
Submitted to:
FM 2012

c© S.Nedunuri, W. R. Cook & D.R. Smith
This work is licensed under the
Creative Commons Attribution License.

Theory and Techniques for Synthesizing a Family of
Graph Algorithms

Srinivas Nedunuri William R. Cook
University of Texas at Austinnedunuri|w
ook�
s.utexas.edu Douglas R. Smith

Kestrel Institutesmith�kestrel.edu
Although Breadth-First Search (BFS) has several advantages over Depth-First Search
(DFS) its prohibitive space requirements have meant that algorithm designers often
pass it over in favor of DFS. To address this shortcoming, we introduce a theory of
Efficient BFS (EBFS) along with a simple recursive program schema for carrying out
the search. The theory is based on dominance relations, a long standing technique
from the field of search algorithms. We show how the theory canbe used to system-
atically derive solutions to two graph algorithms, namely the Single Source Shortest
Path problem and the Minimum Spanning Tree problem. The solutions are found by
making small systematic changes to the derivation, revealing the connections between
the two problems which are often obscured in textbook presentations of them.

1 Introduction

Program synthesis is experiencing something of a resurgence [21, 20, 4] [14, 22] follow-
ing negative perceptions of its scalability in the early 90s. Many of the current approaches
aim for near-automated synthesis. In contrast, the approach we follow, we callguided pro-
gram synthesis, also incorporates a high degree of automation but is more user-guided. The
basic idea is to identify interesting classes of algorithmsand capture as muchgenericalgo-
rithm design knowledge as possible in one place.The user instantiates that knowledge with
problem-specificdomain information. This step is often carried out with machine assis-
tance. The approach has been applied to successfully derivescores of efficient algorithms
for a wide range of practical problems including scheduling[18], concurrent garbage col-
lection [13], and SAT solvers [19].

One significant class of algorithms that has been investigated is search algorithms.
Many interesting problems can be solved by application of search. In such an approach,
an initial search space is partitioned into subspaces, a process calledsplitting, which con-
tinues recursively until afeasiblesolution is found. A feasible solution is one that satisfies
the given problem specification. Viewed as a search tree, spaces form nodes, and the sub-
spaces after a split form the children of that node. The process has been formalized by Smith
[15, 17]. Problems which can be solved by global search are said to be in the Global Search
(GS) class. The enhancements in GS over standard branch-and-bound include a number
of techniques designed to improve the quality of the search by eliminating unpromising
avenues. One such technique is referred to asdominance relations. Although they do not

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Theory and Techniques for Synthesizing a Family of Graph Algorithms

appear to have been widely used, the idea of dominance relations goes back to at least the
70s [5]. Essentially, a dominance relation is a relation between two nodes in the search
tree such that if one dominates the other, then the dominatednode is guaranteed to lead
to a worse solution than the dominating one, and can therefore be discarded. Establishing
a dominance relation for a given problem is carried out by a user. However this process
is not always obvious. There are also a variety of ways in which to carry out the search,
for example Depth-First (DFS), Breadth-First (BFS), Best-First, etc. Although DFS is the
most common, BFS actually has several advantages over DFS were it not for its exponential
space requirement. The key to carrying out BFS space-efficiently is to limit the size of the
frontier at any level. However, this has not been investigated in any systematic manner up
to now.

This paper has two main contributions:

• We show how to limit the size of the frontier in search using dominance relations,
thereby enabling space-efficient BFS. From this formal characterization, we derive a
characteristic recurrence that serves as the basis of a program schema for implement-
ing Global Search. Additionally, we show that limiting the size of the undominated
frontier to one results in a useful class ofgreedyalgorithms.

• We show how to derive dominance relations and demonstrate they satisfy the greed-
iness conditions for two graph problems, namely Single Source Shortest Path and
Minimum Spanning Tree by a systematic process, which thoughnot automatic, we
believe has the potential to be automated.

2 Background To Guided Program Synthesis

2.1 Process

The basic steps in guided program synthesis are:

1. Start with a logical specification of the problem to be solved. A specification is a
quadruple〈D,R,o,c〉 whereD is an input type,R an output or result type,o : D×R
is a predicate relating correct or feasible outputs to inputs, andc : D×R→ Int is a
cost function on solutions. An example specification is in Eg. 1 (This specification is
explained in more detail below)

2. Pick an algorithm class from a library of algorithm classes (GLOBAL SEARCH, LO-
CAL SEARCH, DIVIDE AND CONQUER, FIXPOINT ITERATION, etc). An algorithm
class comprises aprogram schemacontaining operators to be instantiated and anax-
iomatic theoryof those operators (see [9] for details). A schema is analogous to a
template in Java/C++ , with the difference that both the template and template argu-
ments are formally constrained.

3. Instantiate the operators of the program schema using information about the problem
domain and in accordance with the axioms of the class theory.To ensure correctness,

S.Nedunuri, W. R. Cook & D.R. Smith 3

this step can be carried out with mechanical assistance. Theresult is an efficient
algorithm for solving the given problem.

4. Apply low-level program transforms such as finite differencing, context-dependent
simplification, and partial evaluation, followed by code generation. Many of these are
automatically applied by Specware [1], a formal program development environment.

The result of Step 4 is an efficient program for solving the problem which is guaranteed
correct by construction. The power of the approach stems from the fact that the common
structure of many algorithms is contained inonereusable program schema and associated
theory. Of course the program schema needs to be carefully designed, but that is done
once by the library designer. The focus of this paper is the GLOBAL SEARCH class, and
specifically on how to methodically carry out Step 3 for a widevariety of problems. Details
of the other algorithm classes and steps are available elsewhere [7, 15, 13].

Example 1. Specification of the Single Pair Shortest Path (SPSP) problem is shown in Fig.
2.1 (The 7→ reads as “instantiates to”) The inputD is a structure with 3 fields, namely a
start node, end node and a set of edges. The resultR is a sequence of edges ([. . .] notation).
A correct result is one that satisfies the predicatepath? which checks that a pathz must
be a contiguous path from the start node to the end node (simple recursive definition not
shown). Finally the cost of a solution is the sum of the costs of the edges in that solution.
Note that fields of a structure are accessed using the ’.’ notation.

2.2 Global Search

D 7→ 〈start : Node,end: Node,edges: {Edge}〉
Edge= 〈 f : Node, t : Node,cost: Nat〉

R 7→ [Edge]
o 7→ λ (x,z) · path?(z,x.start,x.end)

path?(p,s, f) = ...
c 7→ λ (x,z) ·∑edge∈zedge.cost

Figure 2.1: Specification of Shortest Path
problem

Before delving into a program schema for
Global Search, it helps to understand the
structures over which the program schema
operates. In [15], asearch spaceis rep-
resented by a descriptor of some typeR̂,
which is an abstraction of the result type
R. The initial or starting space is denoted
⊥. There are also two predicatessplit:
D× R̂× R̂, written ⋔, andextract: R̂×R,
written χ . Split defines when a space is a
subspace of another space, and extract cap-
tures when a solution is extractable from a space. We say a solutionz is containedin a space
y (written z∈ y) if it can be extracted after a finite number of splits. A feasible space is one
that contains feasible solutions. We often write⋔ (x,y,y′) asy ⋔x y′ for readability, and
even drop the subscript when there is no confusion.Global Search theory (GS-theory)[15]
axiomatically characterizes the relation between the predicates⊥,⋔ andχ , as well as ensur-
ing that the associated program schema computes a result that satisfies the specification. In
the sequel, the symbolŝR,⊥,⋔,χ ,⊕ are all assumed to be drawn from GS-theory. A theory
for a given problem is created by instantiating these terms,as shown in the next example.

4 Theory and Techniques for Synthesizing a Family of Graph Algorithms

Example 2. Instantiating GS-theory for the Single Pair Shortest Path problem. The type of
solution spaceŝR is the same as the result typeR1. A space is split by adding an edge to the
current path - that is the subspaces are the different paths that result from adding an edge to
the parent path. Finally a solution can be trivially extracted from any space by setting the
resultz to the spacep. This is summarized in Fig. 2.2 ([] denotes the empty list, and++
denotes list concatenation).

2.3 Dominance Relations

R̂ 7→ R
⊥ 7→ λx· []
⋔ 7→ λ (x, p, pe) · ∃e∈ x.edges· pe= p++[e]
χ 7→ λ (z, p) · p= z

Figure 2.2: GS instantiation for Single Pair
Shortest Path

As mentioned in the introduction, a domi-
nance relation provides a way of compar-
ing two subspaces in order to show that one
will always contain at least as good a so-
lution as the other. (Goodness in this case
is measured by some cost function on solu-
tions). The first space is said todominate
(⊲) the second, which can then be elimi-
nated from the search. Lettingc∗ denote

the cost of an optimal solution in a space, this can be formalized as (all free variables are
assumed to be universally quantified):

y⊲ y′ ⇒ c∗(x,y) ≤ c∗(x,y′) (2.1)

Another way of expressing the consequent of (2.1) is

∀z′ ∈ y′ · o(x,z′)⇒∃z∈ y· o(x,z)∧c(x,z) ≤ c(x,z′) (2.2)

To derive dominance relations, it is often useful to first derive a semi-congruence rela-
tion [15]. A semi-congruence between two partial solutionsy andy′, writteny y′, ensures
that any way of extendingy′ into a feasible solution can also be used to extendy into a fea-
sible solution. Like⋔, is a ternary relation overD× R̂× R̂ but as we have done with⋔
and many other such relations in this work, we drop the input argument when there is no
confusion and write it as a binary relation for readability.Before defining semi-congruence,
we introduce two concepts. One is the idea ofuseabilityof a space. A spacey is is useable,
written o∗(x,y), if ∃z.χ(y,z)∧ o(x,z), meaning a feasible solution can be extracted from
the space. The second is the notion of incorporating sufficient information into a space to
make it useable. This is defined by an operator⊕ : R̂× t → R̂ that takes a space and some
additional information of typet and returns a more defined space. The typet depends on
R̂. For example ifR̂ is the type of lists, thent might also be the same type. Now the formal
definition of semi-congruence is:

y y′ ⇒ o∗(x,y′⊕e)⇒ o∗(x,y⊕e)

1there is a covariant relationship between an element ofR̂ and ofR. For example, the initial space, corre-
sponding to all possible paths, is the empty list.

S.Nedunuri, W. R. Cook & D.R. Smith 5

That is,y y′ is a sufficient condition for ensuring that ify′ can be extended into a feasible
solution than so cany with the same extension. If c is compositional (that is,c(s⊕ t) =
c(s)+c(t)) then it can be shown [9] that ify y′ andy is cheaper thany′, theny dominates
y′ (written y⊲ y′). Formally:

y y′∧c(x,y) ≤ c(x,y′)⇒ y⊲ y′ (2.3)

The axioms given above extend GS-theory [15].

Example 3. Single Pair Shortest Path. If there are two pathsp and p′ leading from the
start node, ifp and p′ both terminate in the same node thenp p′. The reason is that
any path extensione (of type t = [Edge]) of p′ that leads to the target node is also a valid
path extension forp. Additionally if p is shorter thanp′ then p dominatesp′, which can
be discarded. Note that this does not imply thatp leads to the target node, simply that no
optimal solutions are lost in discardingp′. This dominance relation is formally derived in
Eg. 8

Example 4. 0-1 Knapsack
The 0-1 Knapsack problem is, given a set of items each of whichhas a weight and

utility and a knapsack that has some maximum weight capacity, to pack the knapsack with
a subset of items that maximizes utility and does not exceed the knapsack capacity. Given
combinationsk,k′, if k andk′ have both examined the same set of items andk weighs less
thank′ then any additional itemse that can be feasibly added tok′ can also be added tok,
and thereforek k′. Additionally if k has at least as much utility ask′ thenk⊲ k′.

The remaining sections cover the original contributions ofthis paper.

3 A Theory Of Efficient Breadth-First Search (EBFS)

While search can in principle solve for any computable function, it still leaves open the
question of how to carry it out effectively. Various search strategies have been investigated
over the years; two of the most common being Breadth-First Search (BFS) and Depth-
First Search (DFS). It is well known that BFS offers several advantages over DFS. Unlike
DFS which can get trapped in infinite paths2, BFS will always find a solution if one exists.
Secondly, BFS does not require backtracking. Third, for deeper trees, BFS will generally
find a solution at the earliest possible opportunity. However, the major drawback of BFS is
its space requirement which grows exponentially. For this reason, DFS is usually preferred
over BFS.

Our first contribution in this paper is to refine GS-theory to identify the conditions
under which a BFS algorithm can operate space-efficiently. The key is to show how the size
of the undominated frontier of the search tree can be polynomially bounded. Dominance
relations are the basis for this.

2resolvable in DFS with additional programming effort

6 Theory and Techniques for Synthesizing a Family of Graph Algorithms

In [15], the relation⋔l for l ≥ 0 is recursively defined as follows:

y⋔0 y′ = (y= y′)
y⋔l+1 y′ = ∃y′′ · y⋔ y′′∧y′′ ⋔l y′

From this the next step is to define those spaces at a given frontier level that are not domi-
nated. However, this requires some care because dominance is a pre-order, that is it satisfies
the reflexivity and transitivity axioms as a partial order does, but not the anti-symmetry ax-
iom. That is, it is quite possible fory to dominatey′ and y′ to dominatey but y and y′

need not be equal. An example in Shortest Path is two paths of the same length from the
start node that end at the same node. Each path dominates the other. To eliminate such
cyclic dominances, define the relationy ≈ y′ asy⊲ y′ ∧ y′ ⊲ y. It is not difficult to show
that≈ is an equivalence relation. Now let thequotient frontierat levell be the quotient set
frontierl/ ≈ . For type consistency, let therepresentativefrontier rfrontierl be the quotient
frontier in which each equivalence class is replaced by somearbitrary member of that class.
The representative frontier is the frontier in which cyclicdominances have been removed.
Finally then theundominatedfrontier undoml is rfrontierl −{y | ∃y′ ∈ rfrontierl · y′ ⊲ y}.

Now given a problem in the GS class, if it can be shown that‖undoml‖ for any l is
polynomially bounded in the size of the input, a number of benefits accrue: (1) BFS can
be used to tractably carry out the search, as implemented in the raw program schema of
Alg. 1, (2) The raw schema of Alg. 1 can be transformed into an efficient tail recursive
form, in which the entire frontier is passed down and (3) If additionally the tree depth can
be polynomially bounded (which typically occurs for example in constraint satisfaction
problemsor CSPs [3]) then, under some reasonable assumptions about the work being done
at each node, the result is a polynomial-time algorithm for the problem.

3.1 Program Theory

A program theory for EBFS defines a recursive function which given a spacey, computes a
non-trivial subsetFx(y) of the optimal solutions contained iny, where

Fx(y) = optc{z | z∈ y∧o(x,z)}

optc is a subset of its argument that is the optimal set of solutions (w.r.t. the cost function
c), defined as follows:

optcS= {z | z∈ S∧ (∀z′ ∈ S · c(z) ≤ c(z′))}

Also letundom(y) beundoml(y)+1∩{yy | y⋔ yy} wherel(y) is the level ofy in the tree. The
following proposition defines a recurrence for computing the feasible solutions in a space:

Proposition 5. Let 〈D,R,R̂,o,c,⊥,⋔,χ ,⊲,⊕〉 be a well-founded GS-Theory w.r.t. the sub-
space relation⋔ and let Fx(y) = {z| z∈ y∧o(x,z)} be the set of feasible solutions contained
in y and Gx(y) = {z | χ(y,z)∧o(x,z)}∪

⋃
yy⋔y Gx(yy)} be a recurrence. Then Gx(y) = Fx(y)

for any y

S.Nedunuri, W. R. Cook & D.R. Smith 7

Proof. See [15].

Finally he following theorem defines a recurrence that can beused to computeFOx(y):

Theorem 6. Let ⋔ be a well-founded relation of GS-theory and let GOx(y) = optc{z |
χ(y,z)∧o(x,z)}∪

⋃
yy∈undom(y) GOx(yy)) be a recurrence. Then GOx(y)⊆ FOx(y)

Proof. By generalized induction. The base case is those spaces which do not have sub-
spaces. ThenGOx(y) = optc{z | χ(y,z)∧o(x,z)}. By Prop. 5{z | χ(y,z)∧o(x,z)} = {z |
z∈ y∧o(x,z)}. The inductive case is as follows:

FOx(y)
= {defn}
optc{z | z∈ y∧o(x,z)}
= {defn ofFx}
opt(Fx(y))
= {Fx(y) = Gx(y) by Prop.5}
opt({z | χ(y,z)∧o(x,z)}∪

⋃
y⋔yyGx(yy))

= {Gx(yy) = Fx(yy) by Prop.5}
opt({z | χ(y,z)∧o(x,z)}∪

⋃
y⋔yyFx(yy))

= {distributivity of opt}
opt(opt{z | χ(y,z)∧o(x,z)}∪opt(

⋃
y⋔yyFx(yy)))

= {distributivity and idempotence ofopt}
opt({z | χ(y,z)∧o(x,z)}∪

⋃
y⋔yyopt(Fx(yy)))

= {unfold defn ofFx, fold defn ofFOx}
opt({z | χ(y,z)∧o(x,z)}∪

⋃
y⋔yyFOx(yy))

⊇ {yy∈ undom(y) ⇒ y⋔ yy}
opt({z | χ(y,z)∧o(x,z)}∪

⋃
yy∈undom(y) FOx(yy))

⊇ {induction hypothesis:FOx(yy) ⊇ GOx(yy)}
opt({z | χ(y,z)∧o(x,z)}∪

⋃
yy∈undom(y) GOx(yy))

= {fold defn ofGOx}
GOx(y)

by

The theorem states that if the feasible solutions immediately extractable from a space
y are combined with the solutions obtained fromGOx of each undominated subspaceyy,
and the optimal ones of those retained, the result is a subsetof FOx(y). The next theorem
demonstrate non-triviality3 of the recurrence by showing that if a feasible solution exists in
a space, then one will be found.

Theorem 7. Let⋔ be a well-founded relation of GS-Theory and GOx be defined as above.
Then

FOx(y) 6= /0⇒ GOx(y) 6= /0

3Non-triviality is similar but not identical to completeness. Completeness requires thateveryoptimal solu-
tion is found by the recurrence, which we do not guarantee.

8 Theory and Techniques for Synthesizing a Family of Graph Algorithms

Algorithm 1 pseudo-Haskell Program Schema for EBFS (schema parametersunderlined)solve :: D -> {R}solve(x) = bfs x {initial(x)}bfs :: D -> {RHat}-> {R}bfs x frontier =let lo
alsof y = let z = extra
t x yin if z!={} && o(x,z) then z else {}lo
als = (flatten.map) lo
alsof frontierallsubs = (flatten.map) (subspa
es x) frontierundom = {yy : yy∈allsubs &&(yy'∈subs && yy' `dominates` yy ⇒ yy==yy')}subsolns = bfs x undomin opt(lo
als ∪ subsolns)subspa
es :: D -> RHat -> {RHat}subspa
es x y = {yy: split(x,y,yy))opt :: {R} -> {R}opt zs = min {
 x z | z ∈zs}
Proof. The proof of Theorem 6 is a series of equalities except for twosteps. It is sufficient
to show that both of these steps preserve non-triviality. The proof is again by induction over
the subspace relation. The first refinement reduces

⋃
y⋔yyFOx(yy) to

⋃
yy∈undom(y) FOx(yy).

Suppose∃yy· y ⋔ yy∧FOx(yy) 6= /0. If yy∈ undom(y) then we are done. Otherwise ifyy
is dominated, then there is someyy′ ⊲ yy and by the property of dominance,FOx(yy′) 6= /0,
so

⋃
yy∈undom(y) FOx(yy) 6= /0. The second refinement follows again by induction, using the

induction hypothesisFOx(yy) 6= /0⇒ GOx(yy) 6= /0.

From the characteristic recurrence we can straightforwardly derive a simple recursive
functionbfs to compute a non-trivial subset ofFx for a giveny, shown in Alg. 1

The final program schema that is included in the Specware library is the result of in-
corporating a number of other features of GS such as necessary filters, bounds tests, and
propagation, which are not shown here. Details of these and other techniques are in [15].

3.2 A class of strictly greedy algorithms (SG)

A greedy algorithm [2] is one which repeatedly makes a locally optimal choice. For some
classes of problems this leads to a globally optimum choice.We can get a characterization
of optimally greedy algorithms within EBFS by restricting the size ofundoml for anyl to 1.
If undoml 6= /0 then the singleton membery∗ of undoml is called thegreedychoice. In other
work [12] we show how to derive greedy algorithms for a variety of problems including
Activity Selection, One machine scheduling, Professor Midas’ Traveling Problem, Binary
Search.

S.Nedunuri, W. R. Cook & D.R. Smith 9

o∗(x,y⊕e)
= {defn of o∗}
∃z· χ(y⊕e,z)∧o(x,z)
= {defn ofχ}
o(x,y⊕e)
= {defn ofo}
path?(y⊕e,x.start,x.end)
= {distributive law forpath?}
∃n· path?(y,x.start,n)∧ path?(e,n,x.end)
⇐{o∗(x,y′⊕e), ie.∃m· path?(y′,x.start,m)∧ path?(e,m,x.end). Let mbe a witness forn}
path?(y,x.start,m)∧ path?(e,m,x.end)
= {m= last(y).t, (wherelast returns the last element of a sequence)}
last(y).t = last(y′).t ∧ path?(y,x.start,n)

Figure 4.1: Derivation of semi-congruence relation for Single Pair Shortest Path

4 Methodology

We strongly believe that every formal approach should be accompanied by a methodology
by which it can be used by a competent developer, without needing great insights. Guided
program synthesis already goes a long way towards meeting this requirement by capturing
design knowledge in a reusable form. The remainder of the work to be done by a devel-
oper consists of instantiating the various parameters of the program schema. In the second
half of this paper, we demonstrate how carrying this out systematically allows us to derive
several related graph algorithms, revealing connections that are not always obvious from
textbook descriptions. We wish to reiterate that once the dominance relation and other op-
erators in the schema have been instantiated,the result is a complete solution to the given
problem. We focus on dominance relations because they are arguably the most challenging
of the operators to design. The remaining parameters can usually be written down by visual
inspection.

The simplest form of derivation is to reason backwards from the conclusion ofy
y′ ⇒ o∗(x,y′⊕e)⇒ o∗(x,y⊕e), while assumingo∗(x,y′⊕e) . The additional assumptions
that are made along the way form the required semi-congruence condition. The following
example illustrates the approach.

Example 8. Derivation of the semi-congruence relation for Single PairShortest Path in
Eg. 1 is a straightforward calculation as shown in Fig 4.1. Itrelies on the specification of
Shortest Path given in Eg. 1 and the GS-theory in Eg. 2.

The calculation shows that a pathy is semi-congruent toy′ if y andy′ both end at the
same node and additionallyy is itself a valid path from the start node to its last node.
Since the cost function is compositional, this immediatelyproduces a dominance relation
y⊲ y′ = last(y) = last(y′)∧ path?(y,x.start,n)∧∑edge∈y edge.cost≤ ∑edge′∈y′ edge′.cost.
Note the use of the distributive law forpath? in step 4. Such laws are usually formulated as

10 Theory and Techniques for Synthesizing a Family of Graph Algorithms

D 7→ 〈s : Node,edges: {Edge}〉
Edge= 〈a : Node,b : Node,w : Nat〉

R 7→ {Edge}
o 7→ λ (x,z) · connected(x,z)∧acyclic(x,z)
c 7→ λ (x,z) ·∑p∈pathsFrom(x.s) c′(p)

c′(p) = ∑edge∈p edge.w

Figure 5.1: Specification of Shortest Path problem

R̂ 7→ R
⊥ 7→ λx· {}
⋔ 7→ λ (x, p, pe) · ∃e∈ x.edges· pe= p∪{e}
χ 7→ λ (z, p) · p= z
⊕ 7→ ∪

Figure 5.2: GS instantiation for Shortest Path

part of a domain theory during a domain discovery process, oreven as part of the process of
trying to carry out a derivation such as the one just shown. Given an appropriate constructive
prover (such as the one in KIDS [16]) such a derivation could in fact be automated. Other
examples that have been derived using this approach are Activity Selection [11], Integer
Linear Programming [15], and variations on the Maximum Segment Sum problem [10].

While this dominance relation could in principle be used to computer Single Source
Shortest Path using a Best-First search (such as A*) it wouldnot be very efficient as every
pair of nodes on the frontier would need to be compared. In thenext section, a more
powerful dominance relation is derived which can be used in aBreadth-First search, and
even more importantly, be shown to be in the SG class, resulting in a very efficient greedy
algorithm. The dominance relation just derived is still utilized, but in a subsidiary role.

5 More complex derivations: A family of related algorithms

5.1 (Single Source) Shortest Path

Previously in Eg. 8 we derived a dominance relation for the (undirected) single pair shortest
path problem. To solve the problem of finding all shortest paths from a given start node to
every other node in the graph it is convenient to consider theoutput as a set of edges that
form what is called apath tree, a subgraph of the input graph which forms a spanning tree
rooted at the start node. The desired output is a path tree in which every path from the root
is the shortest. The specification of Single Pair Shortest Path in Fig. 2.1 is revised as shown
in Fig. 5.1 The revised instantiation of Global Search theory is shown in Fig. 5.2 In what
follows, the extends operator⊕ is shown by simple concatenation. The goal is to show that
there is at most one undominated child following a split of a partial solutionα . Let αe
andαe′ be two children following a split ofα , that is the graphsα with edgee added and

S.Nedunuri, W. R. Cook & D.R. Smith 11

that withe′ added. Without loss of generality (w.l.o.g.) assume neither e nor e′ are already
contained inα and both connect toα . Let z′ = αe′ω ′ be a feasible solution derived from
αe′. The task is to construct a feasible solutionz from αeand discover the conditions under
which it is cheaper thanz′. We will use the definition of general dominance (2.2), repeated
here for convenience:

∀z′ ∈ y′ · o(x,z′)⇒∃z∈ y· o(x,z)∧c(x,z) ≤ c(x,z′)

Establishingo(αeω) requiresconnected(αeω) andacyclic(αeω).
In guided program synthesis, it is often useful to write downlaws [16] that will be

needed during the derivation. Some of the most useful laws are distributive laws and mono-
tonicity laws. For example the following distributive law applies toayclic :

acyclic(αβ) = acyclic(α)∧acyclic(β)∧ac(α ,β)

whereacdefines what happens at the “boundary” ofα andβ :

ac(α ,β) = ∀m,n· ∃p∈ α∗ · path?(p,m,n) ⇒¬∃q∈ β ∗ · path?(q,m,n)

requiring that ifp is a path inα (α∗ is a regular expression denoting all possible sequences
of edges inα) connectingm and n then there should be no path betweenm and n in
β . Example of monotonicity laws areacyclic(αβ) ⇒ acyclic(α) and connected(α) ⇒
connected(αβ) . By using the laws constructively, automated tools such asKIDS [16] can
often suggest instantiations for terms. For instance, since we are assumingconnected(αe′ω ′),
application of the monotonicity law forconnected, one possible suggestion isconnected(αee′ω ′),
that is to tryω = e′ω ′. With this binding forω we can attempt to establishacyclic(αeω),
by expanding its definition. One of the terms is. . .ac(e,αe′ω ′) . . . which fails because
conn(αe′ω ′) implies path?(αe′ω ′,e.a,e.b) so adding edgee creates a cycle. The wit-
ness to the failure is some pathπ ′ = ej . . .ek whereej .a = e.a∧ ek.b = e.b. One possi-
bility is that ej = ek = e, that isω ′ containse. If so, let ω ′ = eψ ′ for someψ ′. Then
z′ = αe′ω ′ = αe′eψ ′ = αee′ψ ′. Let ω = e′ψ ′ and nowz= z′. Otherwise, w.l.o.g assume
that e connects withα at e.a, and therefore so doesej , so the caseej .b = e.b is not very
interesting. The only option then is to remove edgeek from ω ′ . Let ω ′ = ekψ ′ and soω is
e′ψ ′. Now the requirement becomes

acyclic(αe)∧acyclic(e′ψ ′)∧ac(αe,e′ψ ′)

acyclic(e′ψ ′) follows from acyclic(αe′ψ ′) by monotonicity andac(αe,e′ψ ′) follows from
acyclic(αe′ψ ′) and the fact thate was chosen above to remove the cycle inαee′ω ′ . This
demonstrateso(αeω) providedacyclic(αe) whereω is constructed as above.

Finally, to establish general dominance it is necessary to show thatzcosts no more than
z′. Note that the cost of a solution is the sum of individual pathcosts starting fromx.s. Let
m denotee.a andn denotee.b (and analogously fore′). Now consider a path to a nodep in
z′. If the path top does not contain edgeek ie. pass throughn then the same path holds in

12 Theory and Techniques for Synthesizing a Family of Graph Algorithms

Figure 5.3: Feasible solutionαe′ω ′

Figure 5.4: Feasible solutionαeω

z. Otherwise letβ ′e′iγ ′e”δ be a path top in z′ wheree” is the edgeek above (see Fig. 5.3).
β ′ is a path fromx.s in α ande′i is some edge that leads out ofα on the path top. Then the
corresponding path inz is βeδ (see Fig. 5.4).

c(αeω ,βeδ) ≤ c(αe′ω ′,β ′eiγ ′e”δ)
= {expand defns}
c(z,βe)+c(z,δ) ≤ c(z′,β ′ei)+c(z′,e”)+c(z,δ)
= {+ve edge weights, triangle inequality}
c(z,βe) ≤ c(z′,β ′ei)

As there were no restrictions one′ above, letei be the witness fore′ and this establishes
That is, provided the pathβe is shorter thanβ ′e′, there cannot be a shorter path viae′ to n.
As cost is the sum of the path costs, it follows thatc(x,αeω) ≤ c(αe′ω ′). The dominance
condition is thenαe⊲ αe′ ⇐ acyclic(αe) ∧ c(z,βe) ≤ c(z′,β ′e′) . Finally, as it is not
known at the time of the split whiche′ will lie on the path toe.b, to be conservative, let
e be that edge whose endpointe.b is the closest to the start node. This is therefore the
greedy choice. Iincorporating finite differencing to incrementally maintain the distances

S.Nedunuri, W. R. Cook & D.R. Smith 13

D 7→ {Edge} | connected
Edge= 〈 f : Node, t : Node,w : Nat〉

R 7→ {Edge}
o 7→ λ (x,z) · connected(x,z)∧acyclic(x,z)
c 7→ λ (x,z) ·∑edge∈zedge.w

Figure 5.5: Specification of Min. Spanning Tree problem

to the nodes, using the dominance relation derived earlier for Single Pair Shortest Path to
eliminate the longer paths to a node, and data structure refinement results in an algorithm
similar to Dijkstra’s algorithm for MSTs.

5.2 Minimum Spanning Tree

The specification of MST is very similar to that of Shortest Path, with the difference that
there is no longer a distinguished nodes, the input graph must be connected, and the cost
of a solution is simply the sum of the weights of the edges in the tree The instantiation of
the simple GS operators is as for SP. Again, any edge that is added must not create a cycle
or it cannot lead to a feasible solution. We will describe thealgorithm construction process
informally so as to expose the connection with the Shortest Path algorithm more clearly.
However the derivations shown here can also be similarly formalized.

There are now two ways to satisfy the acyclicity requirement. One is by choosing an
edge connecting a node inα to one outside ofα . Another is to choose an edge that connects
two nodes withinα , being careful not to create cycles. The two options are examined next,

Option 1: Letz′ = αe′ω ′ be a feasible solution derived fromαe′. If ω ′ includese then
let ω in a feasible solutionz= αeω simply beω ′−{e}∪{e′} and thenz= z′. Otherwise, if
ω ’ does not containe there must be some other path connectingα with e.t. W.l.o.g. assume
that path is viae′. If αe′ω ′ is feasible, then it is a tree, soω ’ is also a tree. Therefore it is
not difficult to show thatz= αeω ′ is also a spanning tree. Now to show dominance, derive
conditions under whichz is cheaper thanz′:

c(x,αeω ′)≤ c(x,αe′ω ′)
= {defn ofc}
∑edge∈αeω ′ edge.w≤ ∑edge∈αe′ω ′ edge.w
=
e.w≤ e′.w

Finally, as it is not known at the time of the split whiche′ will lie on the path toe.t, to be
conservative, lete be that edge with the least weight connectingα with an external node
. This is therefore the greedy choice. The result is an algorithm that is similar to Prim’s
algorithm for MSTs.

Option 2: The difference with Option 1 is in howe is chosen in order to ensure acyclic-
ity. For a feasible solution,α must not contain any cycles. Therefore it consists of a collec-
tion of acyclic connected components, ie trees. Any new edgecannot connect nodes within

14 Theory and Techniques for Synthesizing a Family of Graph Algorithms

a component without introducing a cycle. Therefore it must connect two component trees.
Connecting two trees by a single edge results in a new tree. Asin Option 1, letz′ = αe′ω ′

be a feasible solution derived fromαe′. If ω ′ includese then letω in a feasible solution
z= αeω simply beω ′−{e}∪ {e′} and thenz= z′. Otherwise, ifω ’ does not containe
there must be some other edge used to connect the two trees that e would have connected.
W.l.o.g. assume that edge ise′. If αe′ω ′ is feasible, then it is a tree, soω ’ is also a tree.
Therefore it is not difficult to show thatz= αeω ′ is also a spanning tree. The derivation
of a cost comparison relation is identical to Option 1, and once again the greedy choice is
the edgee that connects two trees and is of least weight. The result of this option is an
algorithm that is similar to Kruskal’s algorithm.

In conclusion, we observe that far from being completely different algorithms, Dijk-
stra’s algorithm, Prim’s algorithm and Kruskal’s algorithm differ only in very small number
of (albeit important) ways. In contrast, many textbook descriptions of the algorithms intro-
duce the algorithms out of the blue, followed by separate proofs of correctness. We have
shown how a systematic procedure can derive different algorithms, with relatively minor
changes to the derivations.

6 Related Work

Gulwani et al. [21, 4] describe a powerful program synthesisapproach calledtemplate-
based synthesis. A user supplies a template or outline of the intended program structure,
and the tool fills in the details. A number of interesting programs have been synthesized
using this approach, including Bresenham’s line drawing algorithm and various bit vector
manipulation routines. A related method is inductive synthesis [6] in which the tool synthe-
sizes a program from examples. The latter has been used for inferring spreadsheet formulae
from examples. All the tools rely on powerful SMT solvers. The Sketching approach of
Solar-Lezama et al [14] also relies on inductive synthesis.A sketch, similar in intent to a
template, is supplied by the user and the tool fills in such aspects as loop bounds and array
indexing. Sketching relies on efficient SAT solvers. To quote Gulwani et al. the benefit
of the template approach is that “the programmer only need write the structure of the code
and the tool fills out the details” [21].Rather than the programmer supplying an arbitrary
template, though, we suggest the use of a program schema fromthe appropriate algorithm
class (refer to Step 2 of the process in Sec. 2.1). We believe that the advantage of such
an approach is that, based on a sound theory, much can alreadybe inferred at the abstract
level and this is captured in the theory associated with the algorithm class. Furthermore,
knowledge of properties at the abstract level allows specialization of the program schema
with information that would otherwise have to either be guessed at by the programmer de-
vising a template or inferred automatically by the tool (e.g. tail recursive implementation
or efficient implementation of dominance testing with hashing). We believe this will allow
semi-automated synthesis to scale up to larger problems such as constraint solvers (SAT,
CSP, LP, MIP, etc.), planning and scheduling, and O/S level programs such as garbage col-
lectors [13].

S.Nedunuri, W. R. Cook & D.R. Smith 15

Program verification is another field that shares common goals with program synthesis
- namely a correct efficient program. The difference lies in approach - we prefer to con-
struct the program in a way that is guaranteed to be correct, as opposed to verifying its
correctness after the fact. Certainly some recent tools such as Dafny [8] provide very useful
feedback in an IDE during program construction. But even such tools requires significant
program annotations in the form of invariants to be able to automatically verify non-trivial
examples such as the Schorr-Waite algorithm [8]. Nevertheless, we do not see verification
and synthesis as being necessarily opposed. For example, ensuring the correctness of the
instantiation of several of the operators in the program schema which is usually done by
inspection is a verification task, as is ensuring correctness of the schema that goes in the
class library. We also feel that recent advances in verification via SMT solvers will also
help guided synthesis by increasing the degree of automation.

Refinement is generally viewed as an alternative to synthesis. A specification is gradu-
ally refined into an efficient executable program. Refinementmethods such as Z and B have
proved to be very popular. In contrast to refinement, guided program synthesis already has
the program structure in place, and the main body of work consists of instantiating the
schema parameters followed by various program transformations many of which can be
mechanically applied. Both refinement and synthesis rely extensively on tool support, par-
ticularly in the form of provers. We expect that advances in both synthesis and refinement
will benefit the other field.

7 Summary and Future Work

We have formulated a theory of efficient breadth-first searchbased on dominance relations.
A very useful specialization of this class occurs when thereis at most one undominated child
node. This is the class of Strictly Greedy algorithms. We have also derived a recurrence
from which a simple program schema can be easily constructed. We have shown how
to systematically derive dominance relations for a family of important graph algorithms
revealing connections between them that are obscured when each algorithm is presented in
isolation.

Nearly all the derivations shown in this paper have been carried out by hand. However,
they are simple enough to be automated. We plan on building a prover that incorporates the
ideas mentioned in here. We are encouraged by the success of asimilar prover that was part
of KIDS, a predecessor to Specware.

References

[1] Specware. Http://www.specware.org.

[2] T. Cormen, C. Leiserson, R. Rivest & C. Stein (2001):Introduction to Algorithms, 2nd edition.
MIT Press.

[3] R Dechter (2003):Constraint Processing. Morgan Kauffman.

16 Theory and Techniques for Synthesizing a Family of Graph Algorithms

[4] S. Gulwani, S. Jha, A. Tiwari & R. Venkatesan (2011):Synthesis of loop-free programs. In:
PLDI, pp. 62–73, doi:10.1145/2F1993498.1993506.

[5] T. Ibaraki (1977):The Power of Dominance Relations in Branch-and-Bound Algorithms. J.
ACM 24(2), pp. 264–279, doi:10.1145/2F322003.322010.

[6] S. Itzhaky, S. Gulwani, N. Immerman & M. Sagiv (2010):A simple inductive synthesis method-
ology and its applications. In: OOPSLA, pp. 36–46, doi:10.1145/2F1869459.1869463.

[7] C. Kreitz (1998):Program Synthesis. In W. Bibel & P. Schmitt, editors:Automated Deduction
– A Basis for Applications, chapter III.2.5, III, Kluwer, pp. 105–134.

[8] K. R. M. Leino (2010): Dafny: an automatic program verifier for functional correct-
ness. In: Proc. 16th intl. conf. on Logic for Prog., AI, & Reasoning, LPAR, pp. 348–370,
doi:10.1007/2F978-3-642-17511-4_20.

[9] S. Nedunuri (2012):Theory and Techniques for Synthesizing Efficient Breadth-First Search
Algorithms. Ph.D. thesis, Univ. of Texas at Austin.

[10] S. Nedunuri & W.R. Cook (2009):Synthesis of Fast Programs for Maximum Segment
Sum Problems. In: Intl. Conf. on Generative Prog. and Component Engineering (GPCE),
doi:10.1145/2F1621607.1621626.

[11] S. Nedunuri, D. R. Smith & W. R. Cook (2010):A Class of Greedy Algorithms and
Its Relation to Greedoids. Intl. Colloq. on Theoretical Aspects of Computing (ICTAC),
doi:10.1007/2F978-3-642-14808-8_24.

[12] S. Nedunuri, D. R. Smith & W. R. Cook (2012):Theory and Techniques for a Class of Efficient
Breadth-First Search Algorithms. In: Intl. Symp. on Formal Methods (FM).

[13] D. Pavlovic, P. Pepper & D. R. Smith (2010):Formal Derivation of Concurrent Garbage
Collectors.In: Math. of Program Constr. (MPC), doi:10.1007/2F978-3-642-13321-3_20.

[14] Y. Pu, R. Bodík & S. Srivastava (2011):Synthesis of first-order dynamic programming algo-
rithms. In: OOPSLA, pp. 83–98, doi:10.1145/2F2048066.2048076.

[15] D. R. Smith (1988): Structure and Design of Global Search Algorithms. Tech. Rep.
Kes.U.87.12, Kestrel Institute.

[16] D. R. Smith (1990):KIDS: A Semi-Automatic Program Development System. IEEE Trans. on
Soft. Eng., Spec. Issue on Formal Methods16(9), pp. 1024–1043, doi:10.1109/2F32.58788.

[17] D. R. Smith (2010):Global Search Theory Revisited. Unpublished.

[18] D. R. Smith, E. A. Parra & S. J. Westfold (1995):Synthesis of high-performance transportation
schedulers. Technical Report, Kestrel Institute.

[19] D. R. Smith & S. Westfold (2008):Synthesis of Propositional Satisfiability Solvers. Final Proj.
Report, Kestrel Institute.

[20] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia & V. Saraswat (2006):Combinatorial sketch-
ing for finite programs. In: Proc. of the 12th intl. conf. on architectural support for prog. lang.
and operating systems (ASPLOS), pp. 404–415, doi:10.1145/2F1168857.1168907.

[21] S. Srivastava, S. Gulwani & J. S. Foster (2010):From program verification to program synthe-
sis. In: POPL, pp. 313–326, doi:10.1.1.148.395.

[22] M. Vechev & E. Yahav (2008):Deriving linearizable fine-grained concurrent objects. PLDI
’08, pp. 125–135, doi:10.1145/2F1375581.1375598.

http://dx.doi.org/10.1145/2F1993498.1993506
http://dx.doi.org/10.1145/2F322003.322010
http://dx.doi.org/10.1145/2F1869459.1869463
http://dx.doi.org/10.1007/2F978-3-642-17511-4_20
http://dx.doi.org/10.1145/2F1621607.1621626
http://dx.doi.org/10.1007/2F978-3-642-14808-8_24
http://dx.doi.org/10.1007/2F978-3-642-13321-3_20
http://dx.doi.org/10.1145/2F2048066.2048076
http://dx.doi.org/10.1109/2F32.58788
http://dx.doi.org/10.1145/2F1168857.1168907
http://dx.doi.org/10.1.1.148.395
http://dx.doi.org/10.1145/2F1375581.1375598

	Introduction
	Background To Guided Program Synthesis
	Process
	Global Search
	Dominance Relations

	A Theory Of Efficient Breadth-First Search (EBFS)
	Program Theory
	A class of strictly greedy algorithms (SG)

	Methodology
	More complex derivations: A family of related algorithms
	(Single Source) Shortest Path
	Minimum Spanning Tree

	Related Work
	Summary and Future Work

