JVM Summit 2012

c
S
wn
)
<C
i)
(0]
wn
©
o
—
U
o
S
=
wn
e
)
2
c
-
()
z
—

Batches:
Unifying RPC, WS
and Database access

William R. Cook
University of Texas at Austin
with
Eli Tilevich, Yang Jiao, Virginia Tech
Ali Ibrahim, Ben Wiedermann, UT Austin

Typical Approach to Distribution/DB

1. Design a programming language
Finalize specification, then...

JVM Summit 2012

2. Implement distribution/queries as library

RPC library, stub generator
SQL library
Web Service library, wrapper generator

(-
S
()]
)
<
-
©
()]
(o)
o
I_
Y
(®)
>
et
wn
| -
)
2
c
-
Q
-
I_

Typical Approach to Distribution/DB

1. Design a programming language
Finalize specification, then...

JVM Summit 2012

2. Implement distribution/queries as library

RPC library, stub generator
SQL library
Web Service library, wrapper generator

3. Rejected and ignored by community
CORBA, DCOM, RMI are complete disaster

(-
S
()]
)
<
-
©
()]
(o)
o
I_
Y
(®)
>
et
wn
| -
)
2
c
-
Q
-
I_

JVM Summit 2012

C
=
n
-
<C
o
©
7))
(0]
o
-
U
o
>
et
n
| -
)
2
c
-
()
e
—

Using a Mail Service

int limit = 500;
for (Message m : mailer.Messages)
iIf (m.Size > limit) {
print(m.Subject + “: * + m.Sender.Name);
m.delete();

}

JVM Summit 2012

C
S
wn
-
<
i)
©
(0]
©
o
—
U
(®)
>
et
wn
o
)
2
C
-
()
e
—

Using a Mail Service

int limit = 500;
for (Message m : mailer.Messages)
iIf (m.Size > limit) {

print(m.Subject + “: * + m.Sender.Name);
m.delete();

b Works great if mailer is a
local object, but is terrible if

mailer Is remote

JVM Summit 2012

c
)
()]
)
<
4
(0]
()]
©
)
—
U
@)
S
et
wn
e
)
2
c
-
()
z
—

Goals: Why not Have it All?

A Note on
Low latency One round trip Distributed

Computing

Stateless No Proxies
Platform independent No Serialization

Clean Server APls No Data Transfer Object
No Server Facade
No Superclass/type
(e.g. java.rmi.Remote)

JVM Summit 2012

C
S
wn
-
<
i)
©
(0]
©
o
—
Y—
(®)
>
et
wn
o
)
2
C
-
()
e
—

Using a Mail Service

int limit = 500;
for (Message m : mailer.Messages)
iIf (m.Size > limit) {
print(m.Subject + “: * + m.Sender.Name);
m.delete();

}

Separate local

and remote code!

N for (m : ROOT.Messages) {

S if (m.Size > In(“A”)) {

= Run remote OUT (“B”, m.Subject);

= script first OUT (“C”, m.Sender.Name) ;

=

5,) _ o m.delete() ;

= int limit = 500; }

= Remote<Mailer> connection =; A W
batch (Mailer mailer : connection) { B C

RE: testing Will Cook

for (Message m : mailer.Messages) YTy — g

iIf (m.Size > limit) {
print(m.Subject + *: * + m.Sender.Name);

m.delete();
} Remote<Mailer> connection =;
} Forest in = new Forest (YA”, limit);
Forest mailer = connection.execute(script, 1n);

for (m : mailer.getIteration(“m”))
print (m.getStr (*B”) + “: ” + m.getStr(“C”));

c
S
wn
)
<C
4
(0]
wn
©
o
—
U
o
S
=
wn
e
)
2
c
-
()
z
—

JVM Summit 2012

C
S
wn
-
<
i)
©
(0]
©
o
—
U
(®)
>
et
wn
o
)
2
C
-
()
e
—

Batch Pattern

Execution model: Batch Command Pattern

1. Client sends script to the server
(Creates Remote Facade on the fly)

2. Server executes the script

3. Server returns results in bulk (name, size)
(Creates Data Transfer Objects on the fly)

4. Client runs the local code (print statements)

JVM Summit 2012

C
=
)
-
<C
o
©
0))
O
o
|_
U
(@)
>
=
)
| -
)
2
c
-
()
c
|_

Batch Script to SQL

for
if

}

out (“B”, m.Subject);
out ("C”, m.Sender.Name) ;
m.delete () ;

(m : ROOT.Messages) {
(m.Size > In(“A")) {

SELECT m.Subject as B, u.Name as C

FROM Message m INER JOIN User u
ON m.Sender = User.ID
WHERE m.Size > ?

DELETE FROM Message
WHERE m.Size > ?

Always constant

number of queries

10

JVM Summit 2012

c
S
wn
)
<C
i)
(0]
()]
(0]
o
—
U
o
S
=
wn
e
)
2
C
-
()
z
—

Batch Script

(Subset of JavaScript)
s ::= <literal> variables, constants
e.X fields
e.m(e, ..., €) method call
e=e assignment

elle|le|e?e:e primitive operators
if (e) { e } [else { e }] conditionals

for(xine){e} loops
varx =e; e binding
OUTPUT(label, e) outputs
INPUT(label) inputs
function(x) { e } functions

O= 4+ - %/ % < <= == => > && || ;

11

JVM Summit 2012

(-
=
wn
)
<
-
©
()]
(v}
o
I_
Y
(®)
>
-
wn
| -
Q
2
c
)
Q
-
I_

Forwarder:

TCP
Send

Batch Providers

Execution:

TCP
Receive

12

Batch Providers

Execution: 568 LOC in Java

JVM Summit 2012

Forwarder:
TCP TCP
Send Receive

XML, JSON, ... Ve m =2
(no fetish about
transport)

c
S
2}
-
<
whd
©
)]
©
3
=
Yo
@)
>
=
n
C
)
2
c
>
)
L
—

13

JVM Summit 2012

C
S
wn
-
<
i)
©
(0]
©
o
—
Y—
(®)
>
et
wn
o
)
2
C
-
()
e
—

Combining Batch Providers

Traditional RPC:

TCP
Receive

14

The Hard Part

Add Batch Statement to your favorite language

JavaScript, Python, ML, F#, Scala, etc
(More difficult in dynamic languages)

Batch (x) {...} Script + Other

Partition(x)

| = Local1 _ o —
E) = IIE;(eg)ute(Remote, |)Local1 (no other) —OCaI2
oca

This is the part that

JVM Summit 2012

needs to be written

C
S
wn
-
<
i)
©
(0]
©
o
—
Y—
(®)
>
et
wn
o
)
2
C
-
()
e
—

JVM Summit 2012

c
S
wn
-]
<C
i)
©
()]
O
o
—
Y—
(@)
>
=
wn
o
)
2
C
-
()
N
—

Batch Summary

Client

Batch statement: compiles to Local/Remote/Local
Works in any language (e.g. Java, Python, JavaScript)
Completely cross-language and cross-platform

Server

Small engine to execute scripts
Call only public methods/fields (safe as RPC)

Stateless, no remote pointers (aka proxies)

Communication

Forests (trees) of primitive values (no serialization)
Efficient and portable

16

JVM Summit 2012

(-
S
()]
)
<
-
©
()]
(o)
o
I_
Y
(®)
>
et
wn
| -
Q
2
c
-
Q
-
I_

Batch = One Round Trip

Clean, simple performance model
Some batches would require more round trips

batch (..) {
if (AskUser(“Delete ” + msg.Subject + “?")
msg.delete();

by
Pattern of execution
OK: Local — Remote — Local

Error: Remote — Local — Remote

Can't just mark everything as a batch!

17

JVM Summit 2012

c
S
wn
-]
<C
i)
©
()]
O
o
—
Y—
(@)
>
=
wn
o
)
2
C
-
()
N
—

What about Object Serialization?

Batch only transfers primitive values, not objects
But they work with any object, not just remotable ones

Send a local set to the server?
java.util.Set<String> local = ... ;

batch (mail : server) {
mail.sendMessage(local, subject, body);

// compiler error sending local to remote method

}

18

JVM Summit 2012

c
S
wn
-]
<C
i)
©
()]
O
o
—
U
(@)
>
=
wn
o
)
2
C
-
()
N
—

Serialization by Public Interfaces

service.Set recipients = mail.makeSet();
for (String addr : local)
recipients.add(addr);

Sends list of addresses with the batch
Constructors set on server and populates it
Works between different languages

19

JVM Summit 2012

C
=
n
-
<C
o
©
7))
(0]
o
|_
U
o
>
et
n
| -
)
2
c
-
()
e
|_

Interprocedural Batches

Reusable serialization function

@Batch
service.Set send(Mail server, local.Set<String> local) {

service.Set remote = server.makeSet();
for (String addr : local)
remote.add(addr);

return remote;

¥

Main program

batch (mail : server) {
remote.Set recipients = send(localNames);

20

JVM Summit 2012

c
S
wn
-]
<C
i)
©
()]
O
o
—
Y—
(@)
>
=
wn
o
)
2
C
-
()
N
—

Exceptions

Server Exceptions

Terminate the batch

Return exception in forest

Exception is raised in client at same point as on server

Client Exceptions
Be careful!
Batch has already been fully processed on server
Client may terminate without handling all results locally

21

JVM Summit 2012

(-
=
()]
)
<
-
©
()]
(o)
o
I_
Y
(®)
>
et
wn
| -
)
2
c
-
Q
-
I_

Transactions and Partial Failure

Batches are not necessarily transactional
But they do facilitate transactions
Server can execute transactionally

Batches reduce the chances for partial failure
Fewer round trips
Server operations are sent in groups

22

JVM Summit 2012

c
S
wn
-]
<C
i)
©
()]
O
o
—
Y—
(@)
>
=
wn
o
)
2
C
-
()
N
—

Order of Execution Preserved

All local and remote code runs in correct order

batch (remote : service) {
print(remote.updateA(local.getA())); // getA, print
print(remote.updateB(local.getB())); // getB, print

’

Partitions to:

input.put("X", local.getA()); // getA
input.put(Y”, local.getB()); // getB
.... execute updates on server

print(result.get("A)); // print
print(result.get("B")); // print

Compiler Error!

23

JVM Summit 2012

C
S
wn
-
<
i)
©
(0]
©
o
—
Y—
(®)
>
et
wn
o
)
2
C
-
()
e
—

Lambdas

for (InfoSchema db : connection)
for (Group<Category, Product> g :
db.Products.groupBy(Product. byCategory))
print("Category={0}\t ProductCount={1}",
g.Key.CategoryName,
g.Items.count());

Fun<Product, Category> byCategory =
new Fun<Product, Category>() {
public Category apply(Product p) {
return p.Category;
¥

s

24

JVM Summit 2012

c
S
wn
-]
<C
i)
©
()]
O
o
—
Y—
(@)
>
=
wn
o
)
2
C
-
()
N
—

Available Now...

Batch Java

100% compatible with Java 1.7 (Open]DK)
Transport: XML, JSON, easy to add more
Available now (alpha)

Batch statement as “for”
for (RootInterface r : serviceConenction) { ... }

Full SQL generation and ORM
Select/Insert/Delete/Update, aggregate, group, sorting

25

