function,c, is no longer distributive over all̂z
ande , but we can calculate the necessary conditions under
which it does distribute, namelyeven(#ẑ) ⇔ even(#ẑ′)
which is implemented asflip_last_elt z_hat == flip_last_elt z_hat'
(seeAlgorithm 5). There does not appear to be any useful
propagator so again we just use the default we inherit from
the typeclass.

Finally,upperBound is as it was for MMM.
The final program instantiations, after finite differencing

of contig andc, are shown in Algorithm 5 . Due to space
limitations we only show the functions which are different
from those in the MISS solution. As before, it is possible
to show this algorithm is also linear-time using the same
technique was used for MISS

The results of comparing our synthesized program with
that generated by (SOH05) on a number of inputs of varying
length is shown in the following table.

Input Length Ours Sasano et al.

1,000 0.02 0.02
10,000 0.33 0.45
20,000 0.7 1.1
40,000 1.4 3.0
80,000 3.0 9.8
160,000 4.5 24

Algorithm 5 Abstract program instantiations for MASSdata R = R {m :: Map Nat Dv,tbd :: [Nat],seg_started :: Bool,seg_ended :: Bool,flip_last_elt :: Bool,accum :: C,sum_tbds :: C,remain :: [Integer]} deriving Showwt False _ _ = 0wt True True e = -ewt True False e = etoFlipOrNotToFlip s =(seg_started s) && not (flip_last_elt s)instance ConstraintSat D R Integer Dv wheremkSubspace(x, s, var, val) =let s' = mkSubspace_CSOT s var valvarth_elt = head (remain s)in s'{accum = (accum s)+ wt val (toFlipOrNotToFlip s) varth_elt,seg_started = seg_started s || val,seg_ended = seg_ended s|| (not val && seg_started s)tbd = if seg_ended s|| (not val && seg_started s)then [] else (tbd s')flip_last_elt = toFlipOrNotToFlip s,sum_tbds = sum_tbds s - abs varth_elt,remain = tail (remain s)}semiCongruent(s, s') =(let highest_numv = (map_findMax.m) s inhighest_numv == (map_findMax.m) s'&& getValueOf s highest_numv&& getValueOf s' highest_numv&& flip_last_elt s == flip_last_elt s')|| seg_ended s'instance GlobalSearchOpt D R Integer whereinitial(x) =R {m = map_empty,tbd = [0..(maxVar x)],seg_started = False,flip_last_elt = False,seg_ended = False,accum = 0,sum_tbds = sum $ (map abs) (data x),remain = data x}
9 2009/3/14

Again, Sasano et al.’s program appears to exhibit non-
linear behaviour but our synthesized program maintains its
linear behavior.

7. Related Work
Sasano et al. in (SHT00) have a comparison with related
work of Bird and de Moor (BM97), Jeuring (JP93), and oth-
ers. Many of the same arguments carry over to our work
so we will not repeat them here, except to mention that our
work, like that of Bird and de Moor involves program calcu-
lation at design time, as opposed to a meta-level calculation
of the program transformation itself. The difference is that
we do not require the developer to calculate the entire pro-
gram but only very specific operators. King and Launchbury
(KL95) describe an elegant way of constructing depth-first
graph search algorithms in Haskell. Our approach does not
rely on the laziness of Haskell or on depth-first but exposes
the relevant properties at the top level so they can be exam-
ined and alterered if necessary. Smith investigated a neces-
sary form of dominance in (Smi88) and also (Smi87) syn-
thesized a efficient 1-D and 2-D versions of MSS using a an
algorithm class called Divide and Conquer. We have found
the Global Search class to be more appropriate for the varia-
tions of MISS we have investigated

8. Conclusions
We have shown how to systematically synthesize fast so-
lutions to a number of variants of the MSS problem. Our
synthesized programs improve on the results of Sasano et
al. who use program transformation to arrive at their pro-
grams. Perhaps more importantly, we wish to claim that our
approach is simple enough to be used by a competent and
skilled developer and flexible enough that the same strategy
can be used with minor modifications to each of the vari-
ants of the problem. We have found dominance relations
to be extremely crucial to the efficiency of the final algo-
rithm. While bounds tests contribute important constant fac-
tor improvements, it is the dominance relation that reduces
the complexity from exponential to polynomial. Propagation
and finite differencing then further reduces it to linear. We
are currently developing a theory of greedy algorithms based
around dominance relations and hope to report on this work
in the future.

It could be argued in favor of program transformation
that a program transform is designed by a tool or library de-
signer, ie. someone other than the developer. From the devel-
oper’s point of view, the transformation of their specification
into an efficient program is automatic. But this rests on the
assumption that a suitable program transform is available,
which is not always the case. Program transforms work best
when they have the fewest number of conditions for their
applicability (e.g. the fusion transformation used in GHC).
Unfortunately, if the conditions for the transform are not sat-
isfied, then it cannot be applied - it is all or nothing. In order

to handle the new requirements, the program transform and
its associated theory needs to be reworked. Since the skill
and knowledge to do this is not generally with the developer
(by our starting assumption), this step becomes a bottleneck.
We prefer instead to start from a very general framework
and give the developers a set of techniques by which they
can construct and experiment with a variety of solutions to
their problems.

There is still room for improvement of dominance test-
ing in the abstract program. More efficient schemes are pos-
sible, in which finer-grained control over which spaces are
tested for semi-congruence, as well as better data structures
that speed up the search for possible semi-congruent spaces.
Also, for simplicity, represent a map as an association list
for them field in R. In reality, an Array or similarO(1) struc-
ture would be a better. Appropriate data structure refinement
would effect this improvement.

References
[ANCK08] A Allahverdi, C T Ng, T C E Cheng, and M K Ko-

valyov. A survey of scheduling problems with setup
times or costs. European J. of Operational Res.,
187:985–1032, 2008.

[Bir89] R. S. Bird. Algebraic identities for program calcula-
tion. Comput. J., 32(2):122–126, 1989.

[BM97] Richard Bird and Oege De Moor.Algebra of program-
ming. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1997.

[Dec03] R Dechter.Constraint Processing. Morgan Kauffman,
2003.

[Iba77] T. Ibaraki. The power of dominance relations in
branch-and-bound algorithms.J. ACM, 24(2):264–
279, 1977.

[JP93] D. J. T. Jeuring and T. O. Pekela. Theories for algo-
rithm calculation. Technical report, 1993.

[KL95] David J. King and John Launchbury. Structuring
depth-first search algorithms in haskell. pages 344–
354. ACM Press, 1995.

[Mu08] Shin-Cheng Mu. Maximum segment sum is back:
deriving algorithms for two segment problems with
bounded lengths. InPEPM ’08, pages 31–39. ACM,
2008.

[NSC09] S Nedunuri, D R Smith, and W Cook. Tactical synthe-
sis of global search algorithms. InSubmitted To: Proc.
NASA Symposium on Formal Methods, 2009.

[PK82] R. Paige and S. Koenig. Finite differencing of com-
putable expressions.ACM TOPLAS, 4(3):402–454,
1982.

[S] Specware. http://www.specware.org.

[SHT00] Isao Sasano, Zhenjiang Hu, and Masato Takeichi.
Make it practical: A generic linear-time algorithm for
solving maximum-weightsum problems. InProc. Intl.
Conf. on Functional Prog.(ICFP), 2000.

10 2009/3/14

[SHT01] Isao Sasano, Zhenjiang Hu, and Masato Takeichi. Gen-
eration of efficient programs for solving maximum
multi-marking problems. InProc. 2nd Intl. SAIG
Workshop, 2001.

[SL90] D. R. Smith and M. R. Lowry. Algorithm theories and
design tactics.Sci. Comput. Program., 14(2-3):305–
321, 1990.

[Smi87] Douglas R. Smith. Applications of a strategy for de-
signing divide-and-conquer algorithms.Sci. Comput.
Program., 8(3):213–229, 1987.

[Smi88] D R Smith. Structure and design of global search
algorithms. Technical Report Kes.U.87.12, Kestrel
Institute, 1988.

[Smi90] D R Smith. Kids: A semi-automatic program develop-
ment system.IEEE Trans. on Soft. Eng., Spec. Issue on
Formal Methods, 16(9):1024–1043, September 1990.

[SOH05] Isao Sasano, Mizuhito Ogawa, and Zhenjiang Hu.
Maximum marking problems with accumulative
weight functions. InProc. ICTAC. Springer-Verlag,
2005.

[SPW95] Douglas R. Smith, Eduardo A. Parra, and Stephen J.
Westfold. Synthesis of high-performance transporta-
tion schedulers. Technical report, Kestrel Institute,
1995.

11 2009/3/14

