Theory and Techniques for Synthesizing a Family of

Graph Algorithms
Srinivas Nedunuri William R. Cook Douglas R. Smith
University of Texas at Austin Kestrel Institute
nedunuri|wcook@cs.utexas.edu smithQkestrel.edu

Although Breadth-First Search (BFS) has several advastager Depth-First Search
(DFS) its prohibitive space requirements have meant tiggardéhm designers often
pass it over in favor of DFS. To address this shortcoming, Meduce a theory of
Efficient BFS (EBFS) along with a simple recursive prograimesna for carrying out
the search. The theory is based on dominance relations,gastamding technique
from the field of search algorithms. We show how the theorylmansed to system-
atically derive solutions to two graph algorithms, namélg Single Source Shortest
Path problem and the Minimum Spanning Tree problem. Theisaokiare found by
making small systematic changes to the derivation, ravgdtie connections between
the two problems which are often obscured in textbook prasiens of them.

1 Introduction

Program synthesis is experiencing something of a resueg2i;[20/ 4] [14[2R2] follow-
ing negative perceptions of its scalability in the early.90ny of the current approaches
aim for near-automated synthesis. In contrast, the appreadollow, we callguided pro-
gram synthesisalso incorporates a high degree of automation but is maeaqigded. The
basic idea is to identify interesting classes of algoritlamd capture as mugenericalgo-
rithm design knowledge as possible in one place.The usemiiates that knowledge with
problem-specificdomaininformation. This step is often carried out with machineisss
tance. The approach has been applied to successfully deves of efficient algorithms
for a wide range of practical problems including schedu[ib8], concurrent garbage col-
lection [13], and SAT solvers [19].

One significant class of algorithms that has been investiji search algorithms.
Many interesting problems can be solved by application afde In such an approach,
an initial search space is partitioned into subspaces, @psocalledplitting, which con-
tinues recursively until &asiblesolution is found. A feasible solution is one that satisfies
the given problem specification. Viewed as a search treegsparm nodes, and the sub-
spaces after a split form the children of that node. The m®bas been formalized by Smith
[15,[17]. Problems which can be solved by global search adeche in the Global Search
(GS) class. The enhancements in GS over standard brandbeand include a number
of techniques designed to improve the quality of the seayckliminating unpromising
avenues. One such technique is referred tdaminance relationsAlthough they do not

© S.Nedunuri, W. R. Cook & D.R. Smith
This work is licensed under the
Creative Commoris Attribution License.

Submitted to:
FM 2012

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Theory and Techniques for Synthesizing a Family of GraptoAtgms

appear to have been widely used, the idea of dominanceardagjoes back to at least the
70s [5]. Essentially, a dominance relation is a relatiowieen two nodes in the search
tree such that if one dominates the other, then the domiratdd is guaranteed to lead
to a worse solution than the dominating one, and can therdferdiscarded. Establishing
a dominance relation for a given problem is carried out byex.uslowever this process
is not always obvious. There are also a variety of ways in liiccarry out the search,
for example Depth-First (DFS), Breadth-First (BFS), Besst, etc. Although DFS is the
most common, BFS actually has several advantages over DeStwet for its exponential
space requirement. The key to carrying out BFS space-effigies to limit the size of the
frontier at any level. However, this has not been investidah any systematic manner up
to now.
This paper has two main contributions:

e We show how to limit the size of the frontier in search usingndwance relations,
thereby enabling space-efficient BFS. From this formal atiarization, we derive a
characteristic recurrence that serves as the basis of egpnagchema for implement-
ing Global Search. Additionally, we show that limiting theesof the undominated
frontier to one results in a useful classgreedyalgorithms.

¢ We show how to derive dominance relations and demonstratesitisfy the greed-
iness conditions for two graph problems, namely Single &@@&hortest Path and
Minimum Spanning Tree by a systematic process, which thaumglautomatic, we
believe has the potential to be automated.

2 Background To Guided Program Synthesis

2.1 Process

The basic steps in guided program synthesis are:

1. Start with a logical specification of the problem to be edlv A specification is a
quadruple(D, R,0,c) whereD is an input typeR an output or result typey : D x R
is a predicate relating correct or feasible outputs to ispanhdc: D x R— Int is a
cost function on solutions. An example specification is in[E¢This specification is
explained in more detail below)

2. Pick an algorithm class from a library of algorithm clesé8LOBAL SEARCH, LO-
CAL SEARCH, DIVIDE AND CONQUER, FIXPOINT ITERATION, etc). An algorithm
class comprises program schemaontaining operators to be instantiated andan
iomatic theoryof those operators (segl [9] for details). A schema is analego a
template in Java/C++ , with the difference that both the tatepand template argu-
ments are formally constrained.

3. Instantiate the operators of the program schema usiogmattion about the problem
domain and in accordance with the axioms of the class thd@orgnsure correctness,

S.Nedunuri, W. R. Cook & D.R. Smith 3

this step can be carried out with mechanical assistance. r@hdt is an efficient
algorithm for solving the given problem.

4. Apply low-level program transforms such as finite diffegimg, context-dependent
simplification, and partial evaluation, followed by codegeation. Many of these are
automatically applied by Specwarte [1], a formal programettgsment environment.

The result of Step 4 is an efficient program for solving thebfgm which is guaranteed
correct by construction. The power of the approach stenma fie fact that the common
structure of many algorithms is containedanereusable program schema and associated
theory. Of course the program schema needs to be carefudigraml, but that is done
once by the library designer. The focus of this paper is the®\L SEARCH class, and
specifically on how to methodically carry out Step 3 for a wideety of problems. Details

of the other algorithm classes and steps are available etsey7/ 15, 13].

Example 1. Specification of the Single Pair Shortest Path (SPSP) proldeshown in Fig.
21 (The— reads as “instantiates t0”) The inpbDtis a structure with 3 fields, namely a
start node, end node and a set of edges. The mRssla sequence of edgés.(] notation).
A correct result is one that satisfies the predigaéth? which checks that a pathmust
be a contiguous path from the start node to the end node (eimepursive definition not
shown). Finally the cost of a solution is the sum of the cofth® edges in that solution.
Note that fields of a structure are accessed using the ’.tinata

2.2 Global Search

Before delving into a program schema for

Global Search, it helps to understand th&d — (start: Nodeend: Nodeedges {Edge})
structures over which the program schema Edge= (f : Nodet : Nodecost: Nat)
operates. In[[15], aearch spaceas rep- R — [Edgg

resented by a descriptor of some tyBe o — A(x,2)- path?(z x.start,x.end)

which is an abstraction of the result type path?(p,s, f) = ...

R. The initial or starting space is denoted ¢ A (X,2) - ¥ eqge-z €0 geCOSE

L. There are also two predicategplit;

D x Rx R, written . andextract Rx R Figure 2.1: Specification of Shortest Path
written x. Split defines when a space is Rroblem

subspace of another space, and extract cap-

tures when a solution is extractable from a space. We sayii@ot is containedin a space

y (written z € y) if it can be extracted after a finite number of splits. A fééesispace is one
that contains feasible solutions. We often writex,y,y') asy ry Yy for readability, and
even drop the subscript when there is no confus®lobal Search theory (GS-theorfd5]
axiomatically characterizes the relation between theipades | , h andy, as well as ensur-
ing that the associated program schema computes a redugatisdies the specification. In
the sequel, the symbol% 1,m, x,® are all assumed to be drawn from GS-theory. A theory
for a given problem is created by instantiating these teaashown in the next example.

4 Theory and Techniques for Synthesizing a Family of GraptoAtgms

Example 2. Instantiating GS-theory for the Single Pair Shortest Patblem. The type of
solution space§ is the same as the result tyBE]. A space is split by adding an edge to the
current path - that is the subspaces are the different padihsesult from adding an edge to
the parent path. Finally a solution can be trivially exteatfrom any space by setting the
resultz to the spacep. This is summarized in Fid._2.2] (denotes the empty list, angt
denotes list concatenation).

2.3 Dominance Relations

As mentioned in the introduction, a domi-

R — R nance relation provides a way of compar-
L o= A ing two subspaces in order to show that one
h — A(x,p,pe) - Jec x.edges pe= p++ill always contain at least as good a so-
X — Azp-p=z lution as the other. (Goodness in this case

is measured by some cost function on solu-
Figure 2.2: GS instantiation for Single Paiﬁons)_ The first space is said ttominate
Shortest Path (>) the second, which can then be elimi-

nated from the search. Lettingf denote
the cost of an optimal solution in a space, this can be formedlas (all free variables are
assumed to be universally quantified):

yy =c(xy) <c(xy) (2.1)
Another way of expressing the consequen{of](2.1) is
VZ ey - o(x,Z) = Jzey 0(x,2) Ac(X,2) <c(X,2) (2.2)

To derive dominance relations, it is often useful to firstvdern semi-congruence rela-
tion [15]. A semi-congruence between two partial solutipasdy’, writteny ~ Yy, ensures
that any way of extending into a feasible solution can also be used to exteimdo a fea-
sible solution. Likeh, ~ is a ternary relation oveD x Rx Rbut as we have done with
and many other such relations in this work, we drop the inpgiiraent when there is no
confusion and write it as a binary relation for readabilBgfore defining semi-congruence,
we introduce two concepts. One is the ideaiséabilityof a space. A spacgis is useable,
written o*(x,y), if 3z x(y,z) A 0(x,z), meaning a feasible solution can be extracted from
the space. The second is the notion of incorporating sufficidormation into a space to
make it useable. This is defined by an operatarR x t — R that takes a space and some
additional information of typé and returns a more defined space. The tygdepends on
R. For example iR is the type of lists, thehmight also be the same type. Now the formal
definition of semi-congruence is:

y~Yy = 0" (XY €)= o (x,yde)

lthere is a covariant relationship between an elemeR afd ofR. For example, the initial space, corre-
sponding to all possible paths, is the empty list.

S.Nedunuri, W. R. Cook & D.R. Smith 5

That is,y ~ Y is a sufficient condition for ensuring thatyifcan be extended into a feasible
solution than so cag with the same extensionf c is compositional (that is¢(s®t) =
c(s) +c(t)) then it can be shown[9] that yf~~ y andy is cheaper thay, theny dominates
y (writteny > y'). Formally:

y~y Acxy) <cxy)=yry (2.3)

The axioms given above extend GS-thearyi [15].

Example 3. Single Pair Shortest Path. If there are two pgthand p’ leading from the
start node, ifp and p’ both terminate in the same node ther~ p’. The reason is that
any path extension (of typet = [Edgé) of p’ that leads to the target node is also a valid
path extension fop. Additionally if p is shorter tharp’ then p dominatesp’, which can
be discarded. Note that this does not imply thdéads to the target node, simply that no
optimal solutions are lost in discarding. This dominance relation is formally derived in
Eg.[8

Example 4. 0-1 Knapsack

The 0-1 Knapsack problem is, given a set of items each of whasha weight and
utility and a knapsack that has some maximum weight capdoigyack the knapsack with
a subset of items that maximizes utility and does not exdeedrapsack capacity. Given
combinationsk, K/, if k andk’ have both examined the same set of items laneighs less
thank’ then any additional itemsthat can be feasibly added kbcan also be added tqQ
and thereforé ~~ k'. Additionally if k has at least as much utility &sthenk > K'.

The remaining sections cover the original contributionthef paper.

3 A Theory Of Efficient Breadth-First Search (EBFS)

While search can in principle solve for any computable fiomgtit still leaves open the
guestion of how to carry it out effectively. Various searttategies have been investigated
over the years; two of the most common being Breadth-Firsircbe(BFS) and Depth-
First Search (DFS). It is well known that BFS offers severhiaatages over DFS. Unlike
DFS which can get trapped in infinite pﬂhBFS will always find a solution if one exists.
Secondly, BFS does not require backtracking. Third, fopdedrees, BFS will generally
find a solution at the earliest possible opportunity. Howetve major drawback of BFS is
its space requirement which grows exponentially. For #sson, DFS is usually preferred
over BFS.

Our first contribution in this paper is to refine GS-theory deritify the conditions
under which a BFS algorithm can operate space-efficientlg key is to show how the size
of the undominated frontier of the search tree can be polyabnbounded. Dominance
relations are the basis for this.

2resolvable in DFS with additional programming effort

6 Theory and Techniques for Synthesizing a Family of GraptoAtgms

In [15], the relationh! for | > 0 is recursively defined as follows:

yhly = (y=Y)
yh*ly = y.yhy' Ay’ dly

From this the next step is to define those spaces at a givetigirdevel that are not domi-
nated. However, this requires some care because domiraagea-order, that is it satisfies
the reflexivity and transitivity axioms as a partial ordeedpbut not the anti-symmetry ax-
iom. That is, it is quite possible foy to dominatey’ andy to dominatey buty andy
need not be equal. An example in Shortest Path is two pathseatame length from the
start node that end at the same node. Each path dominatethttve o eliminate such
cyclic dominances, define the relatigmz y asy >y Ay >y. Itis not difficult to show
that= is an equivalence relation. Now let tijaeotient frontierat levell be the quotient set
frontier;/ = . For type consistency, let thepresentativérontier rfrontier; be the quotient
frontier in which each equivalence class is replaced by samigrary member of that class.
The representative frontier is the frontier in which cyaieminances have been removed.
Finally then theundominatedrontier undom is rfrontier, — {y | 3y’ € rfrontier; - y > y}.

Now given a problem in the GS class, if it can be shown thatdom|| for any| is
polynomially bounded in the size of the input, a number ofdfiém accrue: (1) BFS can
be used to tractably carry out the search, as implementeakimaiv program schema of
Alg. [, (2) The raw schema of Ald.] 1 can be transformed into féinient tail recursive
form, in which the entire frontier is passed down and (3) ditidnally the tree depth can
be polynomially bounded (which typically occurs for examjah constraint satisfaction
problemsor CSPs|[3]) then, under some reasonable assumptions &lgonbtk being done
at each node, the result is a polynomial-time algorithm Hergroblem.

3.1 Program Theory

A program theory for EBFS defines a recursive function whielema space, computes a
non-trivial subsefx(y) of the optimal solutions contained ypwhere

Fx(y) =opte{z|ze yAO(x,2)}

opt is a subset of its argument that is the optimal set of solatignr.t. the cost function
c), defined as follows:

opt.S={z|ze€ SA(VZ €S- c(z) <c(Z))}

Also letundonty) beundomyy, 1 N {yy|yhyy} wherel (y) is the level ofy in the tree. The
following proposition defines a recurrence for computing fbasible solutions in a space:

Proposition 5. Let(D,R, ﬁ, o,c, L,m, x,>,®) be a well-founded GS-Theory w.r.t. the sub-
space relationh and let k(y) = {z| ze yA0(X, 2) } be the set of feasible solutions contained

iny and G(y) = {z| X(¥,2) A 0(X,2) } UUyyny Gx(YY) } be arecurrence. Then,@y) = F(y)
foranyy

S.Nedunuri, W. R. Cook & D.R. Smith 7

Proof. See[15]. O

Finally he following theorem defines a recurrence that candeel to comput& Oy(y):
Theorem 6. Let th be a well-founded relation of GS-theory and let @) = opt.{z |
X(¥:2) A o(X,2) } UUyyeundonty) GOK(YY)) be a recurrence. Then G@) C FO(y)

Proof. By generalized induction. The base case is those space$ whitiot have sub-
spaces. The®O(y) = opt{z| x(v,2) Ao(x,2)}. By Prop.[B{z]| x(y,2) Ao(x,2)} = {z]|
ze yA0(x,2)}. The inductive case is as follows:

FOx(y)

= {defn}

opt{z|zeyno(x,2)}

= {defn of K}

opt(Fx(y))

= {Fx(y) = Gx(y) by ProdB

opt({z| x(¥,2) A0(%,2) } UUyyy Cx(YY))

= {Gx(yy) = Fx(yy) by Prof.

opt({z| X(:2) A 0(x,2)} UUyhyy Fx(¥¥)

= {distributivity of opt}

opt(opt{z | x(¥,2) Ao(x,)} Uopt(Uymyy Fx(YY))) by
= {distributivity and idempotence afpt}
OPH({Z | X(¥:2) A 0(%,2)} U Uyt OPHFx(¥Y))

= {unfold defn off, fold defn of F Oy}
opt({z| x(¥,2) A0(%,2)} UUyyy FOx(yY))

2 {yy € undonty) =y h yy}

Op'[({Z | X(ya Z) A O(X, Z)} U Uyyeundon(y) F OX(yy))
2 {induction hypothesi&Ox(yy) 2 GO(yy) }
Op'[({Z | X(ya Z) A O(X, Z)} U Uyyeundon(y) GOx(yy))
= {fold defn of GO}

GO(y)

O

The theorem states that if the feasible solutions immegiatdractable from a space
y are combined with the solutions obtained fr@®y of each undominated subspage
and the optimal ones of those retained, the result is a sobsed,(y). The next theorem
demonstrate non-triviaIiE/of the recurrence by showing that if a feasible solutionteis
a space, then one will be found.

Theorem 7. Letrh be a well-founded relation of GS-Theory and (@ defined as above.
Then

FO«(y) # 0= GO(y) # 0

3Non-triviality is similar but not identical to completersssCompleteness requires treaeryoptimal solu-
tion is found by the recurrence, which we do not guarantee.

8 Theory and Techniques for Synthesizing a Family of GraptoAtgms

Algorithm 1 pseudo-Haskell Program Schema for EBFS (schema parametidined)

solve :: D -> {E}
solve(x) = bfs x {initial(x)}

bfs :: D -> {RHat}-> {R}
bfs x frontier =
let localsof y = let z = extract x y
in if z!={} && o(x,z) then z else {}
locals = (flatten.map) localsof frontier
allsubs = (flatten.map) (subspaces x) frontier
undom = {yy : yy€allsubs &&
(yy’€subs && yy’ ‘dominates‘ yy = yy==yy’)}
subsolns = bfs x undom
in opt(locals U subsolns)

subspaces :: D -> RHat -> {RHat}
subspaces x y = {yy: split(x,y,yy))

opt :: {R} -> {R}

opt zs = min {c x z | z €zs}

Proof. The proof of Theoreml6 is a series of equalities except fordigps. It is sufficient
to show that both of these steps preserve non-trivialite pitwof is again by induction over
the subspace relation. The first refinement reduggs, F Ox(YY) t0 Uyyeundoniy) F Ox(YY)-
Supposedyy- y h yyA FOx(yy) # 0. If yye undonty) then we are done. Otherwiseyy
is dominated, then there is somyg > yy and by the property of dominandeQy(yy) # 0,
S0 Uyyeundonty) FOx(YY) # 0. The second refinement follows again by induction, usireg t
induction hypothesif Oy(yy) # 0 = GO(yy) # 0. O

From the characteristic recurrence we can straightforyatdrive a simple recursive
functionbfs to compute a non-trivial subset Bf for a giveny, shown in Alg[1

The final program schema that is included in the Specwararlibs the result of in-
corporating a number of other features of GS such as negefilsars, bounds tests, and
propagation, which are not shown here. Details of these Hrat techniques are in [15].

3.2 Aclass of strictly greedy algorithms (SG)

A greedy algorithm([2] is one which repeatedly makes a lgoaitimal choice. For some
classes of problems this leads to a globally optimum chdide can get a characterization
of optimally greedy algorithms within EBFS by restrictifwgetsize olundom for anyl to 1.

If undom # 0 then the singleton membgr of undom is called thegreedychoice. In other
work [12] we show how to derive greedy algorithms for a variet problems including
Activity Selection, One machine scheduling, Professoradidiraveling Problem, Binary
Search.

S.Nedunuri, W. R. Cook & D.R. Smith 9

o*(x,yde)

= {defn of 0*}

Jz- x(y®ez) Ao(X,2)

= {defn of x }

ox,yde)

= {defn ofo}

path?(y & e, x.start, x.end)

= {distributive law forpath?}

dn- path?(y,x.start,n) A path?(e,n,x.end)

< {0*(x,y @ e), iedm- path?(y, x.start, m) A path?(e,m,x.end). Let mbe a witness fon}
path?(y,x.start,m) A path?(e, m,x.end)

= {m=last(y).t, (wherelast returns the last element of a sequence)
last(y).t = last(y').t A path?(y,x.start, n)

Figure 4.1: Derivation of semi-congruence relation forgkrPair Shortest Path

4 Methodology

We strongly believe that every formal approach should berapanied by a methodology
by which it can be used by a competent developer, withoutingegteat insights. Guided
program synthesis already goes a long way towards meetmgeitjuirement by capturing
design knowledge in a reusable form. The remainder of th& wiobe done by a devel-
oper consists of instantiating the various parameterseoptbgram schema. In the second
half of this paper, we demonstrate how carrying this outesystically allows us to derive
several related graph algorithms, revealing connectibasdre not always obvious from
textbook descriptions. We wish to reiterate that once thmidance relation and other op-
erators in the schema have been instantiateslyesult is a complete solution to the given
problem We focus on dominance relations because they are arguabast challenging
of the operators to design. The remaining parameters callyibe written down by visual
inspection.

The simplest form of derivation is to reason backwards frbmen ¢onclusion ofy ~~
y = 0" (x,Y @ e) = 0" (x,yd e), while assuming*(x,y & e) . The additional assumptions
that are made along the way form the required semi-congeueodition. The following
example illustrates the approach.

Example 8. Derivation of the semi-congruence relation for Single Fiortest Path in
Eg.[d is a straightforward calculation as shown in[Eid 4.kelies on the specification of
Shortest Path given in EQl 1 and the GS-theory in[Eg. 2.

The calculation shows that a paghs semi-congruent tg’ if y andy both end at the
same node and additionally is itself a valid path from the start node to its last node.
Since the cost function is compositional, this immediagigduces a dominance relation
y >y = last(y) = last(y') A path2(y,x.start,n) A ¥ eqgecy €dgECOSt < ¥ ogecy €AgE.COSL
Note the use of the distributive law f@ath? in step 4. Such laws are usually formulated as

10 Theory and Techniques for Synthesizing a Family of GraptoAtgms

D — (s:Nodeedges {Edgée)

Edge= (a: Nodeb: Nodew: Nat)
{Edge

A(X,z) - connectedx,z) A acycligx, z)
A (X, Z) ’ Zpe pathsFrontx.s) C/(p)

c(p)= zedngedgew

Figure 5.1: Specification of Shortest Path problem

o
111

R —» R

1L = Ax-{}

M — A(X,p,pe) - Jec x.edges pe= pU{e}
X = Alzp)-p=z

& — U

Figure 5.2: GS instantiation for Shortest Path

part of a domain theory during a domain discovery processyen as part of the process of
trying to carry out a derivation such as the one just showreBan appropriate constructive
prover (such as the one in KIDS [[16]) such a derivation conlthct be automated. Other
examples that have been derived using this approach areith@ielection [11], Integer
Linear Programmingd [15], and variations on the Maximum Segh$um probleni [10].
While this dominance relation could in principle be used amnputer Single Source
Shortest Path using a Best-First search (such as A*) it wooltde very efficient as every
pair of nodes on the frontier would need to be compared. Inndy section, a more
powerful dominance relation is derived which can be used Bremdth-First search, and
even more importantly, be shown to be in the SG class, raguiti a very efficient greedy
algorithm. The dominance relation just derived is stillimid, but in a subsidiary role.

5 More complex derivations: A family of related algorithms

5.1 (Single Source) Shortest Path

Previously in EgLB we derived a dominance relation for thel{tected) single pair shortest
path problem. To solve the problem of finding all shorteshpditom a given start node to
every other node in the graph it is convenient to consideotiiput as a set of edges that
form what is called gath treg a subgraph of the input graph which forms a spanning tree
rooted at the start node. The desired output is a path tredichvevery path from the root

is the shortest. The specification of Single Pair Shortest iRdrig.[Z.] is revised as shown

in Fig. [5.1 The revised instantiation of Global Search thgsrshown in Fig[5.2 In what
follows, the extends operatear is shown by simple concatenation. The goal is to show that
there is at most one undominated child following a split ofaatipl solutiona. Let ae
anda€ be two children following a split ofr, that is the graphs with edgee added and

S.Nedunuri, W. R. Cook & D.R. Smith 11

that withe’ added. Without loss of generality (w.l.0.9.) assume neigheor € are already
contained ina and both connect ta. LetZ = a€«w’ be a feasible solution derived from
a€. The task is to construct a feasible solutiofnom ae and discover the conditions under
which it is cheaper thad. We will use the definition of general dominante {2.2), reépea
here for convenience:

VZ ey o(x,Z)=3z€y- 0(x,2) Ac(X,2) < c(x,2Z)

Establishingo(aew) requiresconnectedaew) andacycliq aew).

In guided program synthesis, it is often useful to write ddems [16] that will be
needed during the derivation. Some of the most useful lasvdiatributive laws and mono-
tonicity laws. For example the following distributive laypaies toayclic :

acycliqaB) = acycliga) A acyclidB) Anac(a, B)
whereac defines what happens at the “boundary’ocoand 3:
ac(a,B) =vmn-3Ipe€ a*- path?(p,m,n) = —-3q € B* - path?(q,m,n)

requiring that ifp is a path ina (a* is a regular expression denoting all possible sequences
of edges ina) connectingm and n then there should be no path betwemrand n in

B. Example of monotonicity laws aracycliqaB) = acycliga) and connecteda) =
connecteda) . By using the laws constructively, automated tools sucKI&S [16] can
often suggest instantiations for terms. For instancegesiveare assumingpnnecteda€ «'),
application of the monotonicity law fmonnectegdone possible suggestiondsnnectedoedw’),
that is to tryw = € «'. With this binding forcw we can attempt to establigttycliq aew),

by expanding its definition. One of the terms.isac(e, a€«’)... which fails because
conna€w') implies path?(a€ w',e.a,eb) so adding edge creates a cycle. The wit-
ness to the failure is some patfi = g;...e whereej.a = eae.b=eb. One possi-
bility is that e; = e = e, that is«' containse. If so, letw = ey for somey’. Then
Z=a€dw =a€ey = aeéy’. Letw = €Y' and nowz= Z. Otherwise, w.l.0.g assume
that e connects witho at e.a, and therefore so does, so the casej.b = e.b is not very
interesting. The only option then is to remove edgérom «' . Let ' = e/ and sow is

€ /. Now the requirement becomes

acycligae) Aacyclig€ ¢') nac(ae €y')

acycliqe' ¢/') follows from acycliq a€ ¢') by monotonicity andac(ae, € y/') follows from
acycliqa€ (') and the fact thae was chosen above to remove the cycl@gew’ . This
demonstrates(aew) providedacycliq ae) wherew is constructed as above.

Finally, to establish general dominance it is necessarfidashatz costs no more than
Z. Note that the cost of a solution is the sum of individual pathts starting fronx.s. Let
m denotee.a andn denotee.b (and analogously fo#). Now consider a path to a nogen
Z. If the path top does not contain edgg ie. pass througi then the same path holds in

12 Theory and Techniques for Synthesizing a Family of GraptoAtgms

i v \
[, (}.'-.-:_’ B ;; 1
RO
N, /
\\\ [0} //
Figure 5.3: Feasible solutiome o/
|j‘ PO N
i \n ~e” 7"\
" f D\
N ¢ £ /
N /
B :—“-1-,\.‘\; i
l//// f’QP/: - ’; _“-\\\ -
| \\ -7 (_j\\
.\ @-—..___._._’f ,‘;I
\\ o S

Figure 5.4: Feasible solutiomew

z. Otherwise lef3’éy'e’d be a path tg in Z where€” is the edges above (see Fid. 5.3).
B’ is a path fromx.sin a and€ is some edge that leads outafon the path tg. Then the
corresponding path inis ed (see Fig[5.H4).

c(aew, Bed) < cla€w,B'eye d)

= {expand defnp

c(z,Be)+c(z,0) <c(Z,B'e)+c(Z,€)+c(z9)
= {+ve edge weights, triangle inequaljty
c(zBe) <c(Z,p'a)

As there were no restrictions @ above, letg be the witness foe and this establishes
That is, provided the patBeis shorter thar8’€, there cannot be a shorter path eido n.

As cost is the sum of the path costs, it follows that aew) < c(a€«w'). The dominance
condition is thenae > a€ < acycliqae) Ac(z fe) < c(Z,B'€) . Finally, as it is not
known at the time of the split whicH will lie on the path toe.b, to be conservative, let

e be that edge whose endpoiab is the closest to the start node. This is therefore the
greedy choice. lincorporating finite differencing to intrentally maintain the distances

S.Nedunuri, W. R. Cook & D.R. Smith 13

D — {Edge | connected

Edge= (f : Nodet : Nodew: Nat)
{Edgg

A(X,z) - connectedx,z) A acycligx, z)
A(X,2) - Y edgez€00EW

o
111

Figure 5.5: Specification of Min. Spanning Tree problem

to the nodes, using the dominance relation derived eadreingle Pair Shortest Path to
eliminate the longer paths to a node, and data structureereéint results in an algorithm
similar to Dijkstra’s algorithm for MSTs.

5.2 Minimum Spanning Tree

The specification of MST is very similar to that of ShortestrRavith the difference that
there is no longer a distinguished nagldéhe input graph must be connected, and the cost
of a solution is simply the sum of the weights of the edges itthe The instantiation of
the simple GS operators is as for SP. Again, any edge thatlisdashust not create a cycle
or it cannot lead to a feasible solution. We will describedlgorithm construction process
informally so as to expose the connection with the Shortathh Blgorithm more clearly.
However the derivations shown here can also be similarip&ized.

There are now two ways to satisfy the acyclicity requiremdbme is by choosing an
edge connecting a nodeadnto one outside ofr. Another is to choose an edge that connects
two nodes withina, being careful not to create cycles. The two options are a&amext,

Option 1: LetZ = a€ «' be a feasible solution derived frooe'. If «' includese then
let win a feasible solutioz = aew simply bew’ — {e} U{€'} and there=Z. Otherwise, if
w’ does not contairethere must be some other path connectingith et. W.l.0.g. assume
that path is vieg. If a€ ' is feasible, then it is a tree, 0’ is also a tree. Therefore it is
not difficult to show thaz = aew' is also a spanning tree. Now to show dominance, derive
conditions under whichk is cheaper thad:

c(x,aew’) < c(x,0€)
= {defn ofc}
Zedgﬁaew’ ed gew < XedgEae’w’ ed gew

ew<é€e.w

Finally, as it is not known at the time of the split whiehwill lie on the path toet, to be
conservative, lee be that edge with the least weight connectangvith an external node
. This is therefore the greedy choice. The result is an dlgorithat is similar to Prim’s
algorithm for MSTs.

Option 2: The difference with Option 1 is in hogis chosen in order to ensure acyclic-
ity. For a feasible solutiony must not contain any cycles. Therefore it consists of a colle
tion of acyclic connected components, ie trees. Any new edgeaot connect nodes within

14 Theory and Techniques for Synthesizing a Family of GraptoAtgms

a component without introducing a cycle. Therefore it mastrct two component trees.
Connecting two trees by a single edge results in a new treén @gption 1, letZ = a€ '’
be a feasible solution derived frome'. If ' includese then letw in a feasible solution
z= aew simply bew’ — {e} U{€'} and thenz= Z. Otherwise, ifw’ does not contaire
there must be some other edge used to connect the two tréeswbald have connected.
W.l.o.g. assume that edgeds If a€ ' is feasible, then it is a tree, g0’ is also a tree.
Therefore it is not difficult to show that= aew’ is also a spanning tree. The derivation
of a cost comparison relation is identical to Option 1, andeoagain the greedy choice is
the edgee that connects two trees and is of least weight. The resuhisfdption is an
algorithm that is similar to Kruskal’s algorithm.

In conclusion, we observe that far from being completelyedént algorithms, Dijk-
stra’s algorithm, Prim’s algorithm and Kruskal's algoriiidiffer only in very small number
of (albeit important) ways. In contrast, many textbook digsions of the algorithms intro-
duce the algorithms out of the blue, followed by separat®fgsrof correctness. We have
shown how a systematic procedure can derive different itfaps, with relatively minor
changes to the derivations.

6 Related Work

Gulwani et al. [[21[4] describe a powerful program synthegiproach calledemplate-
based synthesisA user supplies a template or outline of the intended progsaucture,
and the tool fills in the details. A number of interesting peogs have been synthesized
using this approach, including Bresenham’s line drawimgg@aihm and various bit vector
manipulation routines. A related method is inductive sgsih[6] in which the tool synthe-
sizes a program from examples. The latter has been useddatng spreadsheet formulae
from examples. All the tools rely on powerful SMT solvers. eT8ketching approach of
Solar-Lezama et al [14] also relies on inductive synthe8isketch similar in intent to a
template, is supplied by the user and the tool fills in suckeetspas loop bounds and array
indexing. Sketching relies on efficient SAT solvers. To guBulwani et al. the benefit
of the template approach is that “the programmer only nedte e structure of the code
and the tool fills out the details! [21].Rather than the pemgmer supplying an arbitrary
template, though, we suggest the use of a program schemahsappropriate algorithm
class (refer to Step 2 of the process in Sec] 2.1). We bellmiethe advantage of such
an approach is that, based on a sound theory, much can abeadferred at the abstract
level and this is captured in the theory associated with tperithm class. Furthermore,
knowledge of properties at the abstract level allows sfizateon of the program schema
with information that would otherwise have to either be geelsat by the programmer de-
vising a template or inferred automatically by the tool (eajl recursive implementation
or efficient implementation of dominance testing with haghi We believe this will allow
semi-automated synthesis to scale up to larger problenis asiconstraint solvers (SAT,
CSP, LP, MIP, etc.), planning and scheduling, and O/S lensdnams such as garbage col-
lectors [13].

S.Nedunuri, W. R. Cook & D.R. Smith 15

Program verification is another field that shares commonsgeih program synthesis
- namely a correct efficient program. The difference liesppraach - we prefer to con-
struct the program in a way that is guaranteed to be correcbpposed to verifying its
correctness after the fact. Certainly some recent tools as®afny[[8] provide very useful
feedback in an IDE during program construction. But everndools requires significant
program annotations in the form of invariants to be able toraatically verify non-trivial
examples such as the Schorr-Waite algorithin [8]. Nevestselwe do not see verification
and synthesis as being necessarily opposed. For examplajranthe correctness of the
instantiation of several of the operators in the programesahwhich is usually done by
inspection is a verification task, as is ensuring correstrofghe schema that goes in the
class library. We also feel that recent advances in verificatia SMT solvers will also
help guided synthesis by increasing the degree of automatio

Refinement is generally viewed as an alternative to syrghésspecification is gradu-
ally refined into an efficient executable program. Refinemegthods such as Z and B have
proved to be very popular. In contrast to refinement, guidednam synthesis already has
the program structure in place, and the main body of work isth®f instantiating the
schema parameters followed by various program transfasmsaimany of which can be
mechanically applied. Both refinement and synthesis relgresively on tool support, par-
ticularly in the form of provers. We expect that advancesadthisynthesis and refinement
will benefit the other field.

7 Summary and Future Work

We have formulated a theory of efficient breadth-first sehaded on dominance relations.
A very useful specialization of this class occurs when tieat most one undominated child
node. This is the class of Strictly Greedy algorithms. Weehalso derived a recurrence
from which a simple program schema can be easily construct®d have shown how
to systematically derive dominance relations for a famifyinaportant graph algorithms
revealing connections between them that are obscured vaoenadgorithm is presented in
isolation.

Nearly all the derivations shown in this paper have beenerhout by hand. However,
they are simple enough to be automated. We plan on buildimgwepthat incorporates the
ideas mentioned in here. We are encouraged by the successifaa prover that was part
of KIDS, a predecessor to Specware.

References

[1] SpecwareHttp://www.specware.org.

[2] T. Cormen, C. Leiserson, R. Rivest & C. Stein (200h}roduction to Algorithms2nd edition.
MIT Press.

[3] R Dechter (2003)Constraint ProcessingMorgan Kauffman.

16 Theory and Techniques for Synthesizing a Family of GraptoAtgms

[4] S. Gulwani, S. Jha, A. Tiwari & R. Venkatesan (201 $ynthesis of loop-free programn:
PLDI, pp. 62—-73, doi:10.1145/2F1993498.1993506.

[5] T. Ibaraki (1977): The Power of Dominance Relations in Branch-and-Bound Adgms J.
ACM 24(2), pp. 264-279, d0i:10.1145/2F322003.322010.

[6] S.Itzhaky, S. Gulwani, N. Immerman & M. Sagiv (201@)simple inductive synthesis method-
ology and its applicationsin: OOPSLA pp. 36-46, dci:10.1145/2F1869459.1869463.

[7] C. Kreitz (1998):Program Synthesidn W. Bibel & P. Schmitt, editorsAutomated Deduction
— A Basis for Applicationschapter 111.2.5, 111, Kluwer, pp. 105-134.

[8] K. R. M. Leino (2010): Dafny: an automatic program verifier for functional correct
ness In: Proc. 16th intl. conf. on Logic for Prog., Al, & ReasonjngPAR, pp. 348-370,
doi{10.1007/2F978-3-642-17511-4 | 20.

[9] S. Nedunuri (2012):Theory and Techniques for Synthesizing Efficient Breadsgi-Bearch
Algorithms Ph.D. thesis, Univ. of Texas at Austin.

[10] S. Nedunuri & W.R. Cook (2009):Synthesis of Fast Programs for Maximum Segment
Sum Problems In: Intl. Conf. on Generative Prog. and Component Engineer®BCE)
doii10.1145/2F1621607.1621626.

[11] S. Nedunuri, D. R. Smith & W. R. Cook (2010)A Class of Greedy Algorithms and
Its Relation to Greedoids Intl. Colloq. on Theoretical Aspects of Computing (ICTAC)
doi{10.1007/2F978-3-642-14808-8 | 24.

[12] S. Nedunuri, D. R. Smith & W. R. Cook (2012)heory and Techniques for a Class of Efficient
Breadth-First Search Algorithmsn: Intl. Symp. on Formal Methods (FM)

[13] D. Pavlovic, P. Pepper & D. R. Smith (2010formal Derivation of Concurrent Garbage
Collectors.In: Math. of Program Constr. (MP(Jloi 10.1007/2F978-3-642-13321-3| 20.

[14] Y. Pu, R. Bodik & S. Srivastava (2011%ynthesis of first-order dynamic programming algo-
rithms. In: OOPSLA pp. 83-98, dai:10.1145/2F2048066.2048076.

[15] D. R. Smith (1988): Structure and Design of Global Search AlgorithmsTech. Rep.
Kes.U.87.12, Kestrel Institute.

[16] D. R. Smith (1990)KIDS: A Semi-Automatic Program Development Syst#tBE Trans. on
Soft. Eng., Spec. Issue on Formal Meth@@¢9), pp. 1024-1043, dbi:10.1109/2F32.58788.

[17] D.R. Smith (2010)Global Search Theory Revisitenpublished

[18] D.R. Smith, E. A. Parra & S. J. Westfold (199%ynthesis of high-performance transportation
schedulersTechnical Report, Kestrel Institute.

[19] D. R. Smith & S. Westfold (2008)synthesis of Propositional Satisfiability Solvefgmal Proj.
Report, Kestrel Institute.

[20] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia & V. Saat (2006) Combinatorial sketch-
ing for finite programsIn: Proc. of the 12th intl. conf. on architectural support favgarlang.
and operating systems (ASPLO§p. 404-415, doi:10.1145/2F1168857.1168907.

[21] S. Srivastava, S. Gulwani & J. S. Foster (2010nm program verification to program synthe-
sis. In: POPL, pp. 313-326, d0i:10.1.1.148.395.

[22] M. Vechev & E. Yahav (2008)Deriving linearizable fine-grained concurrent objecBLDI
'08, pp. 125-135, d0i:10.1145/2F1375581.1375598.

http://dx.doi.org/10.1145/2F1993498.1993506
http://dx.doi.org/10.1145/2F322003.322010
http://dx.doi.org/10.1145/2F1869459.1869463
http://dx.doi.org/10.1007/2F978-3-642-17511-4_20
http://dx.doi.org/10.1145/2F1621607.1621626
http://dx.doi.org/10.1007/2F978-3-642-14808-8_24
http://dx.doi.org/10.1007/2F978-3-642-13321-3_20
http://dx.doi.org/10.1145/2F2048066.2048076
http://dx.doi.org/10.1109/2F32.58788
http://dx.doi.org/10.1145/2F1168857.1168907
http://dx.doi.org/10.1.1.148.395
http://dx.doi.org/10.1145/2F1375581.1375598

	Introduction
	Background To Guided Program Synthesis
	Process
	Global Search
	Dominance Relations

	A Theory Of Efficient Breadth-First Search (EBFS)
	Program Theory
	A class of strictly greedy algorithms (SG)

	Methodology
	More complex derivations: A family of related algorithms
	(Single Source) Shortest Path
	Minimum Spanning Tree

	Related Work
	Summary and Future Work

