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Abstract

Formalizing meta-theory, or proofs about programming languages,
in a proof assistant has many well-known benefits. However, the
considerable effort involved in mechanizing proofs has prevented
it from becoming standard practice. This cost can be amortized
by reusing as much of an existing formalization as possible when
building a new language or extending an existing one. Unfortu-
nately reuse of components is typically ad-hoc, with the language
designer cutting and pasting existing definitions and proofs, and
expending considerable effort to patch up the results.

This paper presents a more structured approach to the reuse
of formalizations of programming language semantics through the
composition of modular definitions and proofs. The key contribu-
tion is the development of an approach to induction for extensible
Church encodings which uses a novel reinterpretation of the univer-
sal property of folds. These encodings provide the foundation for a
framework, formalized in Coq, which uses type classes to automate
the composition of proofs from modular components.

Several interesting language features, including binders and
general recursion, illustrate the capabilities of our framework.
We reuse these features to build fully mechanized definitions and
proofs for a number of languages, including a version of mini-ML.
Bounded induction enables proofs of properties for non-inductive
semantic functions, and mediating type classes enable proof adap-
tation for more feature-rich languages.

1. Introduction

With their POPLMARK challenge, Aydemir et al. [14] identified
representation of binders, complex inductions, experimentation,
and reuse of components as key challenges in mechanizing pro-
gramming language meta-theory. While progress has been made,
for example on the representation of binders, it is still difficult to
reuse components, including language definitions and proofs.

The current approach to reuse still involves copying an existing
formalization and adapting it manually to incorporate new features.
An extreme case of this copy-&-adapt approach can be found in
Leroy’s 3 person-year verified compiler project [22]: it consists of
8 intermediate languages in addition to the source and target lan-
guages, many of which are minor variations of each other. Due to
the crosscutting impact of new features, the adaptation of exist-
ing features is still unnecessarily labor-intensive. Moreover, from a
software/formalization management perspective a proliferation of
copies is obviously a nightmare.

There are two main challenges in providing reuse:

1. Extensibility: Conventional proofs and definitions are closed
to extension: the proofs and definitions of a language cannot
simply be imported and extended with new constructs. This is a
manifestation of the well-known Expression Problem (EP) [42].

2. Modular reasoning: Reasoning with modular definitions re-
quires reasoning about partial definitions and composing par-
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tial proofs to obtain a complete proof. However, most reasoning
techniques (such as induction) assume complete definitions.

The lack of reuse in formalizations is somewhat surprising, be-
cause proof assistants such as Coq and Agda have powerful mod-
ularity constructs including modules [26], type classes [17, 39, 43]
and expressive forms of dependent types [10, 34]. It is reasonable to
wonder whether these language constructs can achieve better reuse.
After all, there has been a lot of progress in addressing extensibil-
ity [13, 30, 32, 40] issues in general-purpose languages using ad-
vanced type system features — although not a lot of attention has
been paid to modular reasoning.

This paper presents MTC, a framework for defining modular
meta-theory which shows that proof assistants can effectively sup-
port component reuse. MTC deals with both extensibility and mod-
ular reasoning and is implemented as a Coq library. MTC enables
writing modular definitions and proofs. To formalize a new lan-
guage or language extension, the bulk of the language can be as-
sembled from previously written components such as binders, with
related operations and proofs. As such users can focus on develop-
ing the truly new and interesting features.

The solution to extensibility in MTC was partly inspired by the
popular “Data types a la Carte” (DTC) [40] technique. However
adapting DTC to Coq, which imposes significant restrictions on re-
cursive definitions to ensure termination, proved challenging. DTC
fundamentally relies on a type-level fixpoint definition for build-
ing modular data types, but this type-level fixpoint cannot be en-
coded in Coq. MTC solves this problem by using Church encod-
ings of data types [34, 35] instead. These Church encodings allow
us to define modular data types in the DTC-style in the restricted
Coq setting. Another difference between DTC and MTC is the use
of Mendler-style folds and algebras instead of conventional folds
to express modular definitions. The advantage of Mendler-style
folds [41] and algebras is that they offer explicit control over the
evaluation order, which is important when modeling semantics of
programming languages. MTC employs similar techniques to solve
extensibility problems in proofs and inductive relations.

MTC’s solution to modular reasoning uses a novel reinterpreta-
tion of the universal property of folds. Proof methods such as struc-
tural induction cannot be used since they require closed or complete
definitions. However, because MTC relies on folds, the proof meth-
ods used in the initial algebra semantics of data types [16, 27] of-
fered an initial handle on this problem. With some care and adapta-
tions, universal properties and other derived principles work quite
well with modular Church encodings. Not only do universal prop-
erties provide a modular way to reason about proofs, but they also
overcome some theoretical issues related to Church encodings in
the Calculus of (Inductive) Constructions [34, 35].

Ubiquitous higher-order features such as binders and general
recursion can also be implemented in MTC. Binders are modeled
with a parametric HOAS [7] representation (a first-order represen-
tation would be possible too). Because such higher-order features



require general recursion, they cannot be defined inductively using
folds. To support these non-inductive features MTC uses a varia-
tion of mixins [9]. Mixins are closely related to Mendler-style folds,
but they allow uses of general recursion, and can be modeled on top
of Mendler-style Church encodings using a bounded fixpoint com-
binator.

To illustrate MTC, we present a case study modularizing several
orthogonal features of a variant of mini-ML [8]. The case study
illustrates how various features and partial type soundness proofs
can be modularly developed and verified and later composed to
assemble complete languages and proofs.

1.1 Contributions

The main contribution of our work is a novel approach to mech-
anizing meta-theory, which allows modular development of both
semantic definitions and their proofs. MTC is a framework of
reusable semantic components that builds on this approach and al-
lows defining modular mechanized meta-theory in Coq.

More technically this paper makes the following contributions:

¢ Extensibility Techniques for Mechanization: The paper pro-
vides a solution to the EP and an approach to extensible mecha-
nization of meta-theory in the restricted type-theoretic setting of
Coq. This solution offers precise control over the evaluation or-
der by means of Mendler folds and algebras. Mixins are used to
capture ubiquitous higher-order features, like PHOAS binders
and general recursion.

Non-Axiomatic Reasoning for Church Encodings: The pa-
per reinterprets the universal property of folds to recover in-
duction over Mendler-style Church encodings. This allows us
to avoid the axioms used in earlier approaches and preserves
Coq’s strong normalization.

Modular Reasoning: The paper presents modular reasoning
techniques for modular components. It lifts the recovered in-
duction principle from individual inductive features to compo-
sitions, while induction over a bounded step count enables mod-
ular reasoning about non-inductive higher-order features mod-
eled with mixins.

MTC is implemented in the Coq proof assistant and the code is
available athttp://www.cs.utexas.edu/~bendy/MTC. Our im-
plementation minimizes the programmer’s burden for adding new
features by automating the boilerplate with type classes and default
tactics. Moreover, the framework already provides modular com-
ponents for mini-ML as a starting point for new language formal-
izations. We also provide a complimentary Haskell implementation
of the computational subset of code used in this paper.

1.2 Code and Notational Conventions

While all the code underlying this paper has been developed in Coq,
we have adopted a terser syntax for the many code fragments shown
in this paper. For the computational parts, this syntax exactly coin-
cides with Haskell syntax, while it is an extrapolation of Haskell
syntax style for proposition- and proof-related concepts. The Coq
code requires the impredicative-set option.

2. Extensible Semantics in MTC

This section shows MTC’s approach to extensible and modular
semantic components in the restrictive setting of Coq. The ap-
proach is partly inspired by DTC, which is a solution to the Expres-
sion Problem in Haskell that provides composition mechanisms for
modular definitions. MTC differs from DTC in two important ways.
Firstly, Church encodings are used to avoid the termination issues
of DTC’s generally recursive definitions. Secondly, Mendler-style

folds are used instead of conventional folds to provide explicit con-
trol over evaluation order.

2.1 Data Types a la Carte

This subsection reviews the core ideas of DTC. DTC represents the
shape of a particular data type as a functor f. That functor uses
its type parameter a for inductive occurrences of the data type,
leaving the data type definition open. Arith r is an example functor
for a simple language of arithmetic expressions with literals and
addition.

data Arithr a = Lit Nat | Add a a

The explicitly recursive definition Fiz f closes the open recursion
of a functor f.

data Fizprc f = In (f (Fizpro f))

Applying Fizprc to Arithp builds the data type for arithmetic
expressions.

type Arith = Fixprc Arithp

Functions over Fiz prc f are expressed as folds of F-Algebras.
type Algebra f a =f a — a
fold ppe 2 Functor f = Algebra f a — Fixpre f — a
foldprc alg (In fa) = alg (fmap (fold pro alg) fa)

For example, the evaluation algebra of Arithr is defined as:
data Value = I Int | B Bool

eval arin :: Algebra Arithy Value
eval arin, (L1t m) =1In
eval arin, (Add (I v1) (I v2)) =1 (v1 + v2)

Note that the recursive occurrences in evalari, are of the same
type as the result type Value.' In essence, folds process the recur-
sive occurrences, so that algebras only need to specify how to com-
bine the values (for example v; and v2) resulting from evaluating
the subterms. Finally, the overall evaluation function is:

[-]:: Fizpre A — Value
[[H = fOZdDTC e’UalArith,

> [(Add (Lit 1) (Lit 2))]
3

Unfortunately, DTC’s double use of general recursion is not al-
lowed by Coq. Coq does not accept the type-level fixpoint com-
binator Fizprc f because it is not strictly positive. The fold
function is similarly problematic for Coq’s termination checker, be-
cause the recursive call does not conform to Coq’s structural restric-
tions.

2.2 Recursion-Free Church Encodings

MTC encodes data types and folds with Church encodings [5,
35], which are recursion-free. Church encodings represent (least)
fixpoints and folds as follows:

type Fiz f =Va.Algebra f a — a
fold :: Algebra f o — Fiz f — a
fold alg fa = fa alg

Both definitions are non-recursive and can be encoded in Coq (al-
though we need to enable impredicativity for certain definitions).
Because Church encodings represent data types as folds, the defi-
nition of fold is trivial: it applies the data type fold Fiz f to the
algebra.

' Boolean values are not needed yet, but they will be useful later in this
section.



For example, these are the Church encodings of Arithp’s liter-
als and addition:

lit :: Nat — Fix Arithrp

lit n = Xalg — alg (Lit n)

add :: Fixz Arithr — Fiz Arithr — Fixz Arithrp

add e1 ea = Aalg — alg (Add (fold alg e1) (fold alg e2))

The evaluation algebra and evaluation function are defined as in
DTC, and expressions are evaluated in much the same way.

2.3 Lack of Control over Evaluation

Folds are structurally recursive and, as such, capture composition-
ality of definitions, a desirable property of semantics. A disadvan-
tage of the standard fold encoding is that it does not provide the
implementer of the algebra with explicit control of evaluation. The
fold encoding reduces all subterms; the only freedom in the algebra
is whether or not to use the result.

Example: Modeling if expressions As a simple example that
illustrates the issue of lack of control over evaluation consider
modeling if expressions and their corresponding semantics. The
big-step semantics of if expressions is:

[e1] ~ true [e1] ~ false [es] ~ vs

[[if ey e ESH ~ U3

[e2] ~ va

[[if €1 €2 63ﬂ ~r V2

Using our framework of Church encodings, we could create a
modular feature for boolean expressions such as if expressions and
boolean literals as follows:

data Logicp a = If a a a -- functor
| BLit Bool

eval Logic :: Algebra Logicy Value
eval ogic (If v1 v2 v3) = if (v1 = B True) then v, else vs
eval Logic (BLit b) =B

However, an important difference with the big-step semantics is
that eval Lo4ic cannot control where evaluation happens. All it has in
hand are the values v1, v2 and v3 that result from evaluation. While
this difference is not important for simple features like arithmetic
expressions, it does matter for if expressions.

Semantics guides the development of implementations. As
such, we believe that it is important that a semantic specification
does not rely on a particular evaluation strategy (such as laziness).
This definition of evalr.g. might be reasonable in a lazy meta-
language like Haskell (which is the language used by DTC), but
it is misleading when used as a basis for an implementation in a
strict language like ML. In a strict language eval 104 is clearly not
a desirable definition because it evaluates both branches of the if
expression. Aside from the obvious performance drawbacks, this is
the wrong thing to do if the object language features, for example,
non-termination.

Using standard folds in a lazy language often recovers the de-
sired semantics by delaying a computation until it is needed. How-
ever this relies on the particular evaluation order of the meta-
language, which the can be misleading for someone trying to imple-
ment the semantics. Furthermore, this approach can be quite brittle:
in more complex object languages using folds and laziness can lead
to subtle semantic issues [3].

2.4 Mendler-style Church Encodings

To express semantics in a way that allows explicit control over
evaluation and does not rely on the evaluation semantics of the
meta-language, MTC adapts Church encodings to use Mendler-
style algebras and folds [41] which make recursive calls explicit.

type Algebra,, f a=Vr.(r - a) > fr—a

A Mendler-style algebra differs from a traditional F-algebra in that
it takes an additional argument (r — a) which corresponds to
recursive calls. To ensure that recursive calls can only be applied
structurally, the types of the arguments that appear at recursive
positions have a polymorphic type r. The use of this polymorphic
type r prevents case analysis, or any other type of inspection, on
those arguments. Using Algebra,, f a, Mendler-style folds and
Mendler-style Church encodings are defined as follows:

type Fizy f =Va.Algebra,, f a — a

fold,, :: Algebra,, f a = Fizy f — a
fold,; alg fa = fa alg

Mendler-style folds allow algebras to state their recursive calls
explicitly. For example, the definition of the evaluation of if ex-
pressions in terms of a Mendler-style algebra is:

eval Logic =2 Algebra,, Logicp Value

eval Logic [] (BLit b) =Bb

eval nogic [] (If e1 e2 e3) = if ([er] = B True) then [e2]
else [es]

Note that this definition allows explicit control over the evaluation
order just like the big-step semantics definition. Furthermore, like
the fold-definition, evalr.4i. enforces compositionality because all
the algebra can do to ey, ez or e is to apply the recursive call [-].

2.5 A Compositional Framework for Mendler-style Algebras

DTC provides a convenient framework for composing conventional
fold algebras. MTC provides a similar framework, but for Mendler-
style algebras instead of F-algebras. In order to write modular
proofs about semantics, MTC needs to regulate its definitions with
a number of laws.

Modular Functors Individual features can be modularly defined
using functors, like Arithr and Logicy. Functors are composed
with the & operator:

data (@) f g a=Inl (f a) | Inr (g a)
Fiz (Arithrp @ Logic ) represents a data type isomorphic to:

data Ezp = Lit Nat | Add Ezp Exp
| If Exzp Ezp Exp | BLit Bool

Modular Mendler Algebras A type class is defined for every
semantic function. For example, the evaluation function has the
following class:

class Fval f where
evalyy i Algebra,, f Value

In this class evaly, represents the evaluation algebra of a feature f.
Algebras of feature compositions are composed from the feature
algebras:

instance (Eval f, Eval g) = Eval (f ® g) where

evalay [-] (Inl fexzp) = evaluy [-] fexp
evalay [] (Inr gezp) = evaluy [] gezp

Overall evaluation is then defined as:

eval :: Bval f = Fizy f — Value
eval = fold,; evalay

Note that in order to avoid the repeated boilerplate of defining a new
type class for every semantic function and corresponding instance
for @, MTC defines a single generic Coq type class, FAlg, that is
indexed by the name of the semantic function. This class definition
can be found in Figure 3 and subsumes all other algebra classes
found in this paper. The paper uses more specific classes to make a
gentler progression for the reader.



class f <: g where

inyg sfa—ga

prj g a = Maybe (f a)

inj_prj :: prj ga = Just fa — ga = inj fa --law

pri_ing :: prj oinj = id -- law
instance (f <: g) = f <: (¢ ® h) where

mj fa = Inl (inj fa)

prj (Inl ga) = prj ga
prj (Inr ha) = Nothing
instance (f <: h) = f <: (¢ ® h) where
nj fa = Inr (ing fa)
prj (Inl ga) = Nothing
prj (Inr ha) = prj ha
instance f <: f where
g fa = fa
prj fa = Just fa

Figure 1. Functor subtyping.

Injections and Projections of Functors Figure 1 shows the
multi-parameter type class <:. This class provides a means to lift or
inject (¢nj) (sub)functors f into larger compositions ¢ and project
(prj) them out again. The inj_prj and prj_inj laws relate the
injection and projection methods in the <: class, ensuring that the
two are effectively inverses. The idea is to use the type class resolu-
tion mechanism to encode (coercive) subtyping between functors.
In Coq this subtyping relation can be nicely expressed because
Coq type classes [39] perform a backtracking search for match-
ing instances. As such, highly overlapping definitions like the first
and second instances are allowed. This is a notable difference to
Haskell’s type classes, which do not support backtracking. Hence,
DTC’s Haskell solution has to provide a biased choice that does
not accurately model the expected subtyping relationship.

The iny function builds a new term from the application of f to
some subterms.

ing:: f (Fizy f) — Fizp f
iny fexp = Aalg — alg (fold,, alg) fexp

The combination of iny and inj allows us to define smart
constructors such as:

inject :: (g <: f) = g (Fizm f) = Fizym f
ingect gexp = iny (inj gexp)

lit :: (Arithp <: f) = Nat — Fizpy f

lit n = ingect (Lit n)

blit :: (Logicy <: f) = Bool — Fizy f
blit b = inject (BLit b)

cond :: (Logicp <: f)
= Fizp f — Fizpg f — Fizag f — Fiz f
cond ¢ e1 ex = inject (If ¢ e1 e2)

Expressions are built with the smart constructors and used by oper-
ations like evaluation:

exp :: Fizp (Arithe @ Logicy)
exp = cond (blit True) (lit 3) (lit 2)

> eval exp
3

The out ; function exposes the toplevel functor again:

outy :: Functor f = Fizy f — f (Fizym f)
outy exp = fold,, (Arec fr — fmap (iny o rec) fr) exp

In combination with prj, we can pattern match on particular fea-
tures.

project :: (g <: f, Functor f) =
Fizn f — Maybe (g (Fizm f))
project exp = prj (outs exp)
isLit :: (Arithp <: f, Functor f) = Fizy f — Maybe Nat
isLit exp = case project exp of
Just (Lit n) — Just n
Nothing — Nothing

2.6 Extensible Semantic Values

In addition to the modularity of language features, it is also desir-
able to have modular result types for semantic functions. For ex-
ample, it is much cleaner to separate natural number and boolean
values along the same lines as the Arithr and Logic, features. To
easily achieve this extensibility, we make use of the same exten-
sional encoding as for the expression language itself:

data NValr a = I Nat
data BValr a = B Bool
data Stuckr a = Stuck

vi:: (NValp <: 1) = Nat — Fizp v
vi n = inject (I n)

vb :: (BValp <: 1) = Bool = Fizp 1
vb b = inject (B b)

stuck :: (Stuckp <: 1) = Fizpm r
stuck = inject Stuck

Besides constructors for integer (vi) and boolean (vb) values, we
also include a constructor denoting stuck evaluation (stuck).

To allow for an extensible return type r for evaluation, we need
to parametrize the Eval type class in 7:

class Fval f r where
evalyy 2 Algebra,, f (Fizy )

Now projection becomes essential for pattern matching on interme-
diate values:

instance (Stuckp <: r, NValp <: r, Functor r) =
Eval Arithrg r where
evalyy [] (Lit n) =vin
evalyy [] (Add e1 e2) =
case (project [[e1], project [ez]) of
(Just (I n1), (Just (I n2))) = vi (n1 + n2)
_ — stuck

This concludes MTC’s support for extensibility of data types and
functions. To cater for meta-theory, MTC also addresses reasoning
about these modular definitions.

3. Reasoning with Church Encodings

While Church encodings are the foundation of extensibility in
MTC, Coq does not provide induction principles for them. It is
an open problem to do so without resorting to axioms. MTC solves
this problem with a novel axiom-free approach based on adapta-
tions of two important aspects of folds discussed by Hutton [19].

3.1 The Problem of Church Encodings and Induction

Coq’s own original approach [35] to inductive data types was based
on Church encodings. It is well-known that Church encodings of



inductive data types have problems expressing induction principles
such as A;yq, the induction principle for arithmetic expressions.

Aind :: VP :: (Arith — Prop).
VH; :: (Vn.P (Lit n)).
VH,:: (Va b.Pa— Pb— P (Add ab)).
Va.P a
Amd P Hl Ha e =
case ¢ of
Lit n —Hn
Add x y — Hy, a b (Aina P H H, )
(Aina P Hi Ha y)

The original solution to this problem in Coq involved axioms for
induction, which endangered strong normalization of the calculus
(among other problems). This was the primary motivation for the
creation of the calculus of inductive constructions [34] with built-in
inductive data types.

Why exactly are proofs problematic for Church encodings,
where inductive functions are not? After all, a Coq proof is es-
sentially a function that builds a proof term by induction over a
data type. Hence, the Church encoding should be able to express a
proof as a fold with a proof algebra over the data type, in the same
way it represents other functions.

The problem is that this approach severely restricts the propo-
sitions that can be proven. Folds over Church encodings are de-
structive and their result type cannot depend on the term being
destructed. For example, it is impossible to express the proof for
type soundness because it performs induction over the expression e
mentioned in the type soundness property.

VelllFe:t—=TF[e]:t

This restriction is a showstopper for the semantics setting of this
paper, as it rules out proofs for most (if not all) theorems of interest.
Supporting relevant semantic reasoning requires a new approach
that does not suffer from this restriction.

3.2 Type Dependency with Dependent Products

Hutton’s first aspect of folds is that they become substantially more
expressive with the help of tuples. The dependent products in Coq
take this observation one step further. While a fold algebra cannot
refer to the original term, it can simultaneously build a copy e of
the original term and a proof that the property P e holds for the
new term. As the latter depends on the former, the result type of
the algebra is a dependent product X e. P e. A generic algebra can
exploit this expressivity to build a poor-man’s induction principle,
e.g., for the Arithr functor:

A2, VP :: (Fizyr Arithg — Prop).
VH; :: (Vn.P (lit n)).
VH,: (Ya b.P a— Pb— P (add ab)).
Algebra Arithp (X e.P e)
A%, P H H, e =
case e of
Litn — 3 (lit n) (H; n)
Add z y — 3 (add (m1 z) (71 y)) (Ha (m1 z) (M1 y)
(m2 z) (72 y))

Provided with the necessary proof cases, A2, can build a specific
proof algebra. The corresponding proof is simply a fold over a
Church encoding using this proof algebra.

Note that since a proof is not a computational object, it makes
more sense to use regular algebras than Mendler algebras. Fortu-
nately, regular algebras are compatible with Mendler-based Church
encodings as the following variant of fold; shows.

fold’y; : Punctor f = Algebra f a — Fizy f — a
foldy; alg = fold,; (Arec — alg o fmap rec)

3.3 Term Equality with the Universal Property

Of course, the dependent product approach does not directly prove
a property of the original term. Instead, given a term, it builds a
new term and a proof that the property holds for the new term. In
order to draw conclusions about the original term from the result,
the original and new term must be equal.

Clearly the equivalence does not hold for arbitrary terms that
happen to match the type signatures Fiz s f for Church encodings
and Algebra f (X e.P e) for proof algebras. Statically ensuring
this equivalence requires additional well-formedness conditions on
both. These conditions formally capture our notion of Church en-
codings and proofs algebras.

3.3.1 Well-Formed Proof Algebras

The first requirement, for algebras, states that the new term pro-
duced by application of the algebra is equal to the original term.

Yalg :: Algebra f (X e.P e).m o alg = iny o fmap m

It is easy to verify that the A7 ; proof algebra above satisfies this

property. Thanks to AZ,,’s parametric nature, there is no need
for other proof algebras over Arithr. Hence, in general, well-
formedness needs to be proven only once for any data type and
induction algebra.

3.3.2 Well-Formed Church Encodings

Well-formedness of algebras is not enough because a proof is not
a single application of an algebra, but rather a fold’y, of it. So the
fold’,; used to build a proof must be a proper fold";. As the Church
encodings represent inductive data types as their folds, this boils
down to ensuring that the Church encodings are well-formed.

Hutton’s second aspect of folds formally characterizes the defi-
nition of a fold using its universal property:

h = fold’y; alg < hoiny = alg h

In an initial algebra representation of an inductive data type,
there is a single implementation of fold’,, that can be checked once
and for all for the universal property. In MTC’s Church-encoding
approach, every term of type Fizas f consists of a separate fold’,
implementation that must satisfy the universal property. Note that
this definition of the universal property is for a fold’,; using a tradi-
tional algebra. As the only concern is the behavior of proof algebras
(which are traditional algebras) folded over Church encodings, this
is a sufficient characterization of well-formedness. Hinze [18] uses
the same characterization for deriving Church numerals.

Fortunately, the left-to-right implication follows trivially from
the definitions of fold’; and in s, independent of the particular term
of type Fixns f. Hence, the only hard well-formedness require-
ment for Church-encoded terms e is that they satisfy the right-to-
left implication of the universal property.

type UP f e =
Va (alg :: Algebra,, f a) (h:: Fizy f — a).
(Ve'.h (ing ') = alg h ') = h e = foldy; alg e
This property is easy to show for any given smart constructor.
MTC actually goes one step further and redefines its smart con-

structors in terms of a new iny, that only builds terms with the
universal property:

iny = Functor f = f (S e.UP fe) X e.UP f e

We constrain ourselves to reasoning about Church-encoded terms
built from these smart-er constructors, as all of the nice properties



of initial algebras hold for these terms and, importantly, we have a
handle on reasoning about them.

Two known consequences of the universal property are the
famous fusion law, which describes the composition of a fold with
another computation,

hoalg, = alg, o fmap h = ho foldy, alg, = foldy, alg,
and the lesser known reflection law,
fold'y; iny = id
3.3.3 Soundness of Input-Preserving Folds

Armed with the two well-formedness properties, we can now prove
the key theorem that allows us to build inductive proofs over
Church encodings:

Theorem 3.1. Given a functor f, property P, and a well-formed
P-proof algebra alg, for any Church-encoded f-term e with the
universal property, we have that P e holds.

Proof. Given that fold}; alg e has type 3 ¢’.P €', we have
that 72 (fold, alg e) is a proof for P (w1 (fold’; alg e)). From
that the lemma is derived as follows:

P (m1 (fold); alg )
= {-well-founded algebra and fusion law -}
P (fold'y, ing ¢€)
<= {-reflection law -}
Pe O

Theorem 3.1 enables the construction of a statically-checked proof
of correctness as a input-preserving fold of a proof algebra. This
provides a means to achieve our true goal: modular proofs for
extensible Church encodings.

4. Modular Proofs for Extensible Church
Encodings

The aim of modularity in this setting is to first write a separate
proof for every feature, and then compose the individual proofs
into an overall proof for the feature composition. The feature proofs
should be independent from one another, so that they can be reused
for different feature compositions.

Fortunately, since proofs are essentially folds of proof algebras,
all of the reuse tools developed in Section 2 apply here. In partic-
ular, composing proofs is a simple matter of combining the proof
algebras with @. Nevertheless, the transition to modular compo-
nents does introduce several wrinkles in the reasoning process.

4.1 Algebra Delegation

Due to injection, propositions range over the abstract (super)functor
f of the component composition. The signature of A% ;, for exam-
ple, becomes:
AZ o Nf. Arithe <: f =

VP :: (Fiza f — Prop).

VH; :: (VYn.P (lit n)).

VH,:: (Va b.P a— P b— P (add ab)).

Algebra Arithp (X e.P e)

Consider building a proof of
Ve.typeof e = Just nat — 3 m :: nat.eval e = vi m
using A%, ;. Then, the first proof obligation is
typeof (lit n) = Just nat — 3 m :: nat.eval (lit n) = vi m

While this appears to follow immediately from the definition of
eval, recall that eval is a fold of an abstract algebra over f and is

instance (Eval f, Eval g, Eval hy, WF_Eval | g) =
WF _Eval (f <: g® h)

instance (Eval f, Eval g, Eval hy, WF_Eval f h) =
WF _Eval (f <: g® h)

instance (Eval f) = WF_Eval f f

Figure 2. WF_FEval instances.

thus opaque. In order to proceed, we need an additional property
on the behavior of this F-algebra, namely, that it delegates to the
Arith p-algebra, as expected:

Vr (rec :: 1 — Nat).evalay Tec o inj = evalqy rec

This delegation behavior follows from our approach: the intended
structure of f is a @-composition of features, and ®-algebras are in-
tended to delegate to the feature algebras. We can formally capture
the delegation behavior in a type class that serves as a precondition
in our modular proofs.

class (Fval f, Eval g,f <: g) =
WF _Eval f g where
wf _eval_alg ::Vr (rec:: v — Nat) (e:: f 7).
evalyy rec (inj e g r) =
evalqy Tec e

By providing the three instances of this class in Figure 2, one for
each instance of <:, Coq can automatically build a proof of well-
formedness alongside with the composite algebra.

4.1.1 Automating Composition

A similar approach is used to automatically build the definitions
and proofs of languages from pieces defined by individual features.
In addition to functor and algebra composition, the framework de-
rives several important reasoning principles as type class instances
similarly to WF_Eval. These include the DistinctSubFunctor
class, which ensures that injections from two different subfunctors
are distinct, and the WF _Functor class that ensures that fmap dis-
tributes through injection.

Another example of automatic composition is the WF_Ind
type class from Section 3.3.1, which enforces the well-formedness
property on algebras. Because proofs of its proj_eq law have a very
regular shape, they are actually easy to automate with Coq tactics.
Because Coq’s type class implementation is a variant of the auto
tactic, it is possible to tell the type class inferencer to execute a
default proof script to build a WF _Ind instance on demand. If the
script fails, Coq searches its instance database for custom proofs.
However, none of the proof algebras from our case study need
custom WF'_Ind proofs; all are covered by the same proof script.

Figure 3 provides a summary of all the classes defined in MTC,
noting whether the base instances of a particular class are provided
by the user or inferred with a default instance. Importantly, in-
stances of all these classes for feature compositions are built au-
tomatically, analogously to the instances in Figure 2.

4.2 Extensible Logical Relations

Most proofs appeal to rules of a logical relation that defines an
important property. In Coq such logical relations are expressed as
inductive data types of kind Prop. For instance, a soundness proof
makes use of a judgment about the well-typing of values.

data WTValue :: Value — Type — Prop where
WTNat ::Vn.WTValue (I n) TNat
WTBool ::Vb. WT Value (B b) TBool



Class Definition Description
class Functor f where
fmap (a — b) - (f o= fb) Functors
fmap_id :: fmap id = id Supplied by the user
fmap_fusion :: Vg h.
fmap h o fmap g = fmap (h o g)
class f <: g where
ing sfa—ga
pry g a = Maybe (f a) Functor Subtyping
inj_prj :: prj ga = Just fa — Inferred
ga = inj fa

prj-ing :: prj o inj = id

class (Functor f, Functor g, f <: g) =
WEF _Functor f g where
wf _functor ::Va b (h :: a — b).
fmap h oing = inj o fmap h

Functor Delegation
Inferred

class (Functor h,f <: h,g <: h) =
DistinctSubFunctor f g h where
inj-discriminate :: Va (fe :: f a)
(ge:: g a).inj fe # inj ge

Functor Discrimination
Inferred

class FAlg Name t a f where Function Algebras

f-algebra : Mizin T F A Supplied by the user
class (f <: g, FAlg N t a g) =
WEF_FAlg (alg :: FAlg N t a g) where Algebra Delegation
wf _algebra :: Vrec (ft :: f t). Inferred
f-algebra rec (inj fa) =
f-algebra rec fa
class PAlg Name f a where Proof.Algebras
p-algebra :: Algebra f a Supplied by the User
class (Functor f, Functor g,f <: g) =
WE-Ind g (alg:: PAlg N (P ¢) ) Valid Proof Algebras
where Inferred

proj-eq :: Ve.mwy (p-algebra e) =
ing (ing (fmap 71 €))

Figure 3. Type classes provided by MTC

When dealing with logical relations over extensible data types, the
logical relations must be extensible as well. Extensibility of logical
relations is obtained in much the same way as that of inductive data
types: by means of Church encodings. The important difference
is that logical relations are indexed data types; e.g., WT Value is
indexed by a value and a type. This requires functors indexed by
values z of type 4. For example, WT'Natr v t is the corresponding
indexed functor for the extensible variant of WT'Nat above.

data WTNatp ::v — ¢t — (WTV = (v,t) — Prop)
— (v, t) = Prop
where WTNat :: Vn.(NValp <: v, Functor v
, NTypp <: t, Functor t)
= WTNatr vt WT'V (vi n, tnat)

The index here is a pair (v, t) of a value and a type. As object-
language values and types are themselves extensible, the cor-
responding meta-language types v and ¢ are parameters of the
WTNat functor.

To manipulate extensible logical relations, we need indexed
algebras, fixpoints and operations:

type iAlg i (f :: (¢ = Prop) — (i — Prop)) a
=V ifax—ax

type iFiz i (f :: (i = Prop) — (¢ — Prop)) (z :: 1)
=Va:i— PropiAlgfa—acx..

As these indexed variants are meant to construct logical rela-
tions, their parameters range over Prop instead of Set. Fortunately,

this shift obviates the need for universal properties for ¢Fiz-ed
values: it does not matter how a logical relation is built, but sim-
ply that it exists. Analogues to WF _Functor, WF _Algebra, and
DistinctSubFunctor are similarly unnecessary.

4.3 Case Study: Soundness of an Arithmetic Language

Here we briefly illustrate modular reasoning with a case study
proving soundness for the Arithr @ Logicy language.

The previously defined eval function captures the operational
semantics of this language in a modular way and reduces an ex-
pression to a NValr @ BValr & Stuckr value. Its type system is
similarly captured by a modularly defined type-checking function
typeof that maybe returns a T'Nat p @ TBool  type representation:

data T'Natp t = TNat
data T'Boolr t = T'Bool

For this language soundness is formulated as:

Theorem soundness ::
Ve t env, typeof e = Just t — WTValue (eval e env) t

The proof of this theorem is a fold of a proof algebra over the ex-
pression e which delegates the different cases to separate proof al-
gebras for the different features. A summary of the most notewor-
thy aspects of these proofs follows.

Sublemmas The modular setting requires that every case analy-
sis is captured in a sublemma. This is necessary because the super-
functor is abstract, and hence the cases are not known locally; they
have to be handled in a distributed fashion. Hence, modular lemmas
built from proof algebras are not just an important tool for reuse in
MTC - they are the main method of constructing extensible proofs.

Universal Properties Everywhere Universal properties are key to
reasoning, and should thus be pervasively available throughout the
framework. MTC has more infrastructure to support this.

As an example of their utility when constructing a proof, we
may wish to prove a property of the extensible return value of an
extensible function. Consider the Logic case of the soundness
proof: given that typeof (If ¢ e1 e2) = Some t1, we wish to
show that WTValue (eval (If ¢ e1 e2)) ti. If ¢ evaluates to
false, we need to show that WT Value es t1.

Since If ¢ e1 ez has type t1, the definition of typeof says that
e1 has type t::

typeof 4 rec (If c e1 e2) =

case project (rec c¢) of

Just T'Bool
— case (rec e1, rec ez) of
(Just t1, Just to) — if eqy,,. t b

then Just 1

else Nothing
— Nothing

Nothing  — Nothing

In addition, the type equality test function, eq,,,., says that e; and
ez have the same type: eq,,,.. t1 2 = true. We need to make use
of a sublemma showing that V1 t2. eqy,,. 1 t2 = true — 4 =
t2. As we have seen, in order to do so, the universal property must
hold for typeof e;. This is easily accomplished by packaging a
proof of the universal property alongside ¢; in the typeof function.

Using universal properties is so important to reasoning that
this packaging should be the default behavior, even though it is
computationally irrelevant. Thankfully, packaging becomes trivial
with the use of smarter constructors. Moreover, these constructors
have the additional advantage over standard smart constructors of
being injective: lit j = lit k — j = k, an important property
for proving inversion lemmas. The proof of injectivity requires that



the subterms of the functor have the universal property, established
by the use of m} To facilitate this packaging, we provide a type
synonym that can be used in lieu of Fiz s in semantic function
signatures:

type UPr f = Functor f = X e.(UP f e)

Furthermore, the universal property should hold for any value sub-
ject to proof algebras, so it is convenient to include the property in
all proof algebras. MTC provides a predicate transformer, UP p,
that captures this and augments induction principles accordingly.

UPp :: Functor f =
(P:Ve.UP f e — Prop) — (e:: Fixp f) — X e.(P e)

Equality and Universal Properties While packaging universal
properties with terms enables reasoning, it does obfuscate equality
of terms. In particular, two UP  terms ¢ and ¢’ may share the same
underlying term (i.e., w1 t = w1 t’), while their universal property
proof component is different.”

This issue shows up in the definition of the typing judgment
for values. This judgment needs to range over UPr f, values and
UPF f; types (where f, and f; are the value and type functors),
because we need to exploit the injectivity of inject in our inversion
lemmas. However, knowing WTValue v t and m1 ¢t = m t
no longer necessarily implies W1 Value v t' because t and ¢’
may have distinct proof components. To solve this, we make use of
two auxiliary lemmas W'V, , and WT'V;, ; that establish the
implication:

Theorem WT'Vy, , (i :: WT'Value v t) =

Yo'.omov=m v — WTValue v’ t

Theorem WT'V,, ¢ (i:: WTValue v t) =
Vimt =m t' = WTValue v t/

Similar lemmas are used for other logical relations. Features which
introduce new rules need to also provide proofs showing that they
respect this “’safe projection” property.

5. Higher-Order Features

Binders and general recursion are ubiquitous in programming lan-
guages, so MTC must support these sorts of higher-order features.
The untyped lambda calculus demonstrates the challenges of im-
plementing both these features with extensible church encodings.

5.1 Encoding Binders

To encode binders we use a parametric HOAS (PHOAS) [7] repre-
sentation. PHOAS allows binders to be expressed as functors, while
still preserving all the convenient properties of HOAS.

Lambda r is a PHOAS-based functor for a function feature with
function application, abstraction and variables. The PHOAS style
requires Lambda r to be parameterized in the type (v) of variables,
in addition to the functor’s usual type parameter r for recursive
occurrences.

data Lambdar v r = Var v | App r v | Lam (v — 1)
As before, smart constructors build extensible expressions:
var :: (Lambdar v <: f) = v — Fizym f
var v = inject (Var v)
app :: (Lambdap v <: f) = Fizp f — Fizm f — Fizm |
app e1 ez = inject (App e1 e2)
lam :: (Lambdar v <: f) = (v — Fizm f) = Fizm |
lam f = inject (Lam f)

2 Actually, as proofs are usually opaque, we may not know whether they are
equal or different.

5.2 Defining Non-Inductive Evaluation Algebras

Defining an evaluation algebra for the Lambdar feature presents
additional challenges. Evaluation of the untyped lambda-calculus
can produce a closure, requiring a richer value type than before:

data Value =
Stuck | I Nat | B Bool | Clos (Value — Value)

Unfortunately, Coq does not allow such a definition, as the closure
constructor is not strictly positive (recursive occurrences of Value
occur both at positive and negative positions). Instead, a closure is
represented as an expression to be evaluated in the context of an
environment of variable-value bindings. The environment is a list
of values indexed by variables represented as natural numbers Nat.

type Env v = [v]

The modular functor Closurer integrates closure values into the
framework of extensible values introduced in Section 2.6.

data Closurer f a = Clos (Fizy f) (Env a)

closure :: (Closurer f <: 1) =
Fizyr f — Env (Fizy v) — Fizar v
closure mf e = inject (Clos mf e)

A first attempt at defining evaluation is:

eValrambda = (Closurer f <: r, Stuckp <: r, Functor r) =
Algebra,, (Lambdar Nat) (Env (Fizn 1) — Fiza )
evalLambda [-] exp env =
case exp of
Var index — env !l index
Lam f — closure (f (length env)) env
App e1 e2 —
case project $ [e1] env of
Just (Clos es env') — [es] ([e2] env : env’)
_ — stuck

The function evalpampda instantiates the type variable v of the
Lambdar v functor with a natural number Nat, representing an
index in the environment. The return type of the Mendler algebra
is now a function that takes an environment as an argument. In
the variable case there is an index that denotes the position of the
variable in the environment, and evalrampde Simply looks up that
index in the environment. In the lambda case evalrumpda builds
a closure using f and the environment. Finally, in the application
case, the expression e; is evaluated and analyzed. If that expression
evaluates to a closure then the expression e is evaluated and added
to the closure’s environment (enwv’), and the closure’s expression es
is evaluated under this extended environment. Otherwise e; does
not evaluate to a closure, and evaluation is stuck.

Unfortunately, this algebra is ill-typed on two accounts. Firstly,
the lambda binder function f does not have the required type
Nat — Fiznm f. Instead, its type is Nat — 7, where 7 is uni-
versally quantified in the definition of the Algebra ,, algebra. Sec-
ondly, and symmetrically, in the App case, the closure expression
es has type Fiz s f which does not conform to the type r expected
by [-] for the recursive call.

Both these symptoms have the same problem at their root.
The Mendler algebra enforces inductive (structural) recursion by
hiding that the type of the subterms is Fizps f using universal
quantification over r. Yet this information is absolutely essential for
evaluating the binder: we need to give up structural recursion and
use general recursion instead. This is unsurprising, as an untyped
lambda term can be non-terminating.



5.3 Non-Inductive Semantic Functions

Mixin algebras refine Mendler algebras with a more revealing type
signature.

type Mizin t fa=(t wa) > ft—a

This algebra specifies the type ¢ of subterms, typically Fiz s f, the
overall expression type. With this mixin algebra, evaliampda 1S NOW
well-typed:

eValrambda 2 (Closurer e <: v, Stuckr <: v) =
Mizin (Fizn e) (Lambdar Nat)
(Env (Fizy v) — Fizy v)

Mixin algebras have an analogous implementation to Eval as type
classes, enabling all of MTC’s previous composition techniques.

class Fvalx f g r where
eValzayg 2 Mizin (Fizar ) g (Env (Fizy v) — Fizyr 1)

instance (Stuckp <: r, Closurer f <: r, Functor r) =
Evalx f (Lambdar Nat) r where
evalzalg = €valLambda

Although the code of evalLambda still looks suspiciously generally
recursive, evalrambda 1S actually not recursive because the recursive
calls are abstracted as a parameter (like with Mendler algebras).
As such, evalpambda does not raise any issues with Coq’s termi-
nation checker. Mixin algebras resemble the open recursion style
which is used to model inheritance and mixins in object-oriented
languages [9]. Still, Mendler encodings only accept Mendler al-
gebras, so using mixin algebras with Mendler-style encodings re-
quires a new form of fold.

In order to overcome the problem of general recursion, the open
recursion of the mixin algebra is replaced with a bounded inductive
fixpoint combinator, bounded Fiz, that returns a default value if the
evaluation does not terminate after n recursion steps.

boundedFiz :: Vf a.Functor f = Nat — a —
Mizin (Fizxy f) f a = Fizm f — a
boundedFix n def alg e =
case n of
0 — def
m — alg (boundedFix (m — 1) def alg) (outs €)

Note that the argument e is a Mendler-encoded expression of type
Fizr f. The key idea is to use out ¢ to unfold the expression once
into a value of type f (Fizn f). boundedFiz then applies the
algebra to that value recursively. In essence boundedFiiz can define
generally recursive operations by case analysis, since it can inspect
values of the recursive occurrences. The use of the bound prevents
non-termination.

Bounded Evaluation Evaluation can now be modularly defined
as a bounded fixpoint of the mixin algebra Fvalx. The definition
uses a distinguished bottom value, L, that represents a computation
which does not finish within the given bound.

data Lr a = Bot
1= inject Bot
evalx :: (Functor f, Lp<:r, Evalx f f r) =
Fix s f — Fizpy r
evalx e = boundedFiz 1000 (\- —_L) evalyay €[]

5.4 Backwards compatibility

The higher-order PHOAS feature has introduced a twofold change
to the algebras used by the evaluation function:

1. eval x uses mixin instead of Mendler algebras.

Algebras

Controlled General
Evaluation Recursion
| | Mendler (== Mixin
Algebras ’—| > Algebras il > Algebras
® : N
g Parameterized | | Par’{a,gs(t;laélrzed [ Parameterized
£ Algebras ’—| Mixin Algebras
(11]

Figure 4. Hierarchy of Algebra Adaptation

2. eval x now expects algebras over a parameterized functor.

Fortunately, the first change is easily accommodated because
Mendler algebras are compatible with mixin algebras. If a non-
binder feature defines evaluation in terms of a Mendler algebra,
it does not have to define a second mixin algebra to be used along-
side binder features. The mendlerToMizin function automatically
derives the required mixin algebra from the Mendler algebra.

mendlerToMixin :: Algebra,, f a — Mizin (Fiza g) f a
mendlerToMizin alg = alg

This conversion function can be used to adapt evaluation for the
arithmetic feature to a mixin algebra:

instance Eval Arithp f = Evalx f Arithrp r where
evalzag [-] e env =
mendlerToMizin evalAlgebra (flip [] env) e

The algebras of binder-free features can be similarly adapted to
build an algebra over a parametric functor. Figure 4 summarizes
the hierarchy of algebra adaptations. Non-parameterized Mendler
algebras are the most flexible because they can be adapted and
reused with both mixin algebras and parametric superfunctors.
They should be used by default, only resorting to mixin algebras
when necessary.

6. Reasoning with Higher-Order Features

The switch to a bounded evaluation function over parameterized
Church encodings requires a new statement of soundness.

Theorem soundnessx ::Vf fi env t I.

Vey :: Fizy (f (Maybe (Fiza ft)))

Veg :: Fizyr (f Nat). 'k e = ep —

typeof e; = Just t = WTValue (evalx ez env) t

The proof of soundnessx features two substantial changes to
the proof of soundness from Section 4.3.

6.1 Proofs over Parametric Church Encodings

While, in its generality, soundness x mentions two distinct expres-
sions e; and ez, the toplevel invocation uses two instances of the
same PHOAS expression e :: Vv.Fizar (f v). They instantiate v
with different types, according to the need of the typing and evalu-
ation algebras.

In recursive invocations of soundnessy, that connection be-
tween e; and eg is no longer apparent, and as they have differ-
ent types, Coq considers them to be distinct. Hence, case analysis
on one does not convey information about the other. Chlipala [7]
shows that the connection can be retained with the help of an aux-
iliary equivalence relation I' - e; = ez, where the environment
I" keeps track of the current variable bindings. The toplevel invo-
cation, where the common origin of e; and e is apparent, can
easily supply a proof of this relation. By induction on this proof,



recursive invocations of soundnessx can then analyze e; and ey
in lockstep. Figure 5 shows the rules for determining equivalence
of lambda expressions.

(x,2') €T I'ke =é€) Tk ex=é)
'~ var x = var @’ 't app e1 e2 = app €} e
(EQV-VAR) (EQV-APP)

Vzz'.(z,z"),T F f(z) = f(z')
't lam f = lam f’

(EQV-ABS)

Figure 5. Lambda Equivalence Rules

6.2 Proofs for Non-Inductive Semantics Functions

Proofs for semantic functions that use boundedFix proceed by
induction on the bound. Hence, the reasoning principle for mixin-
based bounded functions f is in general: provided a base case
Ve, P(f 0 e), and inductive case Vn e, (Ve', P(f n €')) —
Ve, P(f (n+ 1) e) hold, Vn e, P(f n e) also holds.

In the base case of soundnessyx, the bound has been reached
and evalx returns L. The proof of this case relies on adding to the
WTValue judgment the WF-BOT rule stating that every type is
inhabited by L.

LT (WF-Bor)
Hence, whenever evaluation returns L, soundness trivially holds.
The inductive case is handled by a proof algebra whose state-
ment includes the inductive hypothesis provided by the induction
on the bound: IH :: Vne,(Ve', P(f ne')) — P(f (n+ 1) e).
The App e1 ez case of the soundness theorem illustrates the rea-
son for including IH in the statement of the proof algebra. After
using the induction hypothesis to show that evalx e env pro-
duces a well-formed closure Clos es env’, we must then show
that evaluating e3 under the (evalx ez env) : env’ environment is
also well-formed. However, es is not a subterm of App e1 ez, so
the conventional induction hypothesis for subterms does not apply.
However, because evalx e3 ((evalx ez env): env’) is run with a
smaller bound, the bounded induction hypothesis /H can be used.

6.3 Proliferation of Proof Algebras

In order to incorporate non-parametric inductive features in the
soundness x proof, their existing proof algebras need to be adapted
for the use in the above proof. In general, to cater for the four pos-
sible proof signatures of soundness, a naive approach requires four
different proof algebras for an inductive non-parametric feature.’
This is not acceptable, because reasoning about a feature’s sound-
ness should be independent of how a language adapts its evaluation
algebra. Hence, MTC allows features to define a single proof alge-
bra, and provides the means to adapt and reuse that proof algebra
for the four variants. These proof algebra adaptations rely on medi-
ating type class instances which automatically build an instance of
the new proof algebra from the original proof algebra.

6.3.1 Adapting Proofs to Parametric Functors

Adapting a proof algebra over the expression functor to one over
the indexed functor for the equivalence relation first requires a
definition of equivalence for non-parametric functors. Fortunately,
equivalence for any such functor f,,, can be defined generically:

I'a=b
I inject(C @) = inject(C b)

(EQV-NP)

3 Introducing type-level binders would further compound the situation with
four possible signatures for the typeof algebra.

EQV-NP states that the same constructor C' of f,,;,, applied to
equivalent subterms @ and b, produces equivalent expressions.

The mediating type class adapts f,, proofs of propositions on
two instances of the same PHOAS expression, like soundness, to
proof algebras over the parametric functor.

instance (PAlg N P f.,) = iPAlg N P (EQV-NP f,,)

This instance requires a small concession: proofs over f,, have to
be stated more generally, in terms of two expressions with distinct
superfunctors f and f’ rather than two occurrences of the same
expression. Note that such induction over two expressions requires
a variant of WF _Ind for pairs of fixpoints.

6.3.2 Adapting Proofs to Non-Inductive Semantic Functions

To be usable regardless of whether fold ,; or boundedFix is used
to build the evaluation function, an inductive feature’s proof needs
to reason over an abstract fixpoint operator and induction principle.
This is achieved by only considering a single step of the evaluation
algebra and leaving the recursive call abstract:

type soundness e tp ev =
Venv t.tp (outy (w1 e)) = Just t —
WTValue (ev (out_t' (w1 e)) env) t)

type soundnessqig Tect rece
(typeof 414 = Mizin (Fizn f) f (Maybe (Fizy t))
(evalaig :: Mizin (Fizar f) f (Env (Fiza 1) — Fizy 1))
(e:: Fiza f) (e-UP' :: UP e) =
VIHc :: (Ve'.
soundness e’ (typeofalg rec) (evalaig Tece) —
soundness e’ recy rece).
soundness e (typeof i, rect) (evalaig rece)

The hypothesis [Hc is used to relate calls of rec. and rec; to
applications of evalaig and typeof ;.

A mediating type class instance again lifts proof algebras with
this signature to one that includes the Induction Hypothesis gener-
ated by induction on the bound of boundedFiz.

instance (PAlg N P E) = iPAlg N (IH — P) E

7. Case Study

As a demonstration of the MTC framework, we have built a set
of five reusable language features and combined them into a mini-
ML [8] variant. The study also builds five other languages from
these features.* Figure 6 presents the syntax of the expressions,
values, and types provided by the features; each line is annotated
with the corresponding feature.

The Coq files that implement these features average roughly
1100 LoC and come with a typing and evaluation function in ad-
dition to soundness and continuity proofs. Each language needs on
average only 100 LoC to build its semantic functions and soundness
proofs from the files implementing its features. The framework it-
self consists of about 2500 LoC.

The generic soundness proof, reused by each language, relies
on a proof algebra to handle the case analysis of the main lemma.
Each case is handled by a sub-algebra. These sub-algebras have
their own set of proof algebras for case analysis or induction over
an abstract superfunctor. The whole set of dependencies of a top-
level proof algebra forms a proof interface that must be satisfied by
any language which uses that algebra.

Such proof interfaces introduce the problem of feature interac-
tions [4], well-known from modular component-based frameworks.
In essence, a feature interaction is functionality (e.g., a function or

4 Also available at http: //www.cs.utexas . edu/~bendy/MTC



=N|e+e Arith

| B | if e then e else e Bool

| case e of {z = e ; S n = e}  NatCase
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| fix x : T.e Recursion
Vi=N Arith T ::= nat Arith
| B Bool | bool Bool
| closure e V. Lambda | T = T Lambda

Figure 6. mini-ML expressions, values, and types

a proof) that is only necessary when two features are combined. An
example from this study is the inversion lemma which states that
values with type nat are natural numbers: - x : nat — x :: N.
The Bool feature introduces a new typing judgment, WT-BOOL
for boolean values. Any language which includes both these fea-
tures must have an instance of this inversion for WT-BOOL. Our
modular approach supports feature interactions by capturing them
in type classes. A missing case, like for WT-BOOL, can then be
easily added as a new instance of that type class, without affecting
or overriding existing code.

In the case study, feature interactions consist almost exclusively
of inversion principles for judgments and the projection princi-
ples of Section 4.3. Thankfully, their proofs are relatively straight-
forward and can be dispatched by tactics hooked into the type
class inference algorithm, analogously to the default instances for
WZF _Ind discussed in Section 3.3.1. These tactics help minimizing
the number of interaction type class instances, which could other-
wise easily grow exponentially in the number of features.

8. Related Work

This section discusses related work.

Modular Reasoning There is little work on mechanizing mod-
ular proofs for extensible components. An important contribution
of our work is how to use universal properties to provide modular
reasoning techniques for encodings of inductive data types that are
compatible with theorem provers like Coq. Old versions of Coq,
based on the calculus of constructions [10], also use Church en-
codings to model inductive data types [35]. However, the inductive
principles to reason about those encodings had to be axiomatized
and, among other problems, they endangered strong normalization
of the calculus. The calculus of inductive constructions [34] has
inductive data types built-in and was introduced to avoid the prob-
lems with Church encodings. In our work we go back to Church
encodings to allow extensibility. However, we do not use standard
induction principles since such inductive principles are themselves
not extensible. Instead, by using a reasoning framework based on
universal properties we get two benefits for the price of one: uni-
versal properties allow modular reasoning and they can be proved
without axioms in Coq.

Extensibility Our approach to extensibility combines and extends
ideas from existing solutions to the expression problem. The type
class infrastructure for (Mendler-style) F-algebras is inspired by
DTC [13, 40]. However type-level fixpoints, central to DTC, can-
not be used in Coq because they require general recursion. To avoid
general recursion, we use least-fixpoints encoded as Church encod-
ings [5, 35]. Church encodings inspired other solutions to the ex-
pression problem before (especially in object-oriented languages)
[30-32]. However those solutions do not use F-algebras: instead,
they use an isomorphic representation called object algebras [31].
Object algebras are a better fit for languages where records are the

main structuring construct (such as OO languages). Our solution
differs from previous approaches in the use of Mendler-style F-
algebras instead of conventional F-algebras or object algebras. Un-
like previous solutions to the expression problem, which focus only
on the extensibility aspects of implementations, we also deal with
modular reasoning and the extensibility aspects of proofs and logi-
cal relations.

Mechanized Meta-Theory and Reuse Several ad-hoc tool-based
approaches provide reuse, but none is based on a proof assistant’s
modularity features alone. The Tinkertype project [23] is a frame-
work for modularly specifying formal languages. It was used to
format the language variants used in Pierce’s “Types and Program-
ming Languages” [37], and to compose traditional pen-and-paper
proofs.

Both Boite [6] and Mulhern [29] consider how to extend exist-
ing inductive definitions and reuse related proofs in the Coq proof
assistant. Both their techniques rely on external tools that are no
longer available and write extensions with respect to an existing
specification. As such features cannot be checked independently or
easily reused with new specifications. In contrast, our approach is
fully implemented within Coq and allows for independent develop-
ment and verification of features.

Delaware et al. [12] applied product-line techniques for modu-
larizing mechanized meta-theory proofs. As a case study, they built
type safety proofs for a family of extensions to Featherweight Java
from a common base of features. Importantly, composition of these
features was entirely manual, as opposed to the automated compo-
sition developed here.

Binding To minimize the work involved in modeling binders,
MTC provides reusable binder components. The problem of mod-
eling binders has received a lot of attention before. Certain proof
assistants and type theories address this problem with better sup-
port for names and abstract syntax [36, 38]. In general-purpose
proof assistants like Coq, however, such support is not available.
A popular approach, widely used in Coq formalizations, is to use
mechanization-friendly first-order representations of binders such
as the locally nameless approach [1]. This involves developing a
number of straightforward, but tedious infrastructure lemmas and
definitions for each new language. Such tedious infrastructure can
be automatically generated [2] or reused from data type-generic
definitions [21]. However this typically requires additional tool
support. A higher-order representation like PHOAS [7] avoids most
infrastructure definitions. While we have developed PHOAS-based
binders in MTC, first-order representations can be used as well.

Semantics and Interpreters While the majority of semantics for-
malization approaches use logical relations, we propose an ap-
proach based on interpreters. Of course, we are not the only ones
to do so.

A particularly prominent line of work based on interpreters is
that of using monads to structure semantics. Moggi [28] pioneered
monads to model computation effects and structure denotation se-
mantics. Liang et al. [25] introduced monad transformers to com-
pose multiple monads and build modular interpreters. Jaskelioff
et al. [20] used an approach similar to DTC in combination with
monads to provide modular implementation of mathematical op-
erational semantics. Our work could benefit of monads to model
more complex language features. However, unlike previous work,
we also have to consider modular reasoning. Monads introduce im-
portant challenges in terms of modular reasoning. Only very re-
cently some modular proof techniques for reasoning about monads
have been introduced [15, 33]. While this is a good step forward, it
remains to be seen whether these techniques are sufficient to reason
about suitably generalized modular statements like soundness.



The above approaches mainly involve pencil-&-paper proofs.
Mechanization of interpreter-based semantics clearly poses its own
challenges. Yet, it is highly relevant as it bestows the high degree of
confidence in correctness directly on the executable artifact, rather
than on an intermediate formulation based on logical relations. The
only similar work in this direction, developed concurrently to our
own, is that of Danielsson [11]. He uses the partiality monad, which
fairly similar to our bounded fixpoint, to formalize semantic inter-
preters in Agda. He argues that this style is more easily understood
and more obviously deterministic and computable than logical re-
lations. Unlike us, Danielsson does not consider modularization of
definitions and proofs.

9. Conclusion

Formalizing meta-theory can be very tedious. For larger program-
ming languages the required amount of work can be overwhelming.

We propose a new approach to formalizing meta-theory that al-
lows modular development of language formalizations. By build-
ing on existing solutions to modularity problems in conventional
programming languages MTC allows modular definitions of se-
mantic components. Furthermore, MTC also comes with modular
reasoning techniques to reason about such modular semantic def-
initions. Our approach enables reuse of modular semantic compo-
nents and proofs that deal with standard language constructs, and
lets language designers focus on the interesting constructs of a lan-
guage.

This paper addresses many, but obviously not all, of the funda-
mental issues for providing a formal approach to modular seman-
tics. We will investigate further extensions of our approach, guided
by the formalization of larger and more complex languages on top
of our modular mini-ML variant. A particularly challenging issue
we are aware of is the pervasive impact of new side-effecting fea-
tures on existing definitions and proofs. We believe that existing
work on modular monadic semantics [20, 24, 25] is a good starting
point to overcome this hurdle.
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