
Theorem Proving for Product Lines

Benjamin Delaware William Cook Don Batory
Department of Computer Science

University of Texas at Austin
{bendy,wcook,batory}@cs.utexas.edu

Abstract
Mechanized proof assistants are powerful verification tools,
but proof developments can still be difficult and time-
consuming. When verifying a family of related programs,
the effort can be reduced by proof reuse. In this paper, we
show how to engineer proofs for product lines built from fea-
ture modules. Each module contains proof fragments which
are composed together to build a complete proof of correct-
ness for each product. We consider a product line of pro-
gramming languages, where each variant includes metathe-
ory proofs verifying the correctness of its syntax and se-
mantic definitions. This approach has been realized in the
Coq proof assistant, with the proofs of each feature indepen-
dently certifiable by Coq. These proofs are composed for
each language variant, with Coq mechanically verifying that
the composite proofs are correct. As validation, we formal-
ize a core calculus for Java in Coq which can be extended
with any combination of casts, interfaces, or generics.

1. Introduction
Mechanized theorem proving is hard: large-scale proof de-
velopments [12, 15] take multiple person-years and consist
of tens of thousand lines of proof scripts. Given the effort in-
vested in formal verification, it is desirable to reuse as much
of the formalization as possible when developing similiar
proofs. The problem is compounded when verifying mem-
bers of a product line – a family of related systems [1, 4] –
in which the prospect of developing and maintaining indi-
vidual proofs for each member is untenable.

Product lines can be decomposed into features – units
of functionality. By selecting and composing different fea-
tures, members of a product line can be synthesized. The
challenge of feature modules is that their contents cut across
normal object-oriented boundaries [4, 24]. The same holds

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c⃝ ACM [to be supplied]. . . $10.00

for proofs. Feature modularization of proofs is an open, fun-
damental, and challenging problem.

Surprisingly, the programming language literature is re-
plete with examples of product lines which include proofs.
These product lines typically only have two members, con-
sisting of a core language such as Featherweight Java
(FJ) [13], and an updated one with modified syntax, seman-
tics, and proofs of correctness. Indeed, the original FJ paper
also presents Featherweight Generic Java (FGJ), a modified
version of FJ with support for generics. An integral part of
any type system are the metatheoretic proofs showing type
soundness – a guarantee that the desired run-time behav-
ior of a language, typically preservation and progress [23],
is statically enforced by the type system. As languages be-
come more realistic, the number of features grows, as does
the set of possible variants that can be built.

Typically, each research paper only adds a single new fea-
ture to a core calculus, and this is accomplished manually.
Reuse of existing syntax, semantics, and proofs is achieved
by copying existing rules, and in the case of proofs, fol-
lowing the structure of the original proof with appropriate
updates. As more features are added, this manual process
grows increasingly cumbersome and error prone. Further,
the enhanced languages become more difficult to maintain.
Adding a feature requires changes that cut across the normal
structural boundaries of a language – its syntax, operational
semantics, and type system. Each change requires arduously
rechecking existing proofs by hand.

Using theorem provers to mechanically formalize lan-
guages and their metatheory provides an interesting testbed
for studying the modularization of product lines which in-
clude proofs. By implementing an extension in the proof as-
sistant as a feature module, which includes updates to ex-
isting definitions and proofs, we can compose feature mod-
ules to build a completely mechanized definition of an en-
hanced language, with the proofs mechanically checked by
the theorem prover. Stepwise development is enabled, and it
is possible to start with a core language and add features to
progressively build a family or product line of more detailed
languages with tool support and less difficulty.

In this paper, we present a methodology for feature-
oriented development of a language using a variant of FJ

FJ Expression Syntax FGJ Expression Syntax

e ::= x

| e.f

| e.m (e)

| new C(e)

| (C) e

Z⇒ e ::= x

| e.f

| e.m ⟨T⟩ β (e)

| new C ⟨T⟩ β (e)

| (C ⟨T⟩ β) e

FJ Subtyping T <: T FGJ Subtyping ∆ δ ⊢ T <: T

S<:T T<:V

S<:V
(S-TRANS)

T<:T (S-REFL)

class C extends D {. . .}
C<:D

(S-DIR)

Z⇒
∆ ⊢ X<:∆(X) (GS-VAR) α

∆ δ ⊢S<:T ∆ δ ⊢T<:V
∆ δ ⊢S<:V

(GS-TRANS)

∆ δ ⊢T<:T (GS-REFL)

class C ⟨X ◃ N⟩
β
extends D ⟨V⟩

β
{. . .}

∆
δ
⊢ C ⟨T⟩

β
<: [T/X]

η
D ⟨V⟩

β
(GS-DIR)

FJ New Typing Γ ⊢ e : T FGJ New Typing ∆; δΓ ⊢ e : T

fields(C) = D f Γ ⊢ e : C C<:D

Γ ⊢ new C(e) : C
(T-NEW) Z⇒ ∆ ⊢ C⟨T⟩

γ
fields(C ⟨T⟩ β) = V f

∆;
δ
Γ ⊢ e : U ∆

δ
⊢ U<:V

∆;
δ
Γ ⊢ new C ⟨T⟩

β
(e) : C

(GT-NEW)

Figure 1: Selected FJ Definitions with FGJ Changes Highlighted

as a example. We implement feature modules in Coq [7]
and demonstrate how to build mechanized proofs that can
adapt to new extensions. Each module is a separate Coq file
which includes inductive definitions formalizing a language
and proofs over those definitions. A feature’s proofs can
be independently checked by Coq, with no need to recheck
existing proofs after composition. We validate our approach
through the development of a family of feature-enriched lan-
guages, culminating in a generic version of FJ with generic
interfaces. Though our work is geared toward mechanized
metatheory in Coq, the techniques should apply to different
formalizations in other higher-order proof assistants.

2. Background
2.1 On the Importance of Engineering
Architecting product lines (sets of similar programs) has
long existed in the software engineering community [17, 22].
So too is achieving object-oriented code reuse in this con-
text [25, 28]. The essence of reusable designs – be they
code or proofs – is engineering. There is no magic bullet,
but rather a careful trade-off between flexibility and special-
ization. A spectrum of common changes must be explicitly
anticipated in the construction of a feature and its interface.

This is no different from using abstract classes and interfaces
in the design of OO frameworks [6]. The plug-compatibility
of features is not an after-thought but is essential to their
design and implementation, allowing the easy integration of
new features as long as they satisfy the assumptions of ex-
isting features. Of course, unanticipated features do arise,
requiring a refactoring of existing modules. Again, this is
no different than typical software development. Exactly the
same ideas hold for modularizing proofs. It is against this
backdrop that we motivate our work.

2.2 A Motivating Example
Consider adding generics to the calculus of FJ [13] to pro-
duce the FGJ calculus. The required changes are woven
throughout the syntax and semantics of FJ. The left-hand
column of Figure 1 presents a subset of the syntax of FJ, the
rules which formalize the subtyping relation that establish
the inheritance hierarchy, and the typing rule that ensures
expressions for object creation are well-formed. The corre-
sponding definitions for FGJ are in the right-hand column.

The categories of changes are tagged in Figure 1 with
Greek letters:

FJ Fields of a Supertype Lemma FGJ Fields of a Supertype Lemma
LEMMA 2.1. If S<:T and fields(T) = T f, then
fields(S) = S g and Si = Ti and gi = fi for all
i ≤ #(f).

LEMMA 2.2. If ∆ δ ⊢ S<:T and fields(bound∆(T)))
η

= T f, then fields(bound∆(S)))
η = S g, Si = Ti and

gi = fi for all i ≤ #(f).

Proof. By induction on the derivation of S<:T Proof. By induction on the derivation of ∆ δ ⊢ S<:T

Case GS-VAR α S = X and T = ∆(X).
Follows immediately from the fact that bound∆(∆(X)) =

∆(X) by the definition of bound.
Case S-REFL S = T. Case GS-REFL S = T.

Follows immediately. Follows immediately.
Case S-TRANS S<:V and V<:T. Case GS-TRANS ∆ δ ⊢ S<:V and ∆ δ ⊢ V<:T.

By the inductive hypothesis, fields(V) = V h and
Vi = Ti and hi = fi for all i ≤ #(f). Again applying
the inductive hypothesis, fields(S) = S g and Si = Vi
and gi = hi for all i ≤ #(h). Since #(f) ≤ #(h), the
conclusion is immediate.

By the inductive hypothesis, fields(bound∆(T))) η =

V h and Vi = Ti and hi = fi for all i ≤ #(f). Again applying
the inductive hypothesis, fields(bound∆(V))) η = S g and
Si = Vi and gi = hi for all i ≤ #(h). Since #(f) ≤ #(h),
the conclusion is immediate.

Case S-DIR S = C, T = D, Case GS-DIR S = C ⟨T⟩ β ,

class C extends D {S g; . . .}. T = [T/X] ηD ⟨V⟩ β ,
class C⟨X ▹ N⟩ extends D⟨V⟩ {S g; . . .}.By the rule F-CLASS, fields(C) = T f; S g, where

T f = fields(D), from which the conclusion is immedi-
ate.

By the rule F-CLASS, fields(C ⟨T⟩ β) = U f; [T/X] ηS g,

where U f = fields([T/X] η D ⟨V⟩ β).

By definition, bound∆(V) = V for all non-variable types V η ,
from which the conclusion is immediate.

Figure 2: An Example FJ Proof with FGJ Changes Highlighted

α. Adding new rules or pieces of syntax. FGJ adds type vari-
ables to parameterize classes and methods. The subtyping
relation adds the GS-VAR rule to handle this new kind of
type.

β. Modifying existing syntax. FGJ adds type parameters to
method calls, object creation and casts, as well as class
definitions.

γ. Adding new premises to existing typing rules to handle
modified syntax. The updated GT-NEW rule includes a
new premise requiring that the type of a new object must
be well-formed.

δ. Extending judgment signatures. The added rule GS-VAR
looks up the bound of a type variable using a typing
context, ∆. This context must be added to the signature
of the subtyping relation, transforming all occurrences to
a new ternary relation.

η. Modifying premises and conclusions in existing rules.
The type parameters used for the parent class D in a class
definition are instantiated with the parameters used for
the child in the conclusion of GS-DIR.

In addition to syntax and semantics, the definitions of
FJ and FGJ include proofs of progress and preservation for
their type systems. With each change to a definition, these
proofs must also be updated. As with the changes to defi-
nitions in Figure 1, these changes are threaded throughout
existing proofs. Consider the related proofs in Figure 2 of
a lemma used in the proof of progress for both languages.
These lemmas are used in the same place in the proof of
progress and are structurally similar, proceeding by induc-
tion on the derivation of the subtyping judgment. The proof
for FGJ has been adapted to reflect the changes that were
made to its definitions. These changes are highlighted in Fig-
ure 2 and marked with the kind of definitional change that
triggered the update. Throughout the lemma, the signature
of the subtyping judgment has been altered include a context
for type variables δ . The statement of the lemma now uses
the auxiliary bound function, due to a modification to the
premises of the typing rule for field lookupη. These changes
are not simply syntactic: both affect the applications of the
inductive hypothesis in the GS-TRANS case. The proof now
includes a case for the added GS-VAR subtyping ruleα. The
case for GS-DIR requires the most drastic change, as the ex-

isting proof for that case is modified to include an additional
statement about the behavior of bound.

As more features are added to a language, its metatheo-
retic proofs of correctness grow in size and complexity. In
addition, each different selection of features produces a new
language with its own syntax, type system, operational se-
mantics. While the proof of type safety is structurally sim-
ilar for each language, (potentially subtle) changes occur
throughout the proof depending on the features included.
By modularizing the type safety proof into distinct features,
each language variant is able to build its type safety proof
from a common set of proofs. There is no need to manually
maintain separate proofs for each language variant. As we
shall see, this allows us to add new features to an existing
language in a structured way, exploiting existing proofs to
build more feature-rich languages.

We demonstrate in the following sections how each kind
of extension to a language’s syntax and semantics outlined
above requires a structural change to a proof. Base proofs
can be updated by filling in the pieces required by these
changes, enabling reuse of potentially complex proofs for
a number of different features. Further, we demonstrate how
this modularization can be achieved using the Coq proof as-
sistant. In our approach, each feature has a set of assump-
tions that serve as extension points, allowing a feature’s
proofs to be checked independently. As long as an extension
provides the necessary proofs to satisfy these assumptions,
the composite proof is guaranteed to hold for any composed
language. Generating proofs for a composed language is thus
a straightforward check that all dependencies are satisfied,
with no need to recheck existing proofs.

3. The Structure of Features
Features impose a mathematical structure on the universe of
programming languages (including type systems and proofs
of correctness) that are to be synthesized. In this section, we
review concepts that are essential to our work.

3.1 Features and Feature Compositions
We start with a base language or base feature to which
extensions are added. It is modeled as a constant or zero-
ary function. For our study, the core Featherweight Java
cFJ language is a cast-free variant of FJ. (This omission
is not without precedent, as other core calculi for Java [27]
omit casts). There are also optional features, which are unary
functions, that extend the base or other features:

cFJ core Featherweight Java
Cast adds casts to expressions
Interface adds interfaces
Generic adds type parameters

Assuming no feature interactions, features are composed
by function composition. Each expression corresponds to a

composite feature or a distinct language. Composing Cast

with cFJ builds the original version of FJ:

cFJ // Core Featherweight Java

Cast · cFJ // Original FJ with Casts [13]

Interface · cFJ // Core FJ with Interfaces

Interface · Cast · cFJ // Original FJ with Interfaces

Generic · cFJ // Core Featherweight Generic Java

Generic · Cast · cFJ // Original FGJ

Generic · Interface · cFJ // core Generic FJ with

// Generic Interfaces

Generic · Interface // FGJ with

· Cast · cFJ // Generic Interfaces

3.2 Feature Models
Not all compositions of featues are meaningful. Some fea-
tures require the presence or absence of other features. An
if statement, for example, requires a feature that introduces
some notion of booleans to use in test conditions. Feature
models define the compositions of features that produce
meaningful languages. A feature model is a context sensitive
grammar, consisting of a context free grammar whose sen-
tences define a superset of all legal feature expressions, and
a set of constraints (the context sensitive part) that eliminates
nonsensical sentences [5]. The grammar of feature model P
(below) defines eight sentences (features k, i, j are optional;
b is mandatory). Contraints limit legal sentences to those that
have at least one optional feature, and if feature k is selected,
so too must j.

P : [k] [i] [j] b; // context free grammar

k ∨ j ∨ i; // additional constraints

k ⇒ j;

Given a sentence of a feature model (‘kjb’) a dot-product
is taken of its terms to map it to an expression (k · j · b).
A language is synthesized by evaluating the expression. The
feature model L that used in our study is context free:

L : [Generic] [Interface] [Cast] cFJ;

3.3 Multiple Representations of Languages
Every base language (cFJ) has multiple representations:
its syntax scFJ , operational semantics ocFJ , type system
tcFJ , and metatheory proofs pcFJ . A base language is a
tuple of representations cFJ = [scFJ , ocFJ , tcFJ , pcFJ].
An optional feature i extends each representation: the lan-
guage’s syntax is extended with new productions △si,
its operational semantics are extended by modifying ex-
isting rules and adding new rules to handle the updated
syntax △oi, etc. Each of these changes is modeled by
a unary function. Feature i is a tuple of such functions
i = [△si,△oi,△ti,△pi] that update each representation
of a language.

The representations of a language are computed by com-
posing tuples element-wise. The tuple of language FJ =
Cast · cFJ is:

FJ = Cast · cFJ
= [△sC ,△oC ,△tC ,△pC] · [sFJ , oFJ , tFJ , pFJ]
= [△sC · sFJ ,△oC · oFJ ,△tC · tFJ ,△pC · pFJ]

That is, the syntax of FJ is the syntax of the base sFJ

composed with extension △sC , the semantics of FJ are the
base semantics oFJ composed with extension △oC , and so
on. In this way, all parts of a language are updated lock-step
when features are composed. See [4, 11] for generalizations
of these ideas.

3.4 Feature Interactions
Feature interactions are ubiquitous. Consider the Interface
feature which introduces syntax for interface declarations:

J ::= interface I {Mty}

This declaration may be changed by other features. When
Generic is added, the syntax of an interface declaration
must be updated to include type parameters:

J ::= interface I ⟨X ◃ N⟩ {Mty}

Similarly, any proofs in Generic that induct over the deriva-
tion of the subtyping judgement must add new cases for
the subtyping rule introduced by the Interface feature.
Such proof updates are necessary only when both fea-
tures are present. The set of changes made across all rep-
resentations is the interaction of these features, written
Generic#Interface.1

Until now, features were composed by only one operation
(dot or ·). Now we introduce two additional operations:
product (×) and interaction (#). When designers want a set
of features, they really want the ×-product of these features,
which includes the dot-product of these features and their
interactions. The ×-product of features f and g is:

f× g = (f#g) · f · g (1)

where # distributes over dot and # takes precedence over
dot:

f#(g · h) = (f#g) · (f#h) (2)

1 Our Generic#Interface example is isomorphic to the classical exam-
ple of fire and flood control [14]. Let b denote the design of a building. The
flood control feature adds water sensors to every floor of b. If standing wa-
ter is detected, the water main to b is turned off. The fire control feature
adds fire sensors to every floor of b. If fire is detected, sprinklers are turned
on. Adding flood or fire control to the building (e.g. flood ·b and fire ·b)
is straightforward. However, adding both (flood · fire · b) is problematic:
if fire is detected, the sprinklers turn on, standing water is detected, the wa-
ter main is turned off, and the building burns down. This is not the intended
semantics of the composition of the flood, fire, and b features. The fix
is to apply an additional extension, labeled flood#fire, which is the in-
teraction of flood and fire. flood#fire represents the changes (exten-
sion) that is needed to make the flood and fire features work correctly
together. The correct building design is flood#fire · flood · fire · b.

That is, the interaction of a feature with a dot-product is the
dot-product of their interactions. × is right-associative and
is associative and commutative.2

The connection of × and # to prior discussions is sim-
ple. A sentence of a feature model (‘kjb’) is mapped to an
expression by a ×-product of its terms (k×j×b). Equations
(1) and (2) are used to reduce an expression with × opera-
tions to an expression with only dot and #, as below:

p = k× j× b // def of p

= k× (j#b · j · b) // (1)

= k#(j#b · j · b) · k · (j#b · j · b) // (1)

= k#j#b · k#j · k#b · k · j#b · j · b // (2) (4)

Language p is synthesized by evaluating expression (4).
Interpreting modules for individual features like k, j, and b

as 1-way feature interactions (where k#j denotes a 2-way
interaction and k#j#b is 3-way), the universe of modules
in a feature-oriented construction are exclusively those of
feature interactions.

An ×-product of n features results in 2n interactions (i.e.
all possible feature combinations). Fortunately, the vast ma-
jority of feature interactions are empty, meaning that they
correspond to the identity transformation 1, whose proper-
ties are:

1 · f = f · 1 = f (3)

Most non-empty interactions are pairwise (2-way). Occa-
sionally higher-order interactions arise. The ×-product of
cFJ, Interface, and Generic is:

Generic× Interface× cFJ

= Generic#Interface#cFJ · Generic#Interface

· Generic#cFJ · Generic · Interface#cFJ

· Interface · cFJ
= Generic#Interface · Generic · Interface · cFJ

which means that all 2- and 3-way interactions, except
Generic#Interface, equal 1. In our case study, the com-
plete set of interaction modules that are not equal to 1 is:

Module Description
cFJ core Featherweight Java
Cast cast

Interface interfaces
Generic generics

Generic#Interface generic and interface interactions
Generic#Cast generic and interface interactions

Each of these interaction modules is represented by a tuple
of definitions or a tuple of changes to these definitions.

2 A more general algebra has operations ×, #, and · that are all associative
and commutative [3]. This generality is not needed for this paper.

4. Our Approach
We design features to be monotonic: what was true before
a feature is added remains valid after composition, although
the scope of validity may be qualified. This is standard in
feature-based designs, as it simplifies reasoning with fea-
tures [1].

All representations of a language (syntax, operational se-
mantics, type system, proofs) are written in distinct lan-
guages. Language syntax uses BNF, operational semantics
and type systems use standard rule notations, and metatheo-
retic proofs are formal proofs in Coq.

Despite these different representations, there are only two
kinds of changes that a feature makes to a document: new
definitions can be added and existing definitions can be mod-
ified. Addition is just the union of definitions. Modification
requires definitions to be engineered for change.

In the following sections, we explain how to accomplish
addition and modification. We alert readers that our tech-
niques for extending language syntax are identical to ex-
tension techniques for the other representations. The critical
contribution of our approach is how we guarantee the cor-
rectness of composed proofs, the topic of Section 4.5.

4.1 Language Syntax
We use BNF to express language syntax. Figure 3a shows
the BNF for expressions in cFJ, Figure 3b the production
that the Cast feature adds to cFJ’s BNF, and Figure 3c
the composition (union) of these productions, that defines
the expression grammar of the FJ = Cast · cFJ language
(Figure 1).

E : (C) E ;

(b)

E : x

| E.f
| E.m(E)
| new C(E) ;

E : x

| E.f
| E.m(E)
| new C(E)
| (C) E ;

(a) (c)

Figure 3: Union of Grammars

Modifying existing productions requires foresight to an-
ticipate how productions may be changed by other features.
(This is no different from object-oriented refactorings that
prepare source code for extensions – visitors, frameworks,
strategies, etc. – as discussed in Section 2.) Consider the
impact of adding the Generics feature to cFJ and Cast:
type parameters must be added to the expression syntax
of method calls and class types now have type parameters.
What we do is to insert variation points (VP), a standard con-
cept in product line designs, to allow new syntax to appear
in a production. For syntax rules, a VP is simply the name of
an (initially) empty production.

Figure 4a-b shows the VPs TPm added to method calls in
the cFJ expression grammar and TPt added to class types in
the cFJ and Cast expression grammars. Figure 4c shows the
composition (union) of the revised Cast and cFJ expression
grammars. Since TPm and TPt are empty, Figure 4c can be
simplified to the grammar in Figure 3c.

E : x

| E.f

| TPm E.m (E)

| new (TPt C) (E);

TPm : ϵ;
TPt : ϵ;

(a)

E : (TPt C) E;

(b)

E : x

| E.f

| TPm E.m (E)

| new (TPt C) (E)

| (TPt C) E;

TPm : ϵ;
TPt : ϵ;

(c)

Figure 4: Modification of Grammars

Now consider the changes that Generics makes to ex-
pression syntax: it redefines TPm and TPt to be lists of type
parameters, thereby updating all productions that reference
these VPs. Figure 5a shows this definition. Figure 5b shows
the productions of Figure 4c with these productions inlined,
building the expression grammar for Generic · Cast · cFJ.

TPm : ⟨T⟩;
TPt : ⟨T⟩;

E : x

| E.f
| ⟨T⟩ E.m (E)
| new (⟨T⟩ C) (E)
| (⟨T⟩ C) E ;

(a) (b)

Figure 5: The Effect of Adding Generics to Expressions

Replacing an empty production with a non-empty one
is a standard programming practice in frameworks (e.g.
EJB [18]). Framework hook methods are initially empty and
users can override them with a definition that is specific to
their context. We do the same here.

These are simple and intuitively appealing techniques for
defining and composing language extensions. As readers
will see, these same ideas apply to rules and proofs as well.

4.2 Reduction and Typing Rules
The judgments that form the operational semantics and type
system of a language are defined by rules. Figure 6a shows
the typing rules for cFJ expressions, Figure 6b the rule
that the Cast feature adds, and Figure 6c the composition
(union) of these rules, defining the typing rules for FJ.

Modifying existing rules is analogous to language syn-
tax. There are three kinds of VPs for rules: (a) predicates
that extend the premise of a rule, (b) relational holes which

fields(C) = V f

Γ ⊢ e : U U<:V

Γ ⊢ new C(e) : C
(T-NEW)

...

(a)

Γ ⊢ e0 : D D<:C

Γ ⊢ e0 : C
(T-UCAST)
(b)

fields(C) = V f

Γ ⊢ e : U U<:V

Γ ⊢ new C(e) : C
(T-NEW)

...
Γ ⊢ e0 : D D<:C

Γ ⊢ e0 : C
(T-UCAST)

(c)

Figure 6: Union of Typing Rules

extend a judgement’s signature, and (c) functions that trans-
form existing premises and conclusions. Predicate and rela-
tional holes are empty by default. The identity function is
the default for functions. This applies to both the reduction
rules that define a language’s operational semantics and the
typing rules that define its type system.

To build the typing rules for FGJ, the Generic feature
adds non-empty definitions for the WFc(D, TPt C) predicate
and for the D relational hole in the cFJ expression grammar.
(Compare Figure 6a to its extension in Figure 7a). Figure 7b
shows the non-empty definitions for these VPs introduced
by the Generic feature, with Figure 7c showing the T-NEW
rule with these definitions inlined.

WFc(D, TPt C)

fields(TPt C) = V f

D; Γ ⊢ e : U

D ⊢ U<:V

D; Γ⊢ new(TPt C)(e) : TPt C
(T-NEW)

T
WFc(ϵ, C, ϵ)

D := ϵ
...

(a)

∆ ⊢ ⟨T⟩C ok
WFc(∆, ⟨T⟩ C)

D := ∆

(b)

∆ ⊢ ⟨T⟩C ok
fields(⟨T⟩C) = V f

∆;Γ ⊢ e : U
∆ ⊢ U<:V

∆;Γ ⊢ new(⟨T⟩C)(e) :⟨T⟩C
(GT-NEW)
...

(c)

Figure 7: Building Generic Typing Rules

4.3 Implementing Feature Modules in Coq
The syntax, operational semantics, and typing rules of a lan-
guage are embedded in Coq as standard inductive data types.
The metatheoretic proofs of a language are then written over
these encodings. Figure 8a-b gives the Coq definitions for
the syntax of Figure 3a and the typing rules of Figure 7a. A

feature module in Coq is realized as a Coq file containing
its definitions and proofs. The target language is itself a Coq
file which combines the definitions and proofs from a set of
Coq feature modules. The appendix includes more details on
feature composition in Coq.

Definition TP m := unit.

Definition TP t := unit.

Inductive C : Set :=

| ty : TP t → Name → E.

Inductive E : Set :=

| e var : Var → E

| fd access : E → F → E

| m call : TP m → E → M → List E → E

| new : C → List E → E.

(a)
Definition Context := Var Context.

Definition WF c (gamma : Context)(c : C):= True.

Inductive Exp WF : Context → E → Ty → Prop :=

| T New : forall gamma c us tp d fds es,

WF c gamma (ty tp c) →
fields (ty tp c) d fds →
Exps WF gamma es us →
subtypes gamma us d fds →
Exp WF gamma (new (ty tp c) es) (ty tp c).
...

(b)

Figure 8: Coq Encoding of Fig. 3a and Fig. 7a.

As shown in Figure 8, each feature includes the default
definitions for its variation points. When composed with fea-
tures that provide new definitions for a variation point, these
definitions are updated for the target language. In the case of
syntax, the final definition of a VP is the juxtaposition of the
definitions from each of the features. For abstract predicates,
the target predicate is the conjuction of all the VPs. The Coq
encoding of expressions the Cast, and Generic features and
the result of their composition with cFJ is given in Figure 9.

OO frameworks are implemented using inheritance and
mixin layers [2], techniques that are not available in most
proof assistants. To support case extension and VPs, our Coq
feature modules rely on the parameterization mechanisms of
the Coq theorem prover. To take the union of syntax, reduc-
tion and typing rules, feature modules are parameterized by
the final set of rules. This parameter is used for subterms,
leaving the recursion in inductive definitions open. This al-
lows a feature’s definitions to use any term from the final
language as a subterm. To close the inductive loop, the tar-
get language instantiates this parameter with the data type
defining the target syntax. Similarly, the VPs in each module
are explicitly represented as abstract sets/predicates/func-
tions that are instantiated by the final language. See the Ap-
pendix for a complete example.

Inductive E : Set :=

| cast : C → E → E.

Cast
Definition TP m := list Type.

Definition TP t := list Type.

Generic
Definition TP m := (list Type, unit).

Definition TP t := (list Type, unit).

Inductive C : Set :=

| ty : TP t → Name → E.

Inductive E : Set :=

| e var : Var → E

| fd access : E → F → E

| m call : TP m → E → M → List E → E

| new : C → List E → E

| cast : C → E → E.

cFJ · Cast · Generic

Figure 9: Coq Encoding of Fig. 3a and Fig. 6a.

4.4 Theorem Statements
Variation points can appear in the statements of lemmas
and theorems, enabling the construction of extensible proofs.
Consider the lemma in Figure 10 with its seven VPs.

TPt : VP for Class Types
TPm : VP for Method Call Expression
µ : VP for Method Types
D : Relational Hole for Typing Rules
WFmc(D, µ, TPm) : Predicate for T-INVK
WFne(D, TPt C) : Predicate for T-NEW
ΦM(TPm, µ, T) : Transformation for Return Types

LEMMA 4.1 (Well-Formed MBody). If
mtype(m, TPt C) = µ V → V, and WFmc(D, µ, TPm)
with mbody(TP1, m, TPt C) = x.e, where
WFne(D, TPt C), then there exists some N and S

such that D ⊢ TPt C<:N and D ⊢ S<:ΦM(TPm, µ, V) and
D; x : ΦM(TPm, µ, V), this : N ⊢ e : S.

Figure 10: VPs in a Parameterized Lemma Statement

Different instantiations of VPs produce variations of the
original productions and rules, with the lemma adapting
accordingly. Figure 11 shows the VP instantiations and the
corresponding statement for both cFJ and FGJ (ϵ stands for
empty in the cFJ case) with those instantiations inlined for
clarity. Predicates that are always true are dropped from the
definition.

Without an accompanying proof, extensible theorem
statements are uninteresting. Ideally, a proof should adapt
to any VP instantiation or case introduction, allowing the
proof to be reused in any target language variant. Of course,
proofs must rule out broken extensions which do not guar-
antee progress and preservation, and admit only “correct”

new cases or VP instantiations. This is the key challenge in
crafting modular proofs.

4.5 Crafting Modular Proofs
Rather than writing multiple related proofs, we want to cre-
ate a single proof for a generic statement of a theorem. The
proof is then specialized for the target language by instanti-
ating the variation points appropriately. Instead of separately
proving the two lemmas in Figure 2, the cFJ feature has
a single proof of the generic Lemma 4.4 (Figure 12). This
lemma is specialized to the variants FJ and FGJ shown in
Figure 2. The proof now reasons over the generic subtyp-
ing rules with variation points, as in the case for S-Dir in
Figure 12. From the (human or computer) theorem prover’s
point of view, these holes are opaque. Thus, this proof be-
comes stuck when it requires knowledge about behavior of
Φf.

LEMMA 4.4. If ∆ ⊢ S<:T and fields(Φf(∆, T)) =
T f, then fields(Φf(∆, S)) = S g, Si = Ti and
gi = fi for all i ≤ #(f).

Case S-DIR
S = TP0 C, CP0 class C extends TP1 D {S g; . . .},
T = ΦSD(TP0, CP0, TP1 D).
By the rule F-CLASS,
fields(TP0 C) = U f; ΦSD(TP0, CP0, S) g, where
fields(ΦSD(TP0, CP0, TP1 D)) = U f. Assuming that
for all class types TP2 D

′, Φf(∆, TP2 D
′) = TP2 D

′

and ΦSD(TP0, CP0, TP2 D′) returns a class type, the
conclusion is immediate.

Figure 12: Generic Statement of Lemmas 2.2 and 2.1 and
proof for S-Dir case.

In order to proceed, the lemma must constrain possible
VP instantiations, namely that they have the properties re-
quired by the proof. In the case of Lemma 4.4, this behav-
ior is that Φf must be the identity function for non-variable
types and that ΦSD maps class types to class types. In order
for this proof to hold for the target language, the instanti-
ations of Φf and ΦSD must have this property. More con-
cretely, the proof assumes this behavior for all instantiations
of Φf and Φ SD , producing the new generic Lemma 4.5.
In order to produce the desired lemma, the target language
instantiates the VPs and provides proofs of all the assumed
behaviors. Each feature which supplies a concrete realization
of a VP also provides the necessary proofs about its behavior.
The assumptions of a proof form an explicit interface against
which a proof is written. The union of all assumptions define
the interface for the feature – as long as the target language
satisfies this interface, a feature’s generic proofs can be spe-
cialized and reused in their entirety.

We also have to deal with new cases. Whenever a new rule
or production is added, a new case must be added to proofs

TPt : ϵ; TPm : ϵ; µ : ϵ;

D := ϵ
T

WFmc(ϵ, ϵ, T)
T

WFne(ϵ, C)
ΦM(ϵ, ϵ, T) := T

LEMMA 4.2 (Well-Formed MBody). If mtype(m, C0) =
V → V and mbody(m, V0) = x.e, then there exists N and S

such that ⊢ C0<:N and ⊢ S<:V and x : V, this : N ⊢ e :
S.

TPt : T; TPm : T; µ : ⟨Y ◃ P⟩;

D := ∆
∆ ⊢ V ok ∆ ⊢ V<:[V/Y]P

WFmc(∆, ⟨Y ◃ P⟩, V)
∆ ⊢ ⟨T⟩C ok

WFne(∆, ⟨T⟩C)
ΦM(⟨T⟩, ⟨Y ◃ P⟩, V) := [T/Y]V

LEMMA 4.3 (Well-Formed MBody). If
mtype(m, ⟨T⟩C) = ⟨Y ◃ P⟩U → U and ∆ ⊢ ⟨T⟩C ok

with mbody(⟨V⟩, m, ⟨T⟩C) = x.e, where ∆ ⊢ V ok

and ∆ ⊢ V<:[V/Y]P, then there exists some N and
S such that ∆ ⊢ ⟨T⟩C<:N and ∆ ⊢ S<:[V/Y]U and
∆; x : [V/Y]U, this : N ⊢ e : S

Figure 11: Statements of Lemma 4.1 for cFJ and FGJ

LEMMA 4.5. As long as Φf(∆, V) = V for all non-vari-

able types V and ΦSD maps class types to class types ,
if ∆ ⊢ S<:T and fields(Φf(∆, T)) = T f, then
fields(Φf(∆, S)) = S g, Si = Ti and gi = fi for all
i ≤ #(f).

which induct over or case split on the original production or
rule. For FGJ, this means that a new case must be added for
GS-Var. When writing an inductive proof, a feature provides
cases for each of the rules or productions it introduces. To
build the proof for the target language, a new skeleton proof
by induction is started. Each of the cases is discharged by
the proof given in the introducing feature.

4.6 Engineering Extensible Proofs in Coq
Each Coq feature module contains proofs for the extensi-
ble lemmas it provides. To get a handle on the behavior of
opaque parameters, Coq feature modules make explicit as-
sumptions about their behavior. Just as definitions were pa-
rameterized on extension points, proofs are now parameter-
ized on a set of lemmas that define legal extensions. These
assumptions enable separate certification of feature mod-
ules. Coq certifies that a proof is correct for all instantiations
or case introductions that satisfy its assumptions, enabling
proof reuse for all compatible features.

As a concrete example, consider the Coq proof of Lemma
4.6 given in Figure 13. The cFJ feature provides the state-
ment of the lemma, which is over the abstract subtype rela-
tion. Both the Generic and cFJ features give proofs for their
definitions of the subtype relation. Notably, the Generic

feature assumes that if a type variable is found in a Context
Gamma, it will have the same value in app context Gamma

Delta for all Contexts Delta. Any compatible extension
of Context and app Context can thus reuse this proof.

To build the final proof, the target language inducts over
subtype, as shown in the final box of Figure 13. For each
constructor, the lemma dispatches to the proofs from the
corresponding feature module. To reuse those proofs, each

Variables (app context : Context → Context → Context)
(FJ subtype Wrap : forall gamma S T,

FJ subtype gamma S T → subtype gamma S T).
Definition Weaken Subtype app P

delta S T (sub S T : subtype delta S T) :=
forall gamma, subtype (app context delta gamma) S T.

Lemma cFJ Weaken Subtype app H1 :
forall (ty : Ty) (gamma : Context),
Weaken Subtype app P (sub refl ty gamma).

Lemma cFJ Weaken Subtype app H2 : forall c d e
gamma sub c sub d,
Weaken Subtype app P sub c →
Weaken Subtype app P sub d →
Weaken Subtype app P (sub trans c d e gamma sub c sub d).

Lemma cFJ Weaken Subtype app H3 :
forall ce c d fs k’ ms te te’ delta CT c
bld te, Weaken Subtype app P
(sub dir ce c d fs

k’ ms te te’ delta CT c bld te).
Definition cFJ Weaken Subtype app :=

cFJ subtype ind cFJ Weaken Subtype app H1
cFJ Weaken Subtype app H2 cFJ Weaken Subtype app H3.

Variables (app context:Context → Context → Context)
(TLookup app : forall gamma delta X ty,

TLookup gamma X ty →
TLookup (app context gamma delta) X ty).

(GJ subtype Wrap : forall gamma S T,
GJ subtype gamma S T → subtype gamma S T).

Definition Weaken Subtype app P :=
cFJ Pinitions.Weaken Subtype app P subtype app context.

Lemma GJ Weaken Subtype app : forall gamma
S T (sub S T : GJ subtype gamma S T),
Weaken Subtype app P sub S T.
cbv beta delta; intros; apply GJ subtype Wrap.
inversion sub S T; subst.
econstructor; eapply TLookup app; eauto.

Qed.

Fixpoint Weaken Subtype app gamma S T
(sub S T : subtype gamma S T) :
Weaken Subtype app P sub S T :=
match sub S T return Weaken Subtype app P sub S T with
| cFJ subtype Wrap gamma S’ T’ sub S T’ ⇒

cFJ Weaken Subtype app cFJ Ty Wrap CT
subtype GJ Phi sb cFJ subtype Wrap app context

sub S T’ Weaken Subtype app
| GJ subtype Wrap gamma S’ T’ sub S T’ ⇒

GJ Weaken Subtype app Gty TLookup subtype
GJ subtype Wrap app context TLookup app’ sub S T’
end.

Figure 13: Coq proofs of Lemma 4.6 for the cFJ and
Generic features and the composite proof.

LEMMA 4.6 (Subtype Weakening). For all con-
texts Γ and ∆, if Γ ⊢ S<:T, Γ;∆ ⊢ S<:T.

Figure 14: Weakening lemma for subtyping.

of their assumptions has to be satisfied by a theorem (e.g.
TLookup app’ is provided to TLookup app). The induc-
tive hypothesis is provided to cFJ Weaken subtype app

for use on its subterms. As long as every assumption is sat-
isfied for each proof case, Coq will certify the composite
proof. There is one important caveat: proofs which use the
inductive hypothesis can only do so on subterms or sub-
judgements. By using custom induction schemes to build
proofs, features can ensure that this check will always suc-
ceed. The cFJ subtype ind induction scheme used to com-
bine cFJ’s cases in the first box of Figure 13 is an example.

5. Implementation
We implemented the six feature modules of Section 3.4 in
the Coq proof assistant. Each contains pieces of syntax,
semantics, type system, and metatheoretic proofs needed by
that feature or interaction. Using them, we built the seven
variants on Featherweight Java listed in Section 3.23.

Module Lines of Code in Coq
cFJ 2582 LOC
Cast 439 LOC

Interface 450 LOC
Generic 4924 LOC

Generic#Interfaces 1360 LOC
Generic#Cast 265 LOC

Figure 15: Feature Module Sizes

While we achieve feature composition by manually in-
stantiating these modules, the process is straightforward
and should be mechanized. Except for some trivial lem-
mas, the proofs for the final language are assembled from
proof pieces from its constituent features by supplying them
with lemmas which satisfy their assumptions. Importantly,
once the proofs in each of the feature modules have been
certified by Coq, they do not need to be rechecked for the
target language. Any proof is guaranteed to be correct for
any language which satisfies the interface formed by the set
of assumptions for that lemma. This has a practical effect
as well: certifying larger feature modules takes a non-trivial
amount of time. Figure 16 lists the certification times for
the feature modules in Figure 15 and the language variants
built from their composition. By checking the proofs of each
feature in isolation, Coq is able to certify the entire product

3 The source for these features can be found at
http://www.cs.utexas.edu/users/bendy/MMMDevelopment.php.

line in roughly the same amount of time as the cFJ fea-
ture module. Rechecking the work of each feature for each
individual product would quickly become expensive. Inde-
pendent certification is particularly useful when modifying
a single feature. Recertifying the product line is a matter
of rechecking the proofs of the modified features and then
performing a quick check of the products, without having to
recheck the independent features.

0

2

4

6

8

M
in

u
te

s

cFJ Generic All Other Features All Products

Figure 16: Certification Times for Feature Modules and Lan-
guage Variants.

6. Adding New Features
A familiar set of issues is encountered when a new feature
is added to a product line. Ideally, a new feature would be
able to simply update the existing definitions and proofs,
allowing language designers to leverage all the hard work
expended on formalizing the original language. Some fore-
sight, called domain analysis [21], allows language design-
ers to predict VPs in advance, thus enabling a smooth and
typically painless addition of new features. What our work
shows is a path for the structured evolution of languages. But
of course, there is no magic when unanticipated features are
added – additional engineering is required.

Existing definitions can be extended and reused as long
as they already have the appropriate VPs and their induc-
tive definitions left open. For example, once class definitions
have a variation point inserted for interfaces, the same VP
can also be extended with type parameters for generics. Sim-
ilarly, once the definition of subtyping has been left open,
both interfaces and generics can add new rules for the target
language. The important observation is that a definition only
has to be enabled for extension precisely once.

Proof reuse is almost as straightforward: as long as an
extension is compatible with the set of assumptions in a
proof’s interface, the proof can be reused directly in the
final language. A new feature is responsible for providing
the proofs that its extension satisfies the assumptions of the
original base language.

Refactoring is necessary when a new feature requires
VPs that are not in existing features. A feature which

makes widespread changes throughout the base language
(i.e. Generics), will probably make changes in places that
the original feature designer did not anticipate. In this situ-
ation, as mentioned in Section 2.1, existing features have to
be refactored to allow the new kind of extension by inserting
variation points or breaking open the recursion on inductive
definitions. Any proofs over the original definition may have
to be updated to handle the new extensions, possibly adding
new assumptions to its interface.

Feature modules tend to be inoculated from changes in
another, unless they reference the definitions of another fea-
ture. This only occurs when two features must appear to-
gether: modules which resolve feature interactions, for ex-
ample, only appear when their base features are present.
Thus, it is possible to develop an enhanced language incre-
mentally: starting with the base and then iteratively refac-
toring other features, potentially creating new modules to
handle interactions. Once a new feature has been fully in-
tegrated into the feature set, all of the previous languages in
the product line should still be derivable. If two features F

and G commute (i.e. F · G = G · F) their integration comes
for free as their interaction module is empty (i.e. F#G = 1).

A new feature can also invalidate the assumptions of an
existing feature’s proofs. In this case, assumptions might
have to be weakened and the proof refactored to permit
the new extension. Alternatively, if an extension breaks the
assumption of an existing proof, the offending feature can
simply build a new proof of that lemma. This proof can then
be utilized in any other proofs which used that lemma as an
assumption, reusing the original proof with the new lemma
swapped in. In this manner, each proof is inoculated against
features which break the assumptions of other lemmas.

But again, all of this is just another variation of the kinds
of problems that are encountered when one generalizes and
refactors typical object-oriented code bases.

7. Related Work
The Tinkertype project [16] is a framework for modularly
specifying formal languages. Features consist of a set of
variants of inference rules with a feature model determining
which rule is used in the final language. An implementation
of these ideas was used to format the language variants used
in Pierce’s Types and Programming Languages [23]. This
corresponds to our notion of case introduction. Importantly,
our approach uses variations points to allow variations on
a single definition. This allows us to construct of a single
generic proof which can be specialized for each variant, as
opposed to maintaining a separate proof for each variation.
Levin et al. consider using their tool to compose handwrit-
ten proofs, but these proofs must be rechecked after compo-
sition. In contrast, we have crafted a systematic approach
to proof extension that permits the creation of machine-
checkable proofs. After a module’s proofs are certified, they
can be reused without needing to be rechecked. As long as

the module’s assumptions hold, the proofs are guaranteed to
hold for the final language.

Stärk et. al [26] develop a complete Java 1.0 compiler
through incremental refinement of a set of Abstract State
Machines. Starting with ExpI, a core language of impera-
tive Java expressions which contains a grammar, interpreter,
and complier, the authors add features which incrementally
update the language until an interpreter and compiler are de-
rived for the full Java 1.0 specification. The authors then
write a monolithic proof of correctness for the full language.
Later work casts this approach in the calculus of features [1],
noting that the proof could also have been developed in-
crementally. While we present the incremental development
of the formal specification of a language here, many of the
ideas are the same. An important difference is that our work
focuses on structuring languages and proofs for mechanized
proof assistants, while the development proposed by [1] is
completely by hand.

The modular development of reduction rules are the fo-
cus of Mosses’ Modular Structural Operational Semantics
[19]. In this paradigm, rules are written with an abstract la-
bel which effectively serves as a repository for all effects,
allowing rules to be written once and reused with different
instantiations depending on the effects supported by the fi-
nal language. Effect-free transitions pass around the labels
of their subexpressions:

d
X−→ d′

let d in e
X−→ let d′ in e

(R-LETB)

Those rules which rely on an effectual transition specify that
the final labeling supports effects:

e
{p=p1[p0]...}
−−−−−−−−→ e′

let p0 in e
{p=p1...}

−−−−−−−−→ let p0 in e

(R-LETE)

These abstract labels correspond to the abstract contexts
used by the cFJ subtyping rules to accommodate the Generic
features updates. In the same way that R-LETE depends on
the existence of a store in the final language, S-VAR requires
the final context to support a type lookup operation. Simi-
larly, both R-LETB and S-TRANS pass along the abstract
labels / contexts from their subjudgements.

Both Boite [8] and Mulhern [20] consider how to extend
existing inductive definitions and reuse related proofs in the
Coq proof assistant. Both only consider the introductions
and case extension and also rely on the critical observation
that proofs over the extended language can be patched by
adding pieces for the new cases. The latter promotes the idea
of ’proof weaving’ for merging inductive definitions of two
languages which merges proofs from each by case splitting
and reusing existing proof terms. An unimplemented tool is
proposed to automatically weave definitions together. The
former extends Coq with a new Extend keyword that rede-
fines an existing inductive type with new cases and a Reuse

keyword that creates a partial proof for an extended datatype
with proof holes for the new cases which the user must in-
teractively fill in. These two keywords explicitly extend a
concrete definition and thus modules which use them can-
not be checked by Coq independently of those definitions.
This presents a problem when building a language prod-
uct line: adding a new feature to a base language can easily
break the proofs of subsequent features which are written us-
ing the original, fixed language. Interactions can also require
updates to existing features in order to layer them onto the
feature enhanced base language, leading to the development
of parallel features that are applied depending on whether
the new feature is included. These keyword extensions were
written for a previous version of Coq and are not available
for the current version of the theorem prover. Furthermore,
as a result of our formulation, it is possible to check the
proofs in each feature module independently, with no need
to recheck proof terms when composing features.

Chlipala [9] proposes a using adaptive tactics written in
Coq’s tactic definition language LTac [10] to achieve proof
reuse for a certified compiler. The generality of the approach
is tested by enhancing the original language with let expres-
sions, constants, equality testing, and recursive functions,
each of which required relatively minor updates to exist-
ing proof scripts. In contrast to our approach, each refine-
ment was incorporated into a new monolithic language, with
the new variant having a distinct set of proofs to maintain.
Our feature modules avoid this problem, as each target lan-
guage derives its proofs from a uniform base, with no need
to recheck the proofs in existing feature modules when com-
posing them with a new feature. Adaptive proofs could also
be used within our feature modules to make existing proofs
robust in to the addition of new syntax and semantic exten-
sion points.

8. Conclusion
Mechanically verifying artifacts using theorem provers can
be hard work. The difficulty is compounded when verify-
ing all the members of a product line. Features, transfor-
mations which add a new piece of functionality, are a nat-
ural way of decomposing the building blocks of a product
line. Decomposing proofs along feature boundaries enables
reuse of proofs from a common base for each target prod-
uct. These ideas have a natural expression in the evolution
of formal specification of programming languages, using the
syntax, semantics, and metatheoretic proofs of a language as
the core representations. In this paper, we have shown how
introductions and Variation Points can be used to structure
product lines of formal language specifications.

As a proof of concept, we have used this approach to im-
plement features modules that enhance a variant of Feather-
weight Java in the Coq proof assistant. Our implementation
uses the standard facilities of Coq to build the composed
languages. Coq is able to mechanically check the proofs

of progress and preservation for the composed languages,
which reuse pieces of proofs defined in the composed fea-
tures. Each extension allows for the structured evolution of
a language from a simple core to a fully-featured language.
Harnessing these ideas in a mechanized framework trans-
forms the mechanized formalization of a language from a
rigorous check of correctness into an important vehicle for
reuse of definitions and proofs across a family of related lan-
guages.

Acknowledgments. This work was supported by NSF’s
Science of Design Project CCF 0724979.

References
[1] D. Batory and E. Börger. Modularizing theorems for software

product lines: The jbook case study. Journal of Universal
Computer Science, 14(12):2059–2082, 2008.

[2] D. Batory, Rich Cardone, and Y. Smaragdakis. Object-
oriented frameworks and product-lines. In SPLC, 2000.

[3] D. Batory, J. Kim, and P. Höefner. Feature interactions,
products, and composition. Submiited 2011.

[4] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE TSE, 30, June 2004.

[5] Don Batory. Feature models, grammars, and propositional
formulas. Software Product Lines, pages 7–20, 2005.

[6] Don Batory, Rich Cardone, and Yannis Smaragdakis. Object-
oriented framework and product lines. In SPLC 2000, pages
227–247.

[7] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Springer-Verlag, Berlin, 2004.

[8] Olivier Boite. Proof reuse with extended inductive types. In
Theorem Proving in Higher Order Logics, pages 50–65, 2004.

[9] Adam Chlipala. A verified compiler for an impure functional
language. In POPL 2010, January 2010.

[10] David Delahaye. A tactic language for the system coq. In
Proceedings of Logic for Programming and Automated Rea-
soning (LPAR), Reunion Island, volume 1955 of LNCS, pages
85–95. Springer, 2000.

[11] Feature oriented programming. http://en.wikipedia.

org/wiki/Feature_Oriented_Programming, 2008.

[12] Georges Gonthier. In Deepak Kapur, editor, Computer Math-
ematics, chapter The Four Colour Theorem: Engineering of a
Formal Proof, pages 333–333. Springer-Verlag, Berlin, Hei-
delberg, 2008.

[13] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler.
Featherweight java: a minimal core calculus for java and gj.
ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

[14] K.C. Kang. Private Correspondence, 2005.

[15] Xavier Leroy. Formal verification of a realistic compiler.
Commun. ACM, 52:107–115, July 2009.

[16] Michael Y. Levin and Benjamin C. Pierce. Tinkertype: A lan-
guage for playing with formal systems. Journal of Functional
Programming, 13(2), March 2003. A preliminary version ap-
peared as an invited paper at the Logical Frameworks and
Metalanguages Workshop (LFM), June 2000.

[17] M. D. McIlroy. Mass-produced software components. Proc.
NATO Conf. on Software Engineering, Garmisch, Germany,
1968.

[18] R. Monson-Haefel. Enterprise Java Beans. O’Reilly, 3rd
edition, 2001.

[19] Peter D. Mosses. Modular structural operational semantics. J.
Log. Algebr. Program., 60-61:195–228, 2004.

[20] Anne Mulhern. Proof weaving. In Proceedings of the First
Informal ACM SIGPLAN Workshop on Mechanizing Metathe-
ory, September 2006.

[21] J. Neighbors. The draco approach to constructing software
from reusable components. IEEE TSE, September 1984.

[22] D.L. Parnas. On the design and development of program
families. IEEE TSE, SE-2(1):1 – 9, March 1976.

[23] Benjamin C. Pierce. Types and Programming Languages.
MIT Press, 2002.

[24] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. ACM TOSEM, December
2001.

[25] Yannis Smaragdakis and Don Batory. Implementing reusable
object-oriented components. In In the 5th Int. Conf. on Soft-
ware Reuse (ICSR 98, pages 36–45. Society Press, 1998.

[26] Robert Stärk, Joachim Schmid, and Egon Börger. Java and
the java virtual machine - definition, verification, validation,
2001.

[27] Rok Strnisa, Peter Sewell, and Matthew J. Parkinson. The
Java module system: core design and semantic definition. In
OOPSLA, pages 499–514, 2007.

[28] Michael VanHilst and David Notkin. Decoupling change from
design. SIGSOFT Softw. Eng. Notes, 21:58–69, October 1996.

A. Open Inductive Definitions in Coq
Figure 17 shows a concrete example of crafting an exten-
sible inductive definition in Coq. The target language of
FJ = Cast · cFJ is built by importing the Coq modules
for features Cast and cFJ. The target syntax is defined as a
new data type, E, with data constructors cFJ and Cast from
each feature. Each constructor wraps the syntax definitions
from their corresponding features, closing the inductive loop
by instantiating the abstract parameter E’ with E , the data
type for the syntax of target language.

These parameters also affect data types which reference
open inductive definitions. In particular, the signature of typ-
ing rules and the transition relation are now over the param-
eter used for the final language. Of course, these rules are
defined over the actual syntax definitions given in a feature
module. In order for the signatures to sync up, these rules are
parameterized over a function that injects the syntax defined
in the feature module into the syntax of the final language.
Since the syntax of a module is always included alongside
its typing and reduction rules in the target language, such an
injection always exists.

Inductive E (E’ : Set): Set :=

| e var : Var → E

| fd access : E’ → F → E

| m call : E’ → M → List E’ → E

| new : Ty → List E’ → E.

cFJ.v
Inductive E (E’ : Set) : Set :=

| e cast : Ty → E’ → E.

cast.v

Require Import cFJ.

Require Import cast.

Inductive E : Set :=

| cFJ : cFJ.E E → E

| cast : cast.E E → E.

FJ.v

Figure 17: Syntax for cFJ and Cast Features and Their
Union.

Parameterization also allows feature modules to include
VPs as shown in Figure 18. The VPs in each module are ex-
plicitly represented as abstract sets/predicates/functions, as
with the parameter TP m used to extend the expression for
method calls in cFJ.v. Other features can provide appro-
priate instantiations for this parameters. In Figure 18, for ex-
ample, FGJ.v builds the syntax for the target language by in-
stantiating this VP with the definition of Generic VP given
in Generic.v.

Definition TP m := unit.

Inductive cFJ E (E : Set) (TP m : Set): Set :=

| e var : Var → cFJ E

| fd access : E → F → cFJ E

| m call : TP m → E → M → List E → cFJ E

| new : C → List E → cFJ E.

cFJ.v
Definition TP m := List Ty.

Generic.v

Require Import cFJ.

Require Import Generic.

Definition TP m := Generic.TP m.

Inductive E : Set :=

| cFJ : cFJ E E TP m → E

FGJ.v

Figure 18: Coq Syntax for cFJ with a Variation Point, and its
instantiation in FGJ.

A.1 Feature Composition in Coq
Each feature module is implemented as a Coq file which
contains the inductive definitions, variation points, and
proofs provided by that feature. These modules are certified
independently by Coq. Once the feature modules have been

verified, a target language is built as a new Coq file. This file
imports the files for each of the features included in the lan-
guage, e.g. “Require Import cFJ.” in Figure 17. First,
each target language definition is built as a new inductive
type using appropriately instantiated definitions from the
included feature modules, as shown in Figures 17 and 18.
Proofs for the target language are then built using the proofs
from the constiuent feature modules per the discussion in
section 4.6, as shown in Figure 13. Proof composition re-
quires a straightfoward check by Coq that the assumptions
of each feature module are satisfied, i.e. that a feature’s in-
terface is met by the target language. Currently each piece
of the final language is composed by hand in this straight-
forward manner; future work includes automating feature
composition directly.

