
T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

Batches:
Unifying RPC, WS

and Database access

William R. Cook
University of Texas at Austin

with
Eli Tilevich, Yang Jiao, Virginia Tech

Ali Ibrahim, Ben Wiedermann, UT Austin

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

2

Typical Approach to Distribution/DB

1. Design a programming language
Finalize specification, then...

2. Implement distribution/queries as library
RPC library, stub generator
SQL library
Web Service library, wrapper generator

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

3

Typical Approach to Distribution/DB

1. Design a programming language
Finalize specification, then...

2. Implement distribution/queries as library
RPC library, stub generator
SQL library
Web Service library, wrapper generator

3. Rejected and ignored by community
CORBA, DCOM, RMI are complete disaster

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

4

Using a Mail Service

int limit = 500;
for (Message m : mailer.Messages)
 if (m.Size > limit) {
 print(m.Subject + “: “ + m.Sender.Name);
 m.delete();
 }

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

5

Using a Mail Service

int limit = 500;
for (Message m : mailer.Messages)
 if (m.Size > limit) {
 print(m.Subject + “: “ + m.Sender.Name);
 m.delete();
 } Works great if mailer is a

local object, but is terrible if
mailer is remote

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

6

Goals: Why not Have it All?
Low latency One round trip

Stateless No Proxies

Platform independent No Serialization

Clean Server APIs No Data Transfer Object
No Server Facade
No Superclass/type
 (e.g. java.rmi.Remote)

A Note on
Distributed
Computing

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

7

Using a Mail Service

int limit = 500;
for (Message m : mailer.Messages)
 if (m.Size > limit) {
 print(m.Subject + “: “ + m.Sender.Name);
 m.delete();
 } Separate local

and remote code!

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

8

Remote<Mailer> connection =;
Forest in = new Forest(“A”, limit);
Forest mailer = connection.execute(script, in);
for (m : mailer.getIteration(“m”))
 print(m.getStr(“B”) + “: ” + m.getStr(“C”));

int limit = 500;
Remote<Mailer> connection =;
batch (Mailer mailer : connection) {
 for (Message m : mailer.Messages)
 if (m.Size > limit) {
 print(m.Subject + “: “ + m.Sender.Name);
 m.delete();
 }
}

for (m : ROOT.Messages) {
 if (m.Size > In(“A”)) {
 OUT(“B”, m.Subject);

 OUT(“C”, m.Sender.Name);
 m.delete();
 }

B C

RE: testing Will Cook

JVM Summit Dan Smith

... ...

 Run remote

 script first

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

9

Batch Pattern

Execution model: Batch Command Pattern
1. Client sends script to the server

(Creates Remote Façade on the fly)

2. Server executes the script
3. Server returns results in bulk (name, size)

(Creates Data Transfer Objects on the fly)

4. Client runs the local code (print statements)

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

10

Batch Script to SQL

SELECT m.Subject as B, u.Name as C
FROM Message m INER JOIN User u
 ON m.Sender = User.ID
WHERE m.Size > ?

DELETE FROM Message
WHERE m.Size > ?

for (m : ROOT.Messages) {
 if (m.Size > In(“A”)) {
 out(“B”, m.Subject);
 out(“C”, m.Sender.Name);
 m.delete();
 }

Always constant
number of queries

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

11

Batch Script
(Subset of JavaScript)

s ::= <literal> variables, constants
 | e.x fields
 | e.m(e, ..., e) method call
 | e = e assignment
 | e ⊕ e | !e | e ? e : e primitive operators
 | if (e) { e } [else { e }] conditionals
 | for (x in e) { e } loops
 | var x = e; e binding
 | OUTPUT(label, e) outputs
 | INPUT(label) inputs
 | function(x) { e } functions
⊕ = + - * / % < <= == => > && || ;

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

12

Execute
A

TCP
Send

A

TCP
Receive

B

?
B

DB
SQL
Gen

A

Batch Providers

Forwarder:

Execution:

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

13

Execute
A

TCP
Send

A

TCP
Receive

B

?
B

DB
SQL
Gen

A

Batch Providers

Forwarder:

Execution: 568 LOC in Java

XML, JSON, ...
(no fetish about

transport)

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

14

Combining Batch Providers

TCP
Send

(Python)

TCP
Receive
(Java)

Execute
(Java)

TCP
Send
(JS)

TCP
Receive
(Java)

DB
SQL
Gen

(Java)

Traditional RPC:

Database Connection:

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

15

I = Local1
O = Execute(Remote, I)
Local2(O)

The Hard Part

Add Batch Statement to your favorite language
JavaScript, Python, ML, F#, Scala, etc

(More difficult in dynamic languages)

Batch (x) {...} Script + Other

 Partition(x)

LangToScript

Local1 Remote
(no other)

Local2ScriptToLang

This is the part that
needs to be written

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

16

Batch Summary

Client
Batch statement: compiles to Local/Remote/Local
Works in any language (e.g. Java, Python, JavaScript)

Completely cross-language and cross-platform

Server
Small engine to execute scripts

Call only public methods/fields (safe as RPC)

Stateless, no remote pointers (aka proxies)

Communication
Forests (trees) of primitive values (no serialization)

Efficient and portable

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

17

Batch = One Round Trip

Clean, simple performance model

Some batches would require more round trips
batch (..) {
 if (AskUser(“Delete ” + msg.Subject + “?”)
 msg.delete();
}

Pattern of execution
OK: Local → Remote → Local
Error: Remote → Local → Remote

Can't just mark everything as a batch!

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

18

What about Object Serialization?

Batch only transfers primitive values, not objects
But they work with any object, not just remotable ones

Send a local set to the server?
java.util.Set<String> local = … ;
batch (mail : server) {
 mail.sendMessage(local, subject, body);
 // compiler error sending local to remote method
}

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

19

Serialization by Public Interfaces
java.util.Set<String> local = … ;
batch (mail : server) {
 service.Set recipients = mail.makeSet();
 for (String addr : local)
 recipients.add(addr);
 mail.sendMessage(recipients, subject, body);
}

Sends list of addresses with the batch
Constructors set on server and populates it
Works between different languages

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

20

Interprocedural Batches

Reusable serialization function
@Batch
service.Set send(Mail server, local.Set<String> local) {
 service.Set remote = server.makeSet();
 for (String addr : local)
 remote.add(addr);
 return remote;
}

Main program
batch (mail : server) {
 remote.Set recipients = send(localNames);

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

21

Exceptions

Server Exceptions
Terminate the batch
Return exception in forest
Exception is raised in client at same point as on server

Client Exceptions
Be careful!
Batch has already been fully processed on server
Client may terminate without handling all results locally

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

22

Transactions and Partial Failure

Batches are not necessarily transactional
But they do facilitate transactions
Server can execute transactionally

Batches reduce the chances for partial failure
Fewer round trips
Server operations are sent in groups

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

23

Order of Execution Preserved

All local and remote code runs in correct order
batch (remote : service) {
 print(remote.updateA(local.getA())); // getA, print
 print(remote.updateB(local.getB())); // getB, print
}

Partitions to:
input.put(“X”, local.getA()); // getA
input.put(“Y”, local.getB()); // getB
.... execute updates on server
print(result.get(“A)); // print
print(result.get(“B”)); // print

Compiler Error!

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

24

Lambdas
for (InfoSchema db : connection)
 for (Group<Category, Product> g :
 db.Products.groupBy(Product.byCategory))
 print("Category={0}\t ProductCount={1}",
 g.Key.CategoryName,
 g.Items.count());

Fun<Product, Category> byCategory =
 new Fun<Product, Category>() {

public Category apply(Product p) {
return p.Category;

}
};

T
h
e

U
n
iv

er
si

ty
 o

f
Te

xa
s

at
 A

u
st

in
JV

M
 S

u
m

m
it
 2

0
1
2

25

Available Now...

Batch Java
100% compatible with Java 1.7 (OpenJDK)
Transport: XML, JSON, easy to add more
Available now (alpha)

Batch statement as “for”
for (RootInterface r : serviceConenction) { ... }

Full SQL generation and ORM
Select/Insert/Delete/Update, aggregate, group, sorting

