
Journal of Functional Programming
http://journals.cambridge.org/JFP

Additional services for Journal of Functional Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

MRI: Modular reasoning about interference in incremental 
programming

BRUNO C. D. S. OLIVEIRA, TOM SCHRIJVERS and WILLIAM R. COOK

Journal of Functional Programming / Volume 22 / Issue 06 / November 2012, pp 797  852
DOI: 10.1017/S0956796812000354, Published online: 

Link to this article: http://journals.cambridge.org/abstract_S0956796812000354

How to cite this article:
BRUNO C. D. S. OLIVEIRA, TOM SCHRIJVERS and WILLIAM R. COOK (2012). MRI: Modular 
reasoning about interference in incremental programming. Journal of Functional Programming, 22, 
pp 797852 doi:10.1017/S0956796812000354

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JFP, IP address: 12.237.219.121 on 22 Oct 2012



JFP 22 (6): 797–852, 2012. c© Cambridge University Press 2012

doi:10.1017/S0956796812000354

797

MRI: Modular reasoning about interference
in incremental programming

BRUNO C. D. S. OLIVEIRA

School of Computing, National University of Singapore, Singapore

(e-mail:)oliveira@comp.nus.edu.sg)

TOM SCHRIJVERS

Department of Applied Mathematics and Computer Science

Ghent University, Ghent, Belgium

(e-mail:)tom.schrijvers@ugent.be)

WILLIAM R. COOK

Department of Computer Science, University of Texas at Austin, University Station, Austin, TX, USA

(e-mail:)wcook@cs.utexas.edu)

Abstract

Incremental Programming (IP) is a programming style in which new program components

are defined as increments of other components. Examples of IP mechanisms include Object-

oriented programming inheritance, aspect-oriented programming advice, and feature-oriented

programming. A characteristic of IP mechanisms is that, while individual components can be

independently defined, the composition of components makes those components become

tightly coupled, sharing both control and data flows. This makes reasoning about IP

mechanisms a notoriously hard problem: modular reasoning about a component becomes very

difficult; and it is very hard to tell if two tightly coupled components interfere with each other’s

control and data flows. This paper presents modular reasoning about interference (MRI), a

purely functional model of IP embedded in Haskell. MRI models inheritance with mixins and

side effects with monads. It comes with a range of powerful reasoning techniques: equational

reasoning, parametricity, and reasoning with algebraic laws about effectful operations. These

techniques enable MRI in the presence of side effects. MRI formally captures harmlessness,

a hard-to-formalize notion in the interference literature, in two theorems. We prove these

theorems with a non-trivial combination of all three reasoning techniques.

1 Introduction

Cook and Palsberg (1989) define Incremental Programming (IP) as a programming

style in which new program components are defined as increments of the existing

ones. Object-oriented programming (OOP) inheritance (Dahl & Nygaard, 1966) is

probably the most widely used mechanism for IP; other specialized forms of IP

include variants of inheritance such as mixins (Bracha & Cook, 1990; Flatt et al.,

1998); aspect-oriented programming (AOP) (Kiczales et al., 1997), and feature-oriented

programming (FOP) (Prehofer, 1997).

A characteristic of IP systems is that the control and data flows between the

derived and the original components are quite complex, since control flows back



798 B. C. d. S. Oliveira et al.

and forth between components in a composition. In other words, despite being

textually separated, IP components are semantically coupled. This makes reasoning

a significant challenge: It is hard to understand a component in isolation, and it

is hard to understand the interaction between components. The former problem is

known as modular reasoning and has been intensely studied in the OOP and AOP

literature (Stata & Guttag, 1995; Aldrich, 2005; Kiczales & Mezini, 2005). The latter

problem, usually referred to as interference, has also received much attention in the

AOP literature (Douence et al., 2004; Rinard et al., 2004; Dantas & Walker, 2006;

Clifton et al., 2007; Bagherzadeh et al., 2011); and the OOP literature addresses

symptoms of interference (Clifton et al., 2007), but is perhaps less aware of the

general notion.

The essence of both problems lies in the hidden control and data flows required

by the tight coupling of components but not visible from the interfaces of these

same components.

Because IP systems share similar characteristics and problems, it is reasonable

to expect that there is a general framework which can describe these systems. The

benefits of such general framework is that once it is shown that a certain property

holds in the general framework, the fact that that property holds for particular

instances comes for free.

One such framework is the denotational model of inheritance proposed by Cook

(1989), which serves as the starting point for this paper. This model uses traditional

techniques of fixed-point theory, allowing inheritance to be understood composition-

ally. One advantage is that modular reasoning is to an extent possible since no effects

are considered. In other words, the setting is a variation of a pure lambda calculus

in which equational reasoning is possible. The benefits of purely functional settings

for modular reasoning about forms of IP have been explored in more detail by

other authors. Most prominently, Open Modules (Aldrich, 2005) support reasoning

about tightly coupled components. In Open Modules, effects are not considered and

modular reasoning about components is possible through logical relations, which

play a similar role to equational reasoning in more conventional purely functional

languages. By not allowing any effects, the biggest obstacle to reasoning is removed.

Unfortunately, this solution is not effective in practice, as almost all practical uses

of IP involve effects.

The latter observation leads us to the principal goal of this paper, which concerns

answering the question of whether it is possible to have a model of IP with effects

while supporting both modular reasoning and reasoning about non-interference

of effects. To our knowledge, there is no IP approach capable of handling both

reasoning concerns at the same time. This is understandable because the introduction

of implicit effects is well known to destroy the nice reasoning properties of pure

languages. It thus seems that we have a dilemma: on the one hand it is possible

to have a pure language with modular reasoning properties, but in which most

interesting uses of IP are not possible; and on the other hand it is possible to

have an impure language in which interesting uses of IP are possible, but modular

reasoning is significantly undermined. Indeed, this has lead some authors, including

Kiczales and Mezini (2005), to argue that modular reasoning about mechanisms



Modular reasoning about interference 799

that capture crosscutting concerns (a particular yet significant case of IP) is simply

not possible, and that a degree of global analysis is always needed.

Inspired by research on handling effects in purely functional languages, we

propose modular reasoning about interference (MRI) in incremental programming

as an extension of Cook’s semantic model of inheritance (1989) with explicit effects

through the use of monads (Wadler, 1992a). This enables uses of IP involving effects

without losing the purity and the reasoning properties of the model. We do not

devise a novel core language, but reuse the well-studied polymorphic λ-calculus,

System Fω (Reynolds, 1974), extended with recursion and benefit from the many

established technical results. Like other authors (Wadler, 1989; Voigtländer, 2009),

we use Haskell as a convenient source language for System Fω and elaborate the

model as a Haskell library.1

Our model is well-suited to make formal statements about non-interference.

Inspired by Dantas and Walker’s (2006) notion of harmless advice, we express two

non-trivial theorems about harmless mixin inheritance. This is possible because of

the purely functional nature of our setting, which provides us with a range of

powerful techniques to reason about such formal statements: equational reasoning,

parametricity, and reasoning with algebraic laws about (monadic) effectful operations.

Modular reasoning about interference is a compelling application of the latter two

techniques, which are particularly relevant for reasoning about effectful programs,

but have been relatively unexplored so far. Most importantly, these techniques allow

powerful forms of modular reasoning: Parametricity enables reasoning based on

types only and not the implementation of components, while algebraic laws support

reasoning independent of the implementation details of effects (monads). With

respect to parametricity, our work builds on foundational work by Voigtländer (2009)

and shows how parametric properties about effectful programs are important to state

basic non-interference properties. With respect to algebraic laws, our proof for the

harmless observation mixin theorem (Oliveira et al., 2010) (see also Section 5.2)

provides an application of algebraic laws for stateful monadic effects. Interestingly,

while work on reasoning about pure functional programs abounds, there is far less

work on reasoning about effectful monadic programs using algebraic laws. One

notable exception is the work by Liang and Hudak (1996), where they have shown

how to reason about monadic programs with laws for the reader monad. With

respect to other types of effects, and as far as we can tell, the laws about stateful

monadic effects presented in Oliveira et al. (2010) have not appeared before in the

literature. More recently, Gibbons and Hinze (2011) picked up on this topic and

have explored algebraic properties for various types of monadic effects.

In summary, the contributions of this paper are as follows:

• Modular reasoning about interference: A purely functional model for incre-

mental programming with effects (see Section 2). Monads make effects an

integral part of each component’s interface. Thus, MRI allows interesting,

effectful, programs to be expressed, while still supporting all the benefits of

1 http://users.ugent.be/∼tschrijv/MRI/



800 B. C. d. S. Oliveira et al.

purely functional programming. We illustrate our model on an interpreter,

modularizing orthogonal aspects of computation such as logging and tracing

through mixin inheritance.

• A non-trivial application of various functional programming reasoning tech-

niques to the notoriously hard problem of modular reasoning about inheritance

in the presence of effects. Our approach combines familiar reasoning techniques

such as equational reasoning and parametricity (see Sections 3 and 4) with

some relatively unexplored techniques to reason about effectful code. These

techniques are used to prove two harmless mixin theorems (see Section 5).

• Two different techniques to reason about non-interference of mixin compo-

nents. We first present a simple, but non-modular approach in Section 3. This

technique allows us to reason about any non-interference of two individual

components, and proofs can be easily mechanized in theorem provers like

Coq. We then present a modular and more generic approach in Section 5.

This approach allows general non-interference statements for any given mixin

and base programs, provided that they conform to a suitable type scheme and

are composed with an appropriate mixin combinator.

• A classification system for mixin interference inspired by Rinard et al.’s (2004)

similar classification for AOP advice (see Section 4). We adapt Rinard et

al.’s control and data flow classification for advice to mixins and provide a

fine-grained classification for stateful effects.

• An implementation of the MRI model as a Haskell library using open recursion

to model mixin inheritance and monads to model effects. The model is statically

typed and purely functional.

We believe that these results are relevant to the common problems of all IP

approaches and provide strong incentives for OOP and other IP instances based on

inheritance to consider similar solutions.

This paper is an extended version of the paper published at AOSD ’10 (Oliveira

et al., 2010). With respect to that paper we generalize the scope of our work

from AOP-style advice to inheritance, elaborate on the proof techniques used and

include the proofs of our theorems. Furthermore, the technique to reason about non-

interference presented in Section 3 is new. While this approach is non-modular, it

has the advantage that it can be used to prove some harmlessness results that are not

possible to prove with the modular technique presented in Section 5. For example,

the proof that memoization does not interfere with the Fibonacci function (see

Section 3) does not follow from the harmless mixin theorems, but can be proved

directly with our new technique.

2 Modular reasoning about interference (MRI)

This section introduces the Haskell implementation of MRI using open recursion

and monads. Monads and monad transformers are introduced briefly in Section 2.2,

but more thorough introductions can be found in the literature (Wadler, 1992a;

Liang et al., 1995).



Modular reasoning about interference 801

type Open s = s → s

new :: Open s → s

new a = let this = a this in this

zero :: Open s

zero = id

(⊕) :: Open s → Open s → Open s

a1 ⊕ a2 = λsuper → a1 (a2 super) super

Fig. 1. Basic inheritance model.

2.1 Open recursion

The standard mechanism for extending a component’s behavior is through compo-

sition or decoration. However, this only affects the external clients of the extended

component, and not the internal recursive uses. Open recursion is a way of structuring

a component that leaves recursive references open, so that the recursive behavior can

be extended too. This is the basis for modeling inheritance and mixin composition

in object-oriented languages (Cook, 1989), and it also provides a simple model for

some types of aspects (Lopez-Herrejon et al., 2006; Oliveira et al., 2010).

We now present the open recursive model of inheritance, formulated in Haskell,

that is used throughout this paper.

Inheritance model. Schematically, our denotational model of inheritance represents

the composition of components with open recursion as follows:

p = new (a1

super

��⊕ a2

super

��⊕ ...

super

��⊕ an

super

��⊕ base)

this

��

The open base component provides base behavior similar to a base class, and

the other mixin components a1 ,. . . ,an provide behavior extensions, similar to AOP

advice or Scala’s mixins. The inheritance operator ⊕ extends one component with

another; extensions are applied from right to left. Finally, the new operator closes

an open component; using OOP terminology, this operator instantiates an object

p of the class a1 ⊕ a2 ⊕ ...⊕ an ⊕ base.

The arrows in the diagram show what happens to the references during compo-

sition. The ⊕ operator instantiates the super reference of the extending component

with the extended component. In contrast, the new operator instantiates the self-

reference (this) of the base component to the entire composition.

The basis of the implementation is shown in Figure 1. The type Open s is a

synonym for a function of type s → s representing an open component of type s .

The parameter s of this function is the self-reference and the return value is the

resulting closed module. The inheritance operator ⊕ defines component composition.

Composition is associative, and it has the zero component as left and right unit,



802 B. C. d. S. Oliveira et al.

forming a monoid.2

f ⊕ zero ≡ f ≡ zero ⊕ f

(f ⊕ g)⊕ h ≡ f ⊕ (g ⊕ h)

The function new is a fix-point combinator used for closing, or instantiating, an

open and potentially extended component.

There are several other models of inheritance. Cook (1989) explores many other

variants. We believe that similar results to those in this paper can be obtained for

these other models.

We adopt the model of inheritance in Figure 1 because it is simple yet expressive

enough to tackle the reasoning issues at the heart of this paper. In this model, which

is polymorphic in the type s of open modules, we can capture the simplest form of

open modules that is still interesting: Single-argument functions.

Example. The open (single-argument) function fib1 defines the standard Fibonacci

function, except that recursive calls are replaced by this .

fib1 :: Open (Int → Int)

fib1 this n = case n of 0→ 0

1→ 1

→ this (n − 1) + this (n − 2)

The open function optfib optimizes two calls of the Fibonacci function by returning

the appropriate values immediately. Note that optfib is not meant to be used stand-

alone. It assumes that it is used in combination with an open function like fib1 that

takes care of the uncovered cases.

optfib :: Open (Int → Int)

optfib super n = case n of 10→ 55

30→ 832040

→ super n

Different combinations of open functions are closed with new :

slowfib1 , fastfib1 :: Int → Int

slowfib1 = new fib1

fastfib1 = new (optfib ⊕ fib1 )

The functions slowfib1 and fastfib1 illustrate that MRI unifies the concept of

extensions and base programs under a single type. There is still a conceptual

difference between these, because in a base program this is understood as a recursive

call, while in the mixin super refers to the original computation that is extended by

that mixin. Instantiating extensions alone will typically result in a useless program,

as it has no base case.

2 Open s is the monoid of endofunctions with identity and function composition; ≡ means denotational
equivalence throughout the paper.



Modular reasoning about interference 803

-- Identity

run� :: � a → a

run�T :: �T m a → a

-- State

run� :: � s a → s → (a , s)

eval� :: � s a → s → a

run�T :: �T s m a → s → m (a , s)

class Monad m ⇒ �M s m | m → s where

get :: m s

put :: s → m ()

-- Writer

run� :: � w a → (a ,w )

eval� :: � w a → a

exec� :: � w a → w

run�T :: �T w m a → m (a ,w )

eval�T :: �T w a → a

exec�T :: �T w a → w

class (Monoid w ,Monad m)⇒�M w m | m → w where

tell :: w → m ()

-- Reader

run� :: � e a → e → a

run�T :: �T e m a → e → m a

class Monad m ⇒ �M e m | m → e where

ask :: m e

-- Error

run� :: Error e a → Either e a

run�T :: �T e m a → m (Either e a)

class Monad m ⇒ �M e m | m → e where

throwError :: e → m a

catchError :: m a → (e → m a)→ m a

Fig. 2. Monads and monad transformer types.

In the Haskell approach presented in this section, the super argument for

extensions or this for base programs is always passed explicitly. However, it is

possible to make them implicit using implicit parameters (Lewis et al., 2000).

2.2 Monads and monad transformers

Monads are a standard technique for encapsulating computational effects in pure

functional languages (Wadler, 1992a). Examples of computational effects include

mutable state, error handling, and non-determinism. Monads allow explicit repre-

sentation of computations, which produce values of a given type and may perform

side effects. Computations are composed by a bind operator that hides the details

of the computation effect (passing explicit state, handling errors, etc.). In Haskell,

monads are described by a type class:



804 B. C. d. S. Oliveira et al.

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b)→ m b

The type m a describes computations of type m , which produce values of type a

when executed. The function return lifts a value of type a into a (pure) computation

that simply produces the value. The bind function >>= composes a computation m a ,

which produces values of type a , with a function that accepts a value of type a and

returns a computation of type b. The convenient funtion >> defines a special case

of bind where the intermediate value is not used:

(>>) :: Monad m ⇒ m a → m b → m b

ma >> mb = ma >>= \ → mb

All instances of Monad must satisfy the following laws:

Definition 1 (Monad Laws)

return x >>= f ≡ f x (Return-Bind)

p >>= return ≡ p (Bind-Return)

(p >>= f ) >>= g ≡ p >>= λx → (f x >>= g) (Bind-Bind)

The Haskell do notation is syntactic sugar for the bind operator: do {x ← f ; g }
means f >>= λx → g .

A monad transformer (Liang et al., 1995) is a higher order monad that is

parameterized by another monad. Monad transformers are needed because monads

do not compose well on their own. With monad transformers, different kinds of

monads can be layered on top of each other to compose the functionality provided

by each monad. A monad transformer is defined by the following type class:

class MonadTrans t where

lift :: Monad m ⇒ m a → t m a

The lift operation takes a monadic computation m a , and lifts it into the transformed

monad t m . For each particular type of effect (such as state or exceptions)

there is an associated monad transformer type and type class. Figure 2 shows

a number of monad and monad transformer (Liang et al., 1995) definitions that

are used throughout the paper. Note that classes such as �M s m use functional

dependencies (Jones, 2000). The annotation m → s states that there is a functional

dependency between the types m and s (the type m determines the type s). This

additional information is used by the compiler to improve type-inference.

2.3 Monadic mixins

The combination of mixins and monads is the key to provide a purely functional

model of IP with effects. For practical applications, pure mixins are of limited



Modular reasoning about interference 805

memo :: �M (Map Int Int) m ⇒ Open (Int → m Int)

memo super x = do m ← get

if member x m then return (m ! x )

else do y ← super x

m ′ ← get

put (insert x y m ′)

return y

fib2 :: Monad m ⇒ Open (Int → m Int)

fib2 this n = case n of 0→ return 0

1→ return 1

→ do y ← this (n − 1)

x ← this (n − 2)

return (x + y)

Fig. 3. Memoization.

use. For instance, most well-known examples of AOP advice, including logging,

tracing, backups, and memoization, are effectful. A setting without effects is severely

limited. Take the example in Section 2.1. Ideally it should be possible to dynamically

construct a lookup table for the calls of the Fibonacci function. However, without

effects, the best we can do is to build in a static lookup table for some of the calls.

Effectful mixins are useful to provide a better solution for this problem, allowing

the creation of a dynamic memo table where previously computed calls can be

looked up.

A simple effectful memoization mixin is presented in Figure 3. The �M class, which

models state, is used by the memo mixin to read and update the cached values in

the memo table. The memo table is implemented using a (finite) map from integers

to integers. If the input value to the function exists in the memo table, then the

associated value is returned. Otherwise, the call proceeds and the memo table is

updated with the input value and the result of the call.

The introduction of effects requires a change to the Fibonacci component: it too

must be written in a monadic manner, though it is fully parametric in the monad

type. We can instantiate different monads, using the corresponding run functions in

Figure 2, to recover variations of the Fibonacci function. For example, the identity

monad � recovers the effect-free function

slowfib2 :: Int → Int

slowfib2 = run� ◦ new fib2

while a fast Fibonacci function is obtained by adding the memo mixin and suitably

instantiating the state monad:

eval� :: � s a → s → a

eval� m s = fst $ run� m s

fastfib :: Int → Int

fastfib n = eval� (new (memo ⊕ fib2 ) n) empty



806 B. C. d. S. Oliveira et al.

data Expr

= Lit Int

| Var String

| Plus Expr Expr

| Assign String Expr

| Sequence [Expr ]

|While Expr Expr

type Env = [(String , Int)]

Fig. 4. Types for a simple imperative language.

2.4 Application: orthogonal aspects of interpreters

In this section we show how monadic mixins can capture various orthogonal aspects

of interpreters (and, more generally, programs) like logging or improved error

handling.

Figure 4 shows the datatype for the abstract syntax of a simple imperative

language. In Figure 5 the interpreter for that language is presented. The interpreter’s

type Open (Expr → m Int) indicates that it is an open function of type Expr →
m Int . The type variable m means that mixins may introduce effects. However, the

constraint on m is not Monad m , for an unknown type of effect, but �M Env m:

the effect must involve an updateable state of type Env , the environment used by

the interpreter. In other words, the interpreter itself is effectful. In dealing with the

Var and Assign cases, it reads and writes the environment with the get and put

functions.

A basic unadvised monadic evaluator is recovered as follows:

eval :: Expr → � Env Int

eval = new beval

The self-reference in the open function is closed, and m is instantiated to the state

monad.

Figure 6 shows how to define various mixins that capture aspects which are

orthogonal to the base computations. These mixins are described next.

Logging mixin. This mixin defines logging modularly. It writes a log message when

entering the function call, delegates to super , and finally writes another log message

when exiting. It uses the writer monad �M of Figure 2 for writing logging messages.

Dumping mixin. This mixin shows how to modularly dump the environment at each

evaluation step, which is useful for debugging. The mixin intercepts the evaluation

of every expression, retrieves the current environment, writes it out using a writer

monad, and delegates the actual evaluation to super . This example is interesting

because it shows that the mixin not only introduces its own writer effect �M but

also relies on the presence of the state effect �M.

Exception handling mixin. A last example of a useful mixin is a better error handling

facility for the interpreter. In the interpreter an error can occur when a variable



Modular reasoning about interference 807

beval :: �M Env m ⇒ Open (Expr → m Int)

beval this exp = case exp of

Lit x → return x

Var s → do e ← get

case lookup s e of

Just x → return x

→ error msg

Plus l r → do x ← this l

y ← this r

return (x + y)

Assign x r → do y ← this r

e ← get

put ((x , y) : e)

return y

Sequence [ ] → return 0

Sequence [x ] → this x

Sequence (x : xs)→ this x >> this (Sequence xs)

While c b → do x ← this c

if (x ≡ 0) then return 0

else (this b >> this exp)

where msg = "Variable not found!"

Fig. 5. A mixin-based monadic evaluator.

is looked up in the environment. The exception handling mixin overrides the case

for variables and replaces the error primitive by throwError (see Figure 2). There

are two advantages of using throwError instead of error . The first advantage is

that additional useful information can be returned together with the exception (with

error it is only possible to provide a string error message). For example, it may

be useful to return the current environment, or the expression where the error has

occurred so that the user can more easily identify the locale in the program that

is to blame. The second advantage is that the exception is now explicit in the type

of the evaluator, and the client code must handle the exception, which ensures that

the main program remains in a usable state. As in the dumping mixin, two different

types of monads are involved: state �M and error �M.

Weaving in functionality. Different mixins can be combined in various ways, bringing

together different effects or shared uses of the same effect:

debug1 , debug2 :: (�M String m ,�M Env m)⇒ Expr → m Int

debug1 = new (log "eval"⊕ beval )

debug2 = new (log "eval"⊕ dump ⊕ beval )

exc :: (�M Exc m ,�M String m ,�M Env m)⇒ Expr → m Int

exc = new (eeval ⊕ log "eval"⊕ beval )

The debug1 program adds logging of function calls to the evaluator, while debug2

is more verbose and also dumps the environment at each call. Finally, the third



808 B. C. d. S. Oliveira et al.

-- the logging mixin

log :: (�M String m , Show a , Show b)⇒ String → Open (a → m b)

log name super x = do

tell ("Entering " ++ name ++ "with" ++ show x ++ "\n")

y ← super x

tell ("Exiting " ++ name ++ "with" ++ show y ++ "\n")

return y

-- the environment dumping mixin

dump :: (�M s m ,�M String m , Show s)⇒ Open (a → m b)

dump super arg = do s ← get

tell (show s ++ "\n")

super arg

-- the exception handling mixin

type Exc = (String ,Expr ,Env )

eeval :: (�M Env m ,�M Exc m)⇒ Open (Expr → m Int)

eeval super exp = case exp of

Var s → do e ← get

case lookup s e of

Just x → return x

→ throwError (msg , exp, e)

→ super exp

where msg = "Variable not found!"

Fig. 6. Logging, environment dumping, and exception handling mixins.

program logs calls and may throw an exception if a variable that does not exist in

the environment is used.

These programs can be run by picking suitable monads and extracting the relevant

information. For example, in the programs shown next, the log string is returned

(except if an error occurs).

test1 e = eval� (exec�T (debug1 e)) [ ]

test2 e = eval� (exec�T (debug2 e)) [ ]

test3 e = extract (eval�T (exec�T (exc e)) [ ])

where

extract (Left (msg , exp, )) = "Error: " ++ msg ++

"\nIn Expression: " ++ show exp

extract (Right t) = t

While the first two programs may silently give an error if a variable is not in the

environment, the last program has to handle the exception explicitly, and it can

report an error message with the faulty expression.

3 Interference and equational reasoning

In IP it is often the intent of the programmer that inheritance extends or augments

but does not modify the behavior of a base component. This property is called

non-interference. The opposite, interference, means that inheritance causes the



Modular reasoning about interference 809

components to interact in a way that essentially changes the behavior of the

base component. Knowing whether two components interfere directly contributes

to programmer understanding: If components do not interfere, then they can be

understood individually. If the components do interfere, then the programmer should

more carefully investigate the impact of interference. Moreover, in many applications,

the programmer intends to implement non-interfering inheritance; interference

is then a programming error. Either way, the programmer’s understanding (or

confidence in his understanding) is greatly improved when he can establish whether

two components do or do not interfere.

3.1 Equational reasoning about interference

As a formal model of inheritance, MRI does allow us to reason formally about (non-)

interference. This does not require special-purpose mechanisms such as Aldrich’s

logical equivalence laws (Aldrich, 2005). Instead, Haskell’s equational reasoning

allows us to establish non-interference from the equality of two expressions. Fur-

thermore, the use of simple equational reasoning steps allows us to mechanize

such non-interference proofs in theorem provers like Coq. The proofs for the two

theorems presented in this section have been formalized in Coq and are available at

http://users.ugent.be/∼tschrijv/MRI.
To formally reason about non-interference, we must first be able to formally

capture this often quite informal notion. MRI allows us to do so. For instance, we

may want to express that the logging log component does not interfere with the fib2

component. In the spirit of equational reasoning, we capture this informal statement

in a formal equality:

Theorem 1 (Logging Non-Interference)

For all n > 0, we have that

eval� (logfib n) ≡ run� (slowfib2 n)

where we use the following definition of logfib, slightly simplified for the sake

of brevity:

logfib = new (log ⊕ fib2 )

where

log :: �M String m ⇒ Open (Int → m Int)

log super n = do tell "entering fib"

super n

This theorem relates the composition of log and fib2 to fib2 by itself. On the

right-hand side, we have the pure Fibonacci function. On the left-hand side, we

ignore the side effects of the logging mixin with the help of eval� :: � a → a ,

which projects computation in the � monad on its return value.



810 B. C. d. S. Oliveira et al.

Proof

The proof of this formal statement with equational reasoning proceeds by induction.

The two base cases, 0 and 1, are trivial: evaluate the left- and right-hand sides and

observe that they are equal. The inductive case is more interesting.

eval� (logfib (n + 2))

≡ {-unfold logfib and fix -}
eval� (log ◦ fib2 ◦ logfib (n + 2))

≡ {-unfold log -}
eval� (do tell "entering fib."

fib2 logfib (n + 2))

≡ {-unfold fib2 & reduce case -}
eval� (do tell "entering fib"

f1 ← logfib (n + 1)

f2 ← logfib n

return (f1 + f2))

≡ {-unfold return -}
eval� (do tell "entering fib"

f1 ← logfib (n + 1)

f2 ← logfib n

� (f1 + f2, ""))

≡ {-unfold >>= -}
eval� (do tell "entering fib"

f1 ← logfib (n + 1)

� (eval� (� (f1 + eval� (logfib n), ""))

, exec� (logfib n) ++

exec� (� (f1 + eval� (logfib n), ""))))

≡ {-(1) eval� (� (x , y)) ≡ x and (2) exec� (� (x , y)) ≡ y -}
eval� (do tell "entering fib"

f1 ← logfib (n + 1)

� (f1 + eval� (logfib n)

, exec� (logfib n) ++ ""))

≡ {-(3) l ++ "" ≡ l -}
eval� (do tell "entering fib"

f1 ← logfib (n + 1)

� (f1 + eval� (logfib n)

, exec� (logfib n)))

≡ {-unfold >>= -}
eval� (do tell "entering fib"

� (eval� (� (eval� (logfib (n + 1)) + eval� (logfib n)

, exec� (logfib n)))

, exec� (logfib (n + 1)) ++

exec� (� (eval� (logfib (n + 1)) + eval� (logfib n)

, exec� (logfib n)))))

≡ {-eval� (� (x , y)) ≡ x and exec� (� (x , y)) ≡ y -}



Modular reasoning about interference 811

eval� (do tell "entering fib"

� (eval� (logfib (n + 1)) + eval� (logfib n)

, exec� (logfib (n + 1)) ++ exec� (logfib n)))

≡ {-unfold >>= -}
eval� (� (eval� (� (eval� (logfib (n + 1)) + eval� (logfib n)

, exec� (logfib (n + 1)) ++ exec� (logfib n)))

, exec� (tell "entering fib.") ++

exec� (� (eval� (logfib (n + 1)) + eval� (logfib n)

, exec� (logfib (n + 1)) ++ exec� (logfib n)))))

≡ {-eval� (� (x , y)) ≡ x -}
eval� (logfib (n + 1)) + eval� (logfib n)

≡ {-induction hypotheses -}
run� (slowfib2 (n + 1)) + run� (slowfib2 n)

≡ {-(4) run� (slowfib2 (n + 1)) + run� (slowfib2 n) ≡ run� (slowfib2 (n + 2) -}
run� (slowfib2 (n + 2))

�

This proof fairly straightforwardly unfolds the monadic operations >>= and return ,

and simplifies intermediate computations with a few well-chosen auxiliary Lemmas

(1) – (4). These lemmas can also be proven with equational reasoning.

Some proofs are more complex than others. Take, for instance, a proof for the

statement that the memoized and non-memoized variants of the Fibonacci function

are equivalent:

Theorem 2 (Non-Interference of Memoization)

slowfib2 ≡ fastfib2

The proof of this theorem is more complex as it mutually depends on an invariant

of the memo table t that we must also show to be preserved by fastfib2 :

∀n . lookup n t ‘mplus ‘ Just (slowfib2 n) ≡ Just (slowfib2 n)

which expresses that, if the table t contains an entry for n , this entry equals slowfib2 n .

When proofs become more intricate like this, it is useful to turn to a proof assistant,

such as Coq or Isabelle, that directly supports proving statements about purely

functional programs. These assistants add formal rigor to the process, and bolster

our confidence in the validity of the proof that we write.

4 Functional programming tools for modular reasoning

The equational reasoning approach followed in the previous section has three obvious

disadvantages that stem from the non-modularity of the reasoning approach.

Whole program knowledge. The approach is a non-modular whole-program ap-

proach. The proof involves the definitions of all three parts of the program:

the base component, the mixin, and the monad.



812 B. C. d. S. Oliveira et al.

Hence, the approach does not work in the case one of the component’s imple-

mentations are not available. Moreover, if the implementations are available, it

requires sufficient familiarity of the programmer who writes the proof.

Non-trivial activity. Even though the proofs are fairly straightforward for simple

situations like the logging example, they are rather longwinded and do require an

effort from the programmer. Moreover, not all programmers are familiar with a

theorem proving tool like Coq, and, even if they are, its use does complicate the

program development process.

Limited proof scope. At the same time the gain is limited. For example, we establish

that the logging mixin does not interfere with the Fibonacci component, but we

cannot conclude anything about how it interferes with other base components.

That requires additional proofs, one for each base component that we want to

pair it with.

As we shall see in Section 5, it is possible to state very general harmless mixin

theorems that only require the definition of the mixin. With these theorems we can

avoid tiresome proofs such as that of logfib entirely.

This section shows a number of useful reasoning tools that make such general

harmless mixins theorems possible.

• Effectful reasoning: We can avoid having to know the definitions of monadic

operations by looking only at the algebraic properties of these operations.

• Parametricity properties of effectful components: We can know which effects a

component uses just by looking at the type of the component.

• Interference combinators: We can enforce various control and data flow

patterns using combinators.

The remainder of this section discusses each of these in more detail.

4.1 Effectful reasoning

Effectful reasoning relies only on the algebraic properties of effectful operations

to reason about programs. This avoids the use of concrete monad definitions for

monadic operations like >>=, return, get , or put; and breaking the abstraction

provided by the general monad interface. Moreover, effectful reasoning has the

advantage that it is possible to reason about polymorphically typed programs,

where the monad type is only constrained and not instantiated to a monomorphic

type. For example, consider the following program:

tick = get >>= put ◦ (+1)

The most general type for tick (and the type that Haskell infers) is:

tick :: �M Int m ⇒ m ()

This type nicely abstracts from any concrete state monad implementation. All that

we need to know to type-check this program is that whatever instantiation of m

we pick, this instantiation supports the stateful operations get and put (which are

members of the �M class). Possible instantiations of m are, for example,



Modular reasoning about interference 813

type M1 = � Int ()

type M2 = �T Int (� String) ()

type M3 = �T String (� Int) ()

We want to reason about tick in a way that is valid for all possible instantiations

of m . This is ultimately crucial for dealing with polymorphic monadic components

as the ones discussed in this paper. For this purpose we have already presented

algebraic properties for the operations >>= and return , known as the monad laws,

in Section 2.2; these are valid for any instantiation of the monad m . What is still

missing are the algebraic properties for the state-specific monadic operations get

and put .

Algebraic properties for stateful effects. Five laws govern the semantics of the get

and put methods:

Definition 2 (State Laws)

get >> m ≡ m (Get-Query)

get >>= λs → get >>= f s ≡ get >>= λs → f s s (Get-Get)

put x >> put y ≡ put y (Put-Put)

put x >> get ≡ put x >> return x (Put-Get)

get >>= put ≡ return () (Get-Put)

Informally, the (Get-Query) law expresses that a get whose result is not used has

no impact at all. The (Get-Get) law states that successive get operations return the

same value, while (Put-Put) captures that successive put operations overwrite one

another. Finally, (Put-Get) says that get returns the value just written by put , and

(Get-Put) states that writing the value just read has no impact.

These five laws state the properties that each implementation of �M should

conform to. Provided with these five laws and the three monads laws, it becomes

possible to reason about polymorphic monadic programs like tick .

We illustrate this by following up on an example of Gibbons and Hinze (2011),

who show, for all implementations of tick where m is any monad (not necessarily a

state monad) and only using the monad laws, that

Theorem 3 (Hanoi Ticks)

hanoi n ≡ rep (2 ∗ n − 1) tick

where hanoi and rep are defined as:

hanoi 0 = return ()

hanoi (n + 1) = hanoi n >> tick >> hanoi n



814 B. C. d. S. Oliveira et al.

rep 0 mx = return ()

rep (n + 1) mx = mx >> rep n mx

In words, the theorem states that hanoi n is equivalent to 2 ∗ n − 1 successive ticks.

By exploiting the monad state laws above, and the details of our tick implemen-

tation, but not the particular monad state implementation, we can show a more

interesting equation that actually allows us to optimize the program.

Theorem 4 (Tick Fusion)

rep n tick ≡ get >>= put ◦ (+n)

In words, this theorem expresses that n successive ticks are equivalent to adding

in a single step n to the state.

Proof

The proof proceeds by induction on n . For n ≡ 0 we have,

rep 0 (get >>= put ◦ (+1))

≡ {-unfold rep 0 -}
return ()

≡ {-Get-Put law -}
get >>= put

≡ {-id is neutral element of function composition -}
get >>= put ◦ id

≡ {-0 is neutral element of addition -}
get >>= put ◦ (+0)

and for n + 1, we have:

rep (n + 1) (get >>= put ◦ (+1))

≡ {-unfold rep -}
get >>= put ◦ (+1) >> rep n (get >>= put ◦ (+1))

≡ {-induction hypothesis -}
get >>= λx → put (x + 1) >> get >>= λy → put (y + n)

≡ {-Put-Get law -}
get >>= λx → put (x + 1) >> return (x + 1) >>= λy → put (y + n)

≡ {-Return-Bind law -}
get >>= λx → put (x + 1) >> put (x + 1 + n)

≡ {-Put-Put law -}
get >>= λx → put (x + 1 + n)

≡ {-associativity and commutativity of + and fold (.) -}
get >>= put ◦ (n + 1)

�

Algebraic properties for other types of effects. Other types of effects, such as

exceptions, non-determinism, or the reader and writer monads, also have similar laws



Modular reasoning about interference 815

that can be exploited when reasoning about effects. Liang et al. (1996) showed laws

for the reader monad. More recently, since the publication of the conference version

of our paper (Oliveira et al., 2010) (where four of the above five algebraic properties

for stateful effects were introduced), Gibbons and Hinze (2011) have explored and

significantly extended the framework of algebraic properties for monadic effects. We

refer to their work for the laws about other types of effects.

4.2 Type-based reasoning: parametricity

By making effects explicit in the types, we can learn a lot about possible effect

interactions by just looking at the types. For example, just by analyzing types it

is possible to discover that a component is pure (that is, it does not use any side

effects), or that it is an impure component that uses some specific type of effects.

Pure components. We say that a monadic component with a type of the form

p :: Monad m ⇒ Open (a → m b)

is pure because no effects can be produced by a component of this type. Voigtländer

(2009) explains that this follows from the type in a language with strong parametricity

properties such as Haskell. The explicit effect m is a type variable only constrained

to be a monad and, consequently it cannot produce any effects of its own, because

it is unaware of the particular effects used. Although mixin purity comes essentially

for free in Haskell, in other languages it is much harder to enforce, and it often

requires sophisticated program analysis (Salcianu & Rinard, 2005). While purity

imposes severe limitations on mixin code, it is also easiest to see that this code will

not interact through effects at all.

Following Voigtländer’s parametricity (2009) approach (see Appendix Appendix

A for a summary), we can derive free formal theorems from pure components. One

such theorem is as follows:

Theorem 5 (Pure Component)

new p ≡ return ◦ run� ◦ new p

which is a formal way of saying that p does not produce any effects itself. The proof

follows directly from Voigtländer’s proof (2009).

An example of a pure monadic component is fib2 (Figure 3).

Impure components. We say that a monadic component with a type of the form

p :: �M s m ⇒ Open (a → m b)

is impure because the monad m allows a particular kind of effects to be used in the

component p. In this case, p is a computation that (potentially) reads and writes a

state of type s , and consequently can perform some effects.We should remark that,

although for this particular example we used state, the assumption of any other kind



816 B. C. d. S. Oliveira et al.

of effect (like exceptions, non-determinism, or continuations) would make the mixin

equally impure for similar reasons.

Based on parametricity, we can derive free theorems for impure components too.

For instance,

Theorem 6 (Stateful Component)

new p x ≡

do s0 ← get

let (r , s1 ) = run� (new p x ) s0

put s1

return r

expresses the intuition that a stateful component new p can be summarized as a

purely functional core that computes a state change and a single get-put sequence on

the outside to effect the update. Appendix Appendix B lists the parametricity-based

proof of this theorem.

Examples of impure monadic components are log and memo mixins, or the

evaluator presented in Figure 5.

4.3 Interference combinators

Modular reasoning about interference provides interference combinators to enforce

different interference patterns at component composition time. These interference

combinators use type-based reasoning and associate a particular type shape with an

interference pattern. Thus, a composition that does not meet the type shape required

by the combinator fails to type-check. Note that no special purpose extension of the

type system is needed for this approach.

Our interference combinators are inspired by Rinard et al.’s (2004) classification

system for interference patterns that can occur between AOP advice and advised

programs. Their classification system partitions interference forms in two major

types: direct interference indicates the presence of control flow manipulations,

whereas indirect interference indicates the presence of data flow manipulations.

Note that in order to draw formal conclusions from the use of these interference

combinators, they must be combined with other reasoning techniques presented in

this section. Section 5 will do so and make strong formal statements.

4.3.1 Enforcing control flow properties

Direct interference is related to control flow and how the use of super calls can

guarantee that a program satisfies certain properties. Similar to Rinard et al.’s (2004)

classification for advice, mixins can be classified as follows:

Combination: A mixin can call super any number of times.

Replacement: There are no calls to super in mixins.



Modular reasoning about interference 817

Augmentation: A mixin that calls super exactly once and does not modify the

arguments to super or the value returned by super .

Narrowing: A mixin that calls super at most once and does not modify the arguments

to super or the value returned by super .

We discuss next the combinators that capture the above interference patterns for

mixins.

Combination. The existing ⊕ combinator does not enforce any interference proper-

ties. The ⊕ operator already composes a mixin of the general form Open s with the

base component.

Replacement. The informal requirement for replacement is that no calls are made

to super . This requirement can be captured by the following combinator:

type Replace s = s

replace :: Replace s → Open s

replace rmxn = λsuper → rmxn

A replacement mixin has type Replace s , which is the type of a closed component.

This reflects the fact that the replacement mixin is a proper base component by itself.

In other words, the base component’s behavior is replaced (or overridden) entirely,

which has the effect of destroying the usual control flow of the base component.

Augmentation. The informal requirement for an augmentation mixin is that super

is called exactly once and with the same argument as the mixin. This behavior is

enforced with the augment combinator

type Augment a b c m = (a → m c, a → b → c → m ())

augment :: Monad m ⇒ Augment a b c m → Open (a → m b)

augment (bef , aft) super a =

do {c ← bef a; b ← super a; aft a b c; return b }

This combinator is responsible for calling super itself, rather than delegating this

responsibility to the mixin. The augmentation mixin has type Augment a b c m ,

and it consists of two components: the first component is called before super ,

and the second is called afterwards. Both parts can use the input a , but only the

after argument has access to the result b of super . Moreover, the before part can

communicate an auxiliary value c to the after part. For instance, log1 is a logging

mixin

log1 :: (�M String m , Show a , Show b)⇒ String → Augment a b () m

log1 name = (bef , aft) where

bef x = write "Entering " x

aft y = write "Exiting " y

write a b = tell (a ++ name ++ show b ++ "\n")

such that log ≡ augment ◦ log1 .



818 B. C. d. S. Oliveira et al.

Combinators similar to the well-known AOP notions of before and after advice

can be implemented on top of augment for mixins:

before :: Monad m ⇒ (a → m ())→ Open (a → m b)

after :: Monad m ⇒ (a → b → m ())→ Open (a → m b)

before bef = augment (λa → bef a >> return (), λa b c → return ())

after aft = augment (\ → return (), λa b c → aft a b)

Our earlier dumping mixin can be written with before:

dump1 :: (�M s m ,�M String m , Show s)⇒ a → m ()

dump1 arg = do s ← get

tell (show s ++ "\n")

Note that dump ≡ before dump1 .

Narrowing. This form of mixin calls super at most once. Hence, a runtime choice

can be made between replacement or augmentation:

type Narrow a b c m = (a → m Bool ,Augment a b c m ,Replace (a → m b))

narrow :: Monad m ⇒ Narrow a b c m → Open (a → m b)

narrow (p, aug , rep) super x =

do b ← p x

if b then replace rep super x

else augment aug super x

The runtime choice is made by the predicate of type a → m Bool , based on the

input of type a and monad m .

A typical example of narrowing is memoization. In the case of a repeated call,

normal evaluation is replaced by a table lookup. In case of a new call, normal

evaluation is augmented with tabulation.

memo1 :: (�M (Map a b) m ,Ord a)⇒ Narrow a b () m

memo1 = (p, (bef , aft), rep) where

p x = do {m ← get; return (member x m)}
bef = return ()

aft x r = do {m ← get; put (insert x r m)}
rep x = do {m ← get; return (m ! x )}

This variant of memo makes it clear that super is called at most once.

4.3.2 Enforcing data flow properties

Indirect interference is related to data flow through the possible interaction of

shared effects (or data) between mixin and base component. The most common

form of shared effects is that of shared state. Another conventional form of

effectful interaction is the throwing and catching of exceptions. Rinard et al. (2004)

consider five different forms of interference between advice and method (of the base

component), specific to state. Similar forms of interference occur with mixins:



Modular reasoning about interference 819

Orthogonal: The mixin and method access disjoint fields. In this case we say that

the scopes are orthogonal.

Independent: Neither the mixin nor the method may write a field that the other may

read or write. In this case we say that the scopes are independent.

Observation: The mixin may read one or more fields that the method may write but

they are otherwise independent. In this case we say that the mixin scope observes

the method scope.

Actuation: The mixin may write one or more fields that the method may read but

they are otherwise independent. In this case we say that the advice scope actuates

the method scope.

Interference: The mixin and the method may write the same field. In this case we

say that the two scopes interfere.

Modular reasoning about interference generalizes these notions from state to

arbitrary effects. Just as for control flow interference, it provides a number of

combinators that enforce the form of effect interference.

Interference primitives. Interference arises by bringing together two components, a

mixin and a base component. MRI builds interference combinators from primitive

combinators for individual components. These primitives express whether the mixin

with effect t knows the type of effect m of the base component. If it does not know

the type, then it cannot initiate interference. This absence of knowledge is captured

by a higher ranked type (Peyton Jones et al., 2007) and a corresponding conversion

function to the plain mixin form:

type NIMixin a b t = ∀m .(Monad m ,Monad (t m))⇒ Open (a → t m b)

nimixin :: (Monad m ,MonadTrans t ,Monad (t m))⇒ NIMixin a b t →
Open (a → t m b) nimixin mix = mix

The opposite case does not require a new operator, since the plain type Open (a →
t m b) suggests that interference may be possible.

Similarly, for the base component interference may not be initiated with:

type NIBase a b m = ∀t .(MonadTrans t ,Monad (t m))⇒ Open (a → t m b)

nibase :: (Monad m ,MonadTrans t ,Monad (t m))⇒ NIBase a b m →
Open (a → t m b) nibase bse = bse

The types NIMixin and NIBase allow us to separate the effects that can be

manipulated by the mixin from the effects that can be manipulated by the base

component. The type system guarantees that this is indeed the case.

The type signatures of the mixin log1 and base component beval are not adequate

to establish non-interference. In fact, it is possible to obtain both non-interference

and interference, depending on the instantiation of the monad. The non-interference

combinators confront us with this issue: both nimixin (augment (log1 "eval")) and

nibase beval are ill-typed.

Recall that the type signature of log1 "eval" is

log1 "eval" :: (�M String m , Show a , Show b)⇒ Open (a → m b)



820 B. C. d. S. Oliveira et al.

while nimixin expects the type

∀m ′.(Monad m ′,Monad (t m ′))⇒ Open (a → t m ′ b)

The problem is that the former type does not cleanly split the monad m into

two parts: the transformer t which is used by the log1 mixin, and the rest m ′

underneath which is exclusively at the disposal of the base component. To respect

the non-interference pattern and obtain a well-typed instance, we split the type m

by instantiating it to �T String m ′. This happens when we supply the following

signature:

log2 :: (Show a , Show b)⇒ NIMixin a b (�T String)

log2 = augment (log1 "eval")

With this signature all the tell operations in log1 are handled by �T and the

underlying monad is not accessed.

The same problem arises in nibase beval , where beval has type

beval :: �M Env m ⇒ Open (Expr → m Int)

and nibase expects

∀t .(MonadTrans t ,Monad (t m ′))⇒ Open (a → t m ′ b)

Unfortunately, for technical reasons it is not easy to split the monad for a base

component. Instantiating m to t (� Env ) does not mean that the get and put

operations in beval are necessarily resolved against the embedded monad � Env .

Whether or not this is the case still depends on the choice of t and hence is

ambiguous if we leave t undetermined. This ambiguity causes the following code to

be ill-typed:

beval1 :: NIBase Expr Int (� Env )

beval1 = beval

We can solve this issue by explicitly defining a variant of beval in which the monad is

explicitly split up in two parts: a monad transformer t , and an embedded monad m ′.

By means of lift this variant resolves its uses of get and put against the embedded

monad m ′.

beval ′′ :: (MonadTrans t ,Monad (t m ′),�M Env m ′)⇒ Open (Expr → t m ′ Int)

beval ′′ this exp = case exp of

Var s → do e ← lift get

case lookup s e of

Just x → return x

Nothing → error msg

Assign x r → do y ← this r

e ← lift get

lift (put ((x , y) : e))

return y

... -- The other cases identical to those in beval



Modular reasoning about interference 821

This definition clearly fits the NIBase pattern. The downside is that we had to

rewrite the definition of beval . With the help of the monad zipper (Schrijvers &

Oliveira, 2011) this rewriting could have been avoided, but since that approach is

rather technical, we won’t get into details here.

Interference combinators. Using the above primitives, MRI defines four primitive

interference combinators:

(�) :: (MonadTrans t ,Monad m ,Monad (t m))

⇒ NIMixin a b t → NIBase a b m → Open (a → t m b)

mix � bse = nimixin mix ⊕ nibase bse

(�) :: (MonadTrans t ,Monad m ,Monad (t m))

⇒ Open (a → t m b)→ NIBase a b m → Open (a → t m b)

mix � bse = mix ⊕ nibase bse

(�) :: (MonadTrans t ,Monad m ,Monad (t m))

⇒ NIMixin a b t → Open (a → t m b)→ Open (a → t m b)

mix � bse = nimixin mix ⊕ bse

(�) :: (MonadTrans t ,Monad m ,Monad (t m))

⇒ Open (a → t m b)→ Open (a → t m b)→ Open (a → t m b)

mix � bse = mix ⊕ bse

Note that, unlike Rinard et al.’s categories (2004), these combinators are not

specific for state: they are parametric in the type of effect. The combinators � and

� closely correspond to Rinard’s interference and orthogonal categories. The � and

� combinators indicate which of the two components is aware of the other’s effects,

which are thus shared between the two components.

For instance, the composition log2 � beval1 expresses that the logging mixin and

the monadic evaluator do not interfere with each other’s effects.

Stateful effects. Rinard et al. (2004) consider more refined forms of stateful interac-

tion, based on read-only or read&write access to a shared state. MRI distinguishes

between such forms of interaction by imposing appropriate constraints on the monad

type variable m .

For this purpose MRI refines �M to cater for different views:

class Monad m ⇒ MGet s m | m → s where

get :: m s

class Monad m ⇒ MPut s m | m → s where

put :: s → m ()

class (MGet s m ,MPut s m)⇒ �M s m

The constraint MGet s m only allows reading the state s of monad m , while

the class MPut only allows writing it. The new �M s m allows both reading and

writing by subclassing both MGet and MPut . The methods get and put obey the

laws presented in Section 4.1.

The new classes allow more accurate types, for instance, the dumping mixin only

requires reading the state:



822 B. C. d. S. Oliveira et al.

dump2 :: (MGet s m ,�M String m , Show s)⇒ a → m ()

dump2 = do {s ← get; tell (show s ++ "\n")}

With the two new constraints, MRI also defines relaxed versions of NIMixin:

type ROMixin a b t s = ∀m .(MGet s m ,Monad (t m))⇒ Open (a → t m b)

type WOMixin a b t s = ∀m .(MPut s m ,Monad (t m))⇒ Open (a → t m b)

Each of these forms of mixin assumes one operation on the underlying monad m ,

get for ROMixin and put for WOMixin , and both obviously assume that t m is a

monad.

The dump3 mixin instantiates dump2 as a ROMixin:

dump3 :: Show s ⇒ ROMixin a b (�T String) s

dump3 = before dump2

The new interference primitives, in turn, allow Rinard et al.’s (2004) state-specific

interference classes to be expressed as combinators:

observation :: (MGet s m ,MonadTrans t ,Monad (t m))⇒
ROMixin a b t s → NIBase a b m → Open (a → t m b)

observation mix bse = mix ⊕ bse

actuation :: (MPut s m ,MonadTrans t ,Monad (t m))⇒
WOMixin a b t s → NIBase a b m → Open (a → t m b)

actuation mix bse = mix ⊕ bse

MRI puts similar constraints on the base component and distinguishes nine dif-

ferent forms of interference. The following table connects these nine forms to the

corresponding four terms used by Rinard et al. (2004):

Base component

MGet MPut �M

Mixin

MGet Independent Observation Observation

MPut Actuation Interference Interference

�M Actuation Interference Interference

By distinguishing between �M and MPut , MRI has a more fine-grained classifi-

cation. MPut ×MPut , for instance, is only a weak form of interference. While both

components write to the same state, neither’s computations are affected; only the

resulting state is affected.

While Rinard et al.’s classification (2004) is specific for state, MRI allows similar

classifications for other kinds of effects. For example, with exceptions the rights

to throw and catch exceptions are separated into different monad subclasses:

MonadThrow e m for throwing an exception e, MonadCatch e m for catching,

and �M e m for both. By considering the permitted operations of the mixin and

base component, the possible interference patterns between them are established.



Modular reasoning about interference 823

5 Harmless mixins: strong guarantees of non-interference

This section explains how to enforce strong guarantees of non-interference for mixins

with direct and indirect non-interference combinators. These strong guarantees of

non-interference are inspired by the Dantas and Walker (2006) notion of harmless

advice:

A piece of harmless advice is a computation that, like ordinary aspect-

oriented advice, executes when control reaches a designated control-flow point.

However, unlike ordinary advice, harmless advice is designed to obey a

weak non-interference property. Harmless advice may change the termination

behavior of computations and use I/O, but it does not otherwise influence the

final result of the mainline code.

5.1 Harmless mixins

The harmless composition combinator � ensures both control and data flow proper-

ties.

type NIAugment a b c t = ∀m .(Monad m ,Monad (t m))⇒ Augment a b c (t m)

(�) :: (Monad m ,MonadTrans t ,Monad (t m))⇒
NIAugment a b c t → NIBase a b m → Open (a → t m b)

mix � bse = augment mix � bse

Harmless composition requires a special type of non-interfering augmentation mixin,

which is defined by NIAugment . It is important that the mixin used by � is

augmentation, since, for instance, if an effectful base component could be called

twice by the mixin, it could give different results than if called only once. This

is because the result may depend on the effects of the base component. The �

combinator used by � ensures that the mixin and the base component have non-

interfering effects.

The full non-interference provided by the � combinator enforces that the mixin

is harmless. Let us cast the informal notion in a formal theorem:

Theorem 7 (Harmless Mixin)

Consider a base component bse and mixin mix with the types:

bse :: ∀t .(MonadTrans t ,Monad (t m1))⇒ Open (a→ t m1 b)

mix :: ∀m .(Monad m ,Monad (t1 m))⇒ Augment a b c (t1 m)

where a, b, c, m1 and t1 are arbitrary given types with m1 a monad and t1 a

monad transformer. Then mixin mix is harmless with respect to bse:

π ◦ (new (mix � bse)) ≡ run�T ◦ (new bse)

for any projection function π :: ∀m a .Monad m ⇒ t1 m a → m a that satisfies

the law:

π ◦ lift ≡ id (Project-Lift)



824 B. C. d. S. Oliveira et al.

Informally, the theorem states that if we ignore the effects introduced by the

mixin, the advised program is equivalent to the unadvised program. The role of

the projection function π is to ignore the effects introduced by the mixin. The

Project-Lift law expresses the intuition that projection has no impact if there are

no effects.

Proof

The proof essentially combines the three important reasoning principles: (1) equa-

tional reasoning over the combinator definitions, (2) algebraic reasoning with the

monad laws and the Project-Lift law, and (3) parametricity of the mixin and base

component types. Here we sketch the three high-level steps of the proof; Appendix C

provides the full details:

1. First, we show how to convert between the self-explanatory form of augmen-

tation mixin that we have used so far and the more dense form a → t m (b →
t m c) that is convenient for writing proofs. The connection between the two

forms is captured by the convert function, which translates from the former to

the latter.

convert :: (Monad m ,MonadTrans t ,Monad (t m))

⇒ (a → t m c, a → b → c → t m ())

→ (a → t m (b → t m ()))

convert (bef , aft) =

λa → bef a >>= (λc → return (λb → aft a b c))

The counterpart of the augment function is

around :: (Monad m ,MonadTrans t ,Monad (t m))

⇒ (a → t m (b → t m ()))

→ Open (a → t m b)

around mix = λsuper →
λa → mix a >>= λaft →

super a >>= λr →
aft r >>= \ →
return r

Lemma 1

Consider augmentation mixin (bef , aft) :: (a → t1 m1 c, a → b → c →
t1 m1 ()), then we have that:

augment (bef , aft) ≡ around (convert (bef , aft))

where m1 is a Monad and t1 is a MonadTrans .

The proof of this lemma is based on equational reasoning and the monad

laws.



Modular reasoning about interference 825

2. Then, exploiting parametricity, we derive two free theorems, one for the around

mixin:3

Lemma 2

Consider a function f :: ∀m .Monad m ⇒ a → m (b → m c), then we have

that:

fm1
≡ (out (return ◦ out (return ◦ run�) ◦ run�)) f�

and one for the base component:

Lemma 3

Consider a function f :: ∀t .MonadTrans t ⇒ (a → t m1 (b → t m1 ())) →
a→ t m1 b with m1 an arbitrary monad, then we have that:

out π ◦ f ≡
out run�T ◦ f ◦ out (�T ◦ fmap (out (�T ◦ π)) ◦ π)

for any π :: ∀m a .Monad m ⇒ t1 m a → m a , with t1 an arbitrary monad

transformer that satisfies the Project-Lift law.

While parametricity is the core technique for proving these two theorems, the

necessary logical relations are established by means of equational reasoning,

the Project-Lift law and the monad laws.

Note that parametricity in its simplest form only holds for total, i.e., fully

defined and terminating, programs. If partial and non-terminating programs

are also allowed, then the mixin may introduce non-termination and partiality.

This is our counterpart of “may change the termination behavior” in Dantas

and Walker’s definition (2006).

3. Finally, we prove the main theorem in a big equational reasoning proof. This

proof relates the left-hand side to the right-hand side of the theorem’s equality

in a number of successive equality-preserving steps. These steps involve folding

and unfolding combinator definitions, the above three lemmas, the monad laws,

the Project-Lift law, and simple β- and η reductions.

5.1.1 Harmless effects

In order to suit the Harmless Mixin theorem, the mixin cannot introduce arbitrary

effects. There must be a suitable projection function for ignoring the effects. Such

projection functions do indeed exist for several state-related monad transformers.

Writer For the �T monad transformer we define the following projection function:

πW :: ∀w m a .(Monad m ,Monoid w )⇒�T w m a → m a

πW m = run�T m >>= return ◦ fst

3 Here, out = (◦) applies a function to the output of another function.



826 B. C. d. S. Oliveira et al.

It is indeed suitable:

Lemma 4

The function πW is a suitable function for the Harmless Mixin theorem:

πW ◦ lift ≡ id

See Appendix D.1 for the proof.

With the help of πW , the Harmless Mixin theorem establishes that the logging

mixin is harmless:

πW ◦ new (log2 "eval" � beval1 ) ≡ run�T ◦ new beval1

State We can also define a suitable projection function for the �T monad trans-

former:

πS :: ∀s m a .Monad m ⇒ s → �T s m a → m a

πS s0 m = run�T m s0 >>= return ◦ fst

Indeed, the required property holds:

Lemma 5

The function πS s0 is a suitable function for the Harmless Mixin theorem:

πS s0 ◦ lift ≡ id

for any s0 .

See Appendix D.2 for the proof.

Other harmless effects. There are several other harmless effects, such as �T with

trivial projection function run�T, �T and variations on these.

5.1.2 Harmful effects

An interesting aspect of our theorem is that harmless mixins may not introduce

arbitrary effects. Only those effects for which a suitable projection function π exists,

may be used in harmless mixins. Some types of effects can be harmful.

Error Consider again the �T e monad transformer of Figure 2. We can only partially

define the projection function:

πE :: ∀e m a .Monad m ⇒ �T e m a → m a

πE m = run�T m >>= λx → case x of

Left e → ???

Right x → return x

In the case of an error, we cannot produce a value. We could attempt to fix this

issue by parametrizing πE with a default value d :



Modular reasoning about interference 827

πE :: ∀e m a .Monad m ⇒ a → �T e m a → m a

πE d m = run�T m >>= λx → case x of

Left e → return d

Right x → return x

but now πE d :: ∀e m .Monad m ⇒ �T e m a → m a fixes the type parameter a to

the type of d , which is inappropriate.

Intuitively, the reason why errors are not a harmless effect is because they can

change the normal control flow of a program if an error (exception) occurs.

I/O Dantas and Walker (2006) mention that “Harmless advice may . . . use I/O.”

However, undiscriminated use of I/O may definitely interfere with I/O in the base

component. In Haskell, this manifests itself in the fact that there is no safe way to

project from the IO monad. Only more disciplined effects, such as �T, �T and �T

are possible.

5.2 Harmless observation mixins

In the main Harmless Mixin theorem, we have used the � operator which enforces

that the mixin and base component are orthogonal. While orthogonality is a sufficient

condition, it is certainly not a necessary one. For instance, observation mixins may

be harmless too. A combinator that forces harmless observation mixins is:

type NIOAugment a b c s t = ∀m .(MGet s m ,Monad (t m))⇒ Augment a b c (t m)

(�) :: (MGet s m ,MonadTrans t ,MGet s (t m))⇒
NIOAugment a b c s t → NIBase a b m → Open (a → t m b)

mix � bse = augment mix ‘observation ‘ bse

Now we can adapt the theorem accordingly:

Theorem 8 (Harmless Observation Mixin)

Consider a base component bse and mixin mix with the types:

bse :: ∀t .(MonadTrans t ,Monad (t m1))⇒ Open (a→ t m1 b)

mix :: ∀m .(MGet s m ,Monad (t1 m))⇒ Augment a b c (t1 m)

where a, b, c, s, m1, and t1 are arbitrary given types with m1 a �M s and t1 a

monad transformer. Then the mixin mix is harmless with respect to bse:

π ◦ (new (mix � bse)) ≡ run�T ◦ (new bse)

for any projection function π :: ∀m a .Monad m ⇒ t1 m a → m a that satisfies

the Project-Lift law.

Proof

The proof is similar in style to that of the Harmless Mixin theorem. The main

difference lies in the fact that the mixin knows more about the m type parameter.

As a consequence, weaker parametricity results are obtained. The core insight is that



828 B. C. d. S. Oliveira et al.

we can make up for this loss of parametricity by exploiting the Get-Query and

Get-Get laws. We refer to Appendix E for details of the proof.

Example. Theorem 8 establishes that the dumping mixin is harmless:

πW ◦ new (dump3 � beval1 ) ≡ run�T ◦ new beval1

6 Related work

6.1 Reasoning in functional programming

Our work shows how functional programming reasoning techniques can be applied to

a notoriously hard problem: modularly reasoning about inheritance in the presence

of side effects. To address this challenging problem we have had to cast it in the right

combinator-based formulation in which we could bring the synergy of parametricity,

equational reasoning, and algebraic laws to bear. We next discuss in more detail the

related work on these reasoning techniques for purely functional programs.

Equational reasoning. There is a long tradition of reasoning about purely functional

programs. A great benefit of purity is that it allows equational reasoning, that is,

reasoning about programs using simple algebraic equations (much like high-school

algebra). The seminal book The Algebra of Programming (Bird & De Moor, 1997)

is a highlight of this reasoning approach.

Non-modular monadic reasoning. However, only recently there has been some

interest on exploring such reasoning techniques for monadic programs. Although

monads (Wadler, 1992b) are a purely functional way to encapsulate computational-

effects, programs using monads are challenging to reason about. The main issue

is that monads provide an abstraction over purely functional models of effects,

allowing functional programmers to write programs in terms of abstract operations

such as >>=, return , or get and put . One way to reason about monadic programs is

to remove the abstraction provided by such operations (Hutton & Fulger, 2008). We

follow this approach in our reasoning technique presented in Section 3. However, as

discussed in more detail in Section 4, there are several drawbacks to this approach.

Most importantly, this approach is fundamentally non-modular.

Modular monadic reasoning. Using parametricity (Reynolds, 1983; Wadler, 1989)

and algebraic laws about effectful operations, it is possible to modularly reason

about monadic programs. Voigtländer (2009) has shown how to derive parametricity

theorems for type constructor classes such as Monad . This technique plays a crucial

role in our modular reasoning approach, as it allows us to derive theorems about

effectful programs without knowing the concrete effects used. However, parametricity

alone is not enough to establish theorems such as the Harmless Observation Mixin

theorem (see Section 5.2), which allows mixins to read the state of the base

component. To account for this theorem we need algebraic laws about stateful

effects (see Section 4.1). Liang and Hudak (1996) presented laws for reader monads.



Modular reasoning about interference 829

In the conference version of this paper (Oliveira et al., 2010) we presented four laws

about state. Since then, Gibbons and Hinze (2011) presented an additional law for

state (the Get-Put law), and have significantly explored algebraic laws for many

other types of effects.

Non-modular monadic reasoning about FOP. In the context of FOP Prehofer (1999)

defines a notion similar to the Harmless Mixin, but with two important differences.

First, in Prehofer’s monadic model there is no use of open recursion, which

makes it hard to model tightly coupled mixins such as memoization. Second,

the approach used to reason about harmlessness is quite different. Instead of

using parametricity, Prehofer requires a certain syntactic pattern for his form of

Harmless Mixin. Exploiting this syntactic pattern enables reasoning by induction

on operation sequences and equational reasoning to prove a Harmless Mixin-

like theorem. Prehofer’s reasoning approach is closest to the reasoning techniques

presented in Section 3, in the sense that it is a non-modular approach (requires all

the definitions), and it can only be used to reason about individual compositions

of mixin and base component. Similar to our non-modular reasoning techniques,

his approach supports reasoning about harmlessness that is subject to preconditions

and invariants. We believe that given sufficiently polymorphic mixins, it should

be possible to use parametricity in Prehofer’s setting to prove that a mixin is

conservative regardless of the base component, thus allowing for more modular

reasoning techniques similar to the ones in Section 4.

Prehofer (2006) also considers when the composition of two conservative ex-

tensions is conservative: not always, because the form of composition depends in

an ad-hoc manner on the involved mixins. Using our approach, the uniformity of

composition seems to suggest that the composition of two harmless mixins is always

harmless, but this needs further investigation.

6.2 Monads and modularity

Monad transformers and modular interpreters. Liang et al. (1995) proposed Monad

Transformers and Modular Interpreters (MTMI) to show the benefits of monads

and monad transformers for modularity purposes. With this technique, modular

development of components is possible. While our approach is similar in several

ways, there are two important differences. The first difference is that Liang et al.

focus on modularization of an interpreter’s basic behavior according to the different

language features, while we consider the modularization of orthogonal concerns on

top of base programs.

The second, and more fundamental, difference between the two works concerns

reasoning and abstraction (or encapsulation) properties. We discuss these in more

detail next.

• Modular Reasoning: Our technique supports modular reasoning and, in par-

ticular, it supports separate compilation. In MTMI, separate compilation is not

supported. In their approach there are three types (Value, Term , and InterpM )

whose definitions need to be changed whenever a new component is added.



830 B. C. d. S. Oliveira et al.

However, these types are used by all modular components and, consequently,

a change in one of these types implies recompilation of all components. This

renders modular reasoning about individual components impossible, since the

static types may vary depending on particular instantiations of the components.

• Encapsulation and Interference: The type InterpM denotes the monad that is

used by all the components in MTMI. The different parts of the monad are

visible to all components (every component knows the type InterpM ), which

means that every component can interact with any part of the monad stack. In

contrast, in our approach, parametric polymorphism ensures that a component

can only access the parts of the monad stack that it is supposed to interact with.

In other words, our approach offers encapsulation of effects, while MTMI does

not. As a consequence, MTMI cannot provide non-interference guarantees.

In conclusion, while MTMI supports (to a large extent) modular development

of components, it does not support modular reasoning or reasoning about non-

interference.

Modularity issues with monads transformers. There are several modularity issues

(and solutions), related to monad transformers, reported in the literature. In our

work we rely on the monad transformer library (MTL), which is based on Liang

et al.’s (1995) work and as such suffers from these issues.

The most relevant issue for us is that programs that use stacks of monads

transformers (usually) have to impose very strong constraints on the orderings of

the transformers in the stack. In general, components in a program that uses a

monad stack with more than one monad layer of the same type (for example, two

state monad layers) have to be aware of the structure of the monad stack in order

to access the right monad layer. This issue was the motivation for Schrijvers and

Oliveira’s (2011) proposal for the monad zipper and monad views, which provide

an alternative way to manage the monad stack without imposing a tight coupling

between a monadic component and the structure of the monad stack. In that work

a variant of the MTL is proposed. Our work could be readily adapted to work with

that variant of the MTL and as such avoid this problem.

Jaskelioff (2008) reports various other issues related to the design of the MTL.

Most pressingly, a deficiency of the MTL design is that when a new type of monad

transformer is added, the interacting behavior between the new transformer and

the existing transformers must be defined individually for each case. This is ad-hoc,

non-modular, and requires a growing number of instances each time a new monad

transformer is added to the framework. Fortunately, this issue is not so pressing for

us because we (usually) work with existing effects (such as state, IO, or exceptions)

and, as such, do not have to add new transformers to the framework.

Other effect models. In this paper we have focused on the predominant model of ef-

fects in purely functional programming: monads and monad transformers. However,

other useful models have been proposed, such as applicative functors (McBride &

Paterson, 2008) and arrows (Hughes, 1998), with their own axioms and modularity



Modular reasoning about interference 831

properties. It makes for interesting future work to adapt the developments of this

paper to those alternatives.

6.3 Modular reasoning and interference in AOP

In this paper we have focused on inheritance of functions, which is closely related

to the AOP advice. Next we discuss work on modular reasoning and interference in

the context of AOP.

Modular reasoning. Kiczales and Mezini (2005) argue that modular reasoning about

cross-cutting aspects is not possible. Instead they propose a global analysis that infers

interfaces of deployed systems. Changing one component may lead to pervasive

changes of interfaces.

In contrast, Aldrich (2005) does define the concept of Open Modules that

allows modular reasoning. However, this approach is severely limited: reasoning

of equivalence is limited to pure base components with respect to impure advice.

Reasoning about effectful base components or advice is not covered. Moreover, it

is not clear at all what forms of effect are allowed in advice because the advice

language is not a part of the formal framework.

Translucid contracts (Bagherzadeh et al., 2011) are gray-box specifications which

describe control-flow properties required by advice and advised code. Using struc-

tural refinement, the specifications are used to enforce the control-flow properties

in implementations. As such, translucid contracts allow programmers to understand

interactions between advice and advised code without requiring them to know about

implementations. Our control-flow interference combinators play a similar role to

translucid contracts by statically enforcing control-flow patterns using the type

system.

Interference. Many authors have identified (non-)interference as an important factor

in reasoning about advice.

Dantas and Walker (2006) propose a type-and-effect system for identifying

harmless advice on the MinAML core language (Ligatti et al., 2006): protection

domains prevent information flow from advice to base component. Their modular

analysis supports a formal result similar to our Harmless Observation Mixin theorem.

Orthogonal data flow interference cannot be enforced, and it is not clear how non-

stateful effects like exceptions fit in their approach. Because MinAML is impure,

effects are needed in addition to types.

Clifton and Leavens (2002) identify that observers (harmless observation mixins)

do not change the specification of the advised module. Later, Clifton et al. (2007)

propose an extension of AspectJ with (optional) annotations for control and heap

effects, which are similar to Rinard et al.’s (2004) two forms of interference. A

type-and-effect system is used to modularly verify the annotations. Spectator advice

is their counterpart of harmless observation mixin, and they prove that it does not

modify the base program’s state. No formal statement is made about the lack of

control-flow interference.



832 B. C. d. S. Oliveira et al.

Douence et al. (2004) present a formal approach for determining strong indepen-

dence of stateful aspects: when aspects commute, they do not interfere with each

other. Equational reasoning laws are used to determine (non-modularly) whether two

given aspect implementations commute. However, their language is only partially

defined, no equational laws for effects are provided, and no theorem is stated. There

are two important differences with MRI. First, to reason about non-interference

they require the aspect definitions to apply their equational laws, while MRI only

looks at the types of mixins. Second, they focus on aspect/aspect interaction and

overlapping pointcuts and do not address aspect/base program interaction. While

this paper focuses on the mixin/base component interference, the same approach

applies equally to the interaction of two mixins.

Rinard et al. (2004) formulate a classification scheme for different forms of

interference and combine a number of program analyses for automated classification.

No formal results are proved.

Katz (1993) presents a much earlier classification for superimpositions in the

context of distributed programming, which he later refines (Katz, 2006). He distin-

guishes spectative, regulative invasive superimpositions. Spectative superimpositions

are akin to harmless observation mixins; regulative superimpositions affect which

actions happen, but do not change the nature of the actions themselves; and invasive

superimpositions can change anything.

In summary, existing approaches to non-interference formulate special-purpose

program analyses or type systems. A major advantage of MRI over all of these is its

extremely light-weight nature. Everything is built on top of the existing and familiar

language features; no new analysis or type system is required. Moreover, it is possible

to reason formally and modularly about programs using familiar techniques such as

equational reasoning and parametricity.

6.4 Modular reasoning and interference in OOP

The problems of modular reasoning and interference are closely related and often

come together hand-in-hand. Because of this, in object-oriented programming the

two problems are usually not distinguished clearly. Normally, when referring to

modular reasoning in OOP, what is meant is the problem of being able to reason

about a class in the presence of subclassing (Stata & Guttag, 1995; Leino &

Rustan, 1998; Ruby & Leavens, 2000; Müller et al., 2003). One problem is that it

is often the case that in order to define a new subclass either knowledge about the

implementation or some undocumented behavioral assumptions about the superclass

are needed (Kiczales & Lamping, 1992; Lamping, 1993). In addition, it is often

unclear whether the essential behavior of the superclass is going to be preserved by

subclasses because both data and control flow interference can be introduced.

Following some observations by Lamping (1993) on how methods in classes are

related to each other, Stata and Guttag (1995) proposed to address the above

problems by using specifications extended with a notion of groups. Groups capture

all methods in a class that directly manipulate some private field. With Stata

and Guttag’s (1995) approach, a subclass that overrides one method in a group



Modular reasoning about interference 833

also needs to override all the other methods in the same group. Furthermore, the

behavior of methods is ensured using traditional specifications that describe possible

class invariants and pre and post conditions of the methods. A similar approach

was proposed by Ruby and Leavens (2000). Their approach consists of an extension

of JML with subclassing contracts, for which each method states the protected

and public fields that it accesses and the method calls required by the method.

This approach allows more flexibility when subclassing when compared with the

groups proposed by Stata and Guttag (1995), since it is sometimes possible to

override a method without overriding all the methods that access the same private

fields. Like with Stata and Guttag’s (1995) approach, ensuring that the behaviour of

methods is preserved is achieved with traditional method specifications. Interestingly,

specifications themselves are prone to modular reasoning problems, which leads to

a related line of work aimed at providing modular specification of properties (Leino

& Rustan, 1998; Müller et al., 2003).

The main difference between our work and the existing work on modular

reasoning in OOP is that we focus on providing a generic model for inheritance

that supports reasoning from inception, while most of the previous works tried

to develop specification and reasoning principles a posteriori for the existing OOP

technologies. Our approach is aimed at understanding the essential problems that

lead to difficulties in reasoning in the existing IP languages; and fostering the

development of new programming languages in which such problems are addressed

from scratch. A difficulty that we have not yet addressed in our model, but which is

highly relevant for OOP, relates to control flow interference. As shown in Section 5,

it is possible to have strong-guarantees of non-interference for functions, but in

the case of objects, matters are a bit more complicated because each method can

interfere with other methods of the same object. Nevertheless, we do not think this

poses a fundamental difficulty.

6.5 Functional AOP systems

There has been some interest on integrating AOP and functional programming.

However, this poses quite different and new challenges compared with integrating

AOP in an OO language, especially if the functional language is pure (Wang &

Oliveira, 2009).

Two main approaches to functional AOP exist, both following the pointcut-

advice model: (1) Statically typed language-based approaches such as Aspectual

Caml (Masuhara et al., 2005), AspectFun (Chen et al. 2007, 2011), and AspectML

(Dantas et al., 2008), and (2) lightweight dynamically typed approaches such as

AspectScheme (Dutchyn et al., 2006). While the statically typed approach has

obvious benefits, dynamically typed languages usually allow more lightweight

library-based solutions. This has benefits in terms of reusable aspects (De Fraine &

Braem, 2007) and expressing dynamically deployed aspects (Tanter, 2008). In some

sense, MRI combines the best of both worlds: it is a very lightweight, statically typed

library-based approach. However, it uses a model of explicit composition of mixins

instead of the pointcut model. In MRI, “features” (such as first-class, polymorphic,



834 B. C. d. S. Oliveira et al.

and inferable types for mixins) come for free. In language-based approaches, adding

support for each of these features is non-trivial, and only AspectML supports all of

them.

Chen et al. (2011) proposed a monadic semantics for AspectFun. The idea is to

have a source language with private, local state for advice. Programs with local state

are translated into monadic programs using a type-directed algorithm. Thus, like

our work, monads model (stateful) effects, however, unlike our work (non-modular)

code transformation is used instead of mixins for weaving components. Although

the focus of their work is not modular reasoning, a consequence of only allowing

local, private state for advice is that data-flow interference between advice and other

components cannot occur. However, control-flow interference can still happen. This

gives them some non-interference guarantees (at the cost of expressiveness), but it

is insufficient to automatically establish harmless advice.

7 Conclusion

Modular reasoning about interference promotes the idea that effects should be an

integral part of the interface of components, avoiding hidden data flows between

components. This has the following important benefits:

• Modular reasoning is possible, since only the implementation of a program

and the interfaces of the components used by that program are needed to

understand that program locally.

• Reasoning about the interference between components is possible by looking

at the interfaces only.

MRI provides a purely functional model of inheritance with effects. The benefit

of being purely functional is that many powerful reasoning techniques become

available. Parametricity and algebraic laws about effects are powerful forms of

modular reasoning that complement basic equational reasoning. Together they allow

MRI to provide effective modular reasoning techniques for non-interference of tightly

coupled IP components, which is a notoriously hard problem in the literature.

Besides providing a modular reasoning framework, an additional benefit of MRI

is that it provides a simple and lightweight model of inheritance as a Haskell library.

Monadic mixins are a useful concept for functional programming and, in some sense,

these can be viewed as a simple approach to AOP in Haskell.

Appendix A Background on parametricity-based proofs

In the following sections we present a number of parametricity-based proofs related

to monads and monad transformers. For this purpose, we closely follow the style

and formalism set out by Voigtländer (2009), who specifically covers the technique

of deriving free theorems for type constructors restricted by type class constraints.

We recommend the reader to look at Voigtländer’s work (2009) for the details, but

summarize the essence of the formalism here. In a nutshell, parametricity derives a

free theorem for every expression x with a polymorphic type such as ∀a .τ. This free



Modular reasoning about interference 835

theorem consists of a relation R between instances of the expression xτ1
and xτ2

. This

relation R is parameterized by a relation R between the types τ1 and τ2. Typically,

when a function is chosen for R, R becomes an equational relation. Voigtländer’s

work captures two extensions: (1) Dealing with type constructors, and (2) dealing

with type class constraints.

Type constructors. In Wadler’s methodology for deriving free theorems (1989), free

type variables are interpreted as relations between arbitrarily chosen closed types

(and then quantified over via relation variables, formally denoted R). Similarly,

Voigtländer (2009) interpretes free type constructor variables as functions on such

relations tied to arbitrarily chosen type constructors. These functions are also called

relational actions.

Let κ1 and κ2 be type constructors (of kind ∗ → ∗). Then formally, a relational

action for them, denoted F : κ1 ⇔ κ2, is a function F on relations between

closed types such that every R : τ1 ⇔ τ2 (for arbitrary τ1 and τ2) is mapped to an

F R : κ1 τ1 ⇔ κ2 τ2.

Type class constraints. Wadler (1989) shows how to treat type class constraints for

ordinary types. Basically, the relation R chosen as interpretation for the constrained

type variable is restricted to those that relate types that are instances of the type

class. Furthermore, every type class method (seen as a new constant in the language)

must be related to itself by the relational interpretation.

The same approach applies to type constructor classes, where we now speak

of C actions for relational actions restricted to type class C . For instance, for type

variables constrained by the Monad type class, we speak of Monad actions. Formally,

relational action F : κ1 ⇔ κ2 is a Monad action iff:

• the type constructors κ1 and κ2 are instances of Monad ,

• (returnκ1
, returnκ2

) ∈ ∀R.R →F R, and

• ((>>=κ1
), (>>=κ2

)) ∈ ∀R.∀S.F R→ ((R →FS)→FS).

Monad Transformer actions and MonadState actions are defined in a similar way.

Appendix B Proof of free theorem for stateful components

Instead of the specific theorem for new p x , we prove a more general theorem:

Theorem 9 (Stateful Code)

For any mx :: ∀m .�M s m ⇒ m b we have:

mx ≡

do s0 ← get

let (r , s1) = run� mx s0

put s1

return r

Then mx = new p x is a special case.



836 B. C. d. S. Oliveira et al.

Proof

Let F : κ⇔ � s be defined as

F R = κ R; h−1

where

h mx = get >>= λs0 → let (s1, r) = runS mx s0

in put s1 >> return r

and ; is relation composition:

R1;R2 = {(x, z) | (x, y) ∈ R1, (y, z) ∈ R2}

We show that F is both a Monad and a MonadState action. Then if we choose

R to be the identity function id , the theorem follows.

Firstly, F is a Monad action. Indeed,

• (returnκ, returnState s) ∈ R →F R since for every (a , b) ∈ R :

— (returnκ a , returnκ b) ∈ κ R, and

— (returnκ b, returnState s b) ∈ h−1, as

getκ >>= λs0 → let (r1, s1) = run� (returnState s b) s0

in putκ s1 >> returnκ r1

≡ {-reduce run� (returnState s b) s0 -}
getκ >>= λs0 → let (r1, s1) = (b, s0) in putκ s1 >> returnκ r1

≡ {-eliminate let binding -}
getκ >>= λs0 → putκ s0 >> returnκ b

≡ {-Get-Put law -}
returnκ () >> returnκ b

≡ {-Return-Bind law -}
returnκ b

• (>>=κ, >>=State s) ∈ F R → (R → F S) → F S, since for every (mx 2,mx 1) ∈
F R and (f2, f1) ∈ R →FS we have that (mx 2>>=κf2,mx 1>>=State sf1) ∈ F S,

as:

getκ >>= λs0 → let (r1, s1) = run� (mx 1 >>=State s f1) s0

in putκ s1 >> returnκ r1

≡ {-unfold >>=State s -}
getκ >>= λs0 → let (r1, s1) =

run� (� (λs2 → let (r3, s3) = run� mx 1 s2

in run� (f1 r3) s3)) s0

in putκ s1 >> returnκ r1

≡ {-reduce run� -}
getκ >>= λs0 → let (r1, s1) = let (r3, s3) = run� mx 1 s0

in run� (f1 r3) s3

in putκ s1 >> returnκ r1

≡ {-let floating -}
getκ >>= λs0 → let (r3, s3) = run� mx 1 s0



Modular reasoning about interference 837

in let (r1, s1) = run� (f1 r3) s3

in putκ s1 >> returnκ r1

≡ {-Put-Put law -}
getκ >>= λs0 → let (r3, s3) = run� mx 1 s0 in putκ s3 >>

let (r1, s1) = run� (f1 r3) s3 in putκ s1 >> returnκ r1

≡ {-Return-Bind law -}
getκ >>= λs0 → let (r3, s3) = run� mx 1 s0 in putκ s3 >> returnκ s3

>>= λs4 → let (r1, s1) = run� (f1 r3) s4 in putκ s1 >> returnκ r1

≡ {-Get-Put law -}
getκ >>= λs0 → let (r3, s3) = run� mx 1 s0 in putκ s3 >> getκ >>= λs4 →

let (r1, s1) = run� (f1 r3) s4 in putκ s1 >> returnκ r1

≡ {-Return-Bind law -}
getκ >>= λs0 → let (r3, s3) = run� mx 1 s0 in putκ s3 >> returnκ r3

>>=κ λr4 →
getκ >>= λs4 → let (r1, s1) = run� (f1 r4) s4 in putκ s1 >> returnκ r1

≡ {-fold h -}
h mx 1 >>=κ h ◦ f1

and (h mx 2 >>=κ h ◦ f2, h mx 1 >>=κ h ◦ f1) ∈ κS.

Moreover, it is a MonadState action. Indeed,

• (getκ, getState s) ∈ F id s since:

getκ >>= λs0 → let (r1, s1) = run� getState s s0 in putκ s1 >> returnκ r1

≡ {-reduce run� getState s s0 -}
getκ >>= λs0 → let (r1, s1) = (s0, s0) in putκ s1 >> returnκ r1

≡ {-eliminate let binding -}
getκ >>= λs0 → putκ s0 >> returnκ s0

≡ {-Get-Get law -}
getκ >>= λs0 → getκ >>= λs1 → putκ s1 >> returnκ s0

≡ {-Get-Put law -}
getκ >>= λs0 → return () >> returnκ s0

≡ {-Return-Bind law -}
getκ >>= λs0 → returnκ s0

≡ {-Bind-Return law -}
getκ

• (putκ, putState s) ∈ id s →F id () since for every s:

getκ >>= λs0 → let (r1, s1) = run� (putState s s) s0 in putκ s1 >> returnκ r1

≡ {-reduce run� (putState s s) s0 -}
getκ >>= λs0 → let (r1, s1) = ((), s) in putκ s1 >> returnκ r1

≡ {-eliminate let binding -}
getκ >>= λs0 → putκ s >> returnκ ()

≡ {-Get-Query law -}
putκ s >> returnκ ()



838 B. C. d. S. Oliveira et al.

≡ {-unit singleton type -}
putκ s

�

Appendix C Proof of the harmlessness theorem

We have subdivided our proof into five auxiliary lemmas. The core of the proof relies

on parametricity: Lemma 2 derives the free theorem for the monad type variable of

the mixin component and Lemma 3 does the same for the monad transformer type

variable in the base component. However, first Lemma 1 introduces an alternative,

but equivalent, shape of augmentation advice that is more suitable for deriving the

free theorem, but less suitable for human consumption. Lemmas 6 and 7 simplify

two complex intermediate expressions using equational reasoning, type class axioms,

and Lemma 2. Finally, the main proof itself in Section C.2 ties together the other

four lemmas.

C.1 Auxiliary lemmas

First, we show how to convert between the self-explanatory form of augmentation

mixin used in the paper and the more dense form a → t m (b → t m c) that is

convenient for writing proofs. The connection between the two forms is captured by

the convert function, which translates from the former to the latter.

convert :: (Monad m ,MonadTrans t ,Monad (t m))

⇒ (a → t m c, a → b → c → t m ())

→ (a → t m (b → t m ()))

convert (bef , aft) =

λa → bef a >>= (λc → return (λb → aft a b c))

The counterpart of the augment function is

around :: (Monad m ,MonadTrans t ,Monad (t m))

⇒ (a → t m (b → t m ()))

→ Open (a → t m b)

around mix = λsuper →
λa → mix a >>= λaft →

super a >>= λr →
aft r >>= \ →
return r

Lemma 1

Consider augmentation mixin (bef , aft) :: (a → t m c, a → b → c → t m ()),

then we have that:

augment (bef , aft) ≡ around (convert (bef , aft))

where m is a Monad and t is a MonadTrans .



Modular reasoning about interference 839

Proof

around (convert (bef , aft))

≡ {-unfold around -}
(λsuper → λa → convert (bef , aft) a >>= λaft ′

→ super a >>= λb

→ aft ′ b >>= \
→ return b)

≡ {-unfold convert -}
(λsuper → λa → bef a >>= λc

→ return (λb → aft a b c) >>= λaft ′

→ super a >>= λb

→ aft ′ b >>= \
→ return b)

≡ {-Return-Bind law -}
(λsuper → λa → bef a >>= λc

→ super a >>= λb

→ aft a b c >>= \
→ return b)

≡ {-fold augment -}
augment (bef , aft)

�

Here is the second auxiliary lemma.

Lemma 2

Consider a function f :: ∀m .Monad m ⇒ a → m (b → m c), then we have

that:

fm ≡ (out (return ◦ out (return ◦ run�) ◦ run�)) f�

Proof

Let F : m ⇔ � be the Monad action

F R = return−1;R; �.

This is a Monad action indeed, as was already shown by Voigtländer (2009, p. 5 as

part of the proof of Theorem 1) ). �

Lemma 3

Consider a function f :: ∀t .MonadTrans t ⇒ (a→ t m (b→ t m ()))→ a→
t m b with m an arbitrary monad, then we have that:

out π ◦ f ≡
out run�T ◦ f ◦ out (�T ◦ fmap (out (�T ◦ π)) ◦ π)

for any π :: ∀m , a .Monad m ⇒ t m a → m a with t an arbitrary monad

transformer that satisfies the following property:

π ◦ lift ≡ id

where out = (◦) applies a function to the output of another function.



840 B. C. d. S. Oliveira et al.

Proof

Let T : τ⇔ �T be the MonadTrans action

TF R = π;F R; �T.

This is a MonadTrans action indeed:

• (lift t, lift�T
) ∈ ∀F,R.F R → TF R, since for every (a, b) ∈ F R we have

(lift t a, lift�T
b) = (lift t a, �T b) ∈ π;F R; �T because of Property (1) of π.

Then we have for all (h, h′) ∈ (idb → T m id ()), that h ′ ≡ �T ◦ π ◦ h), because

m id ≡ id . Assume that (g, g′) ∈ ida → T m (idb → T m id ()), where g ′ ≡
out (�T ◦ fmap (out (�T ◦ π)) ◦ π) g . Then, for (f g , f g ′) ∈ ida →T m idb the lemma

follows.

Now, we only have to show that the assumption w.r.t. (g, g′) is valid. The

assumption is valid if for all (a, a) ∈ ida, we have that (ga, g′a) ∈ T m (idb →
T m id ()). This holds if, applyingT, we have that (proj(ga), unIdT (g′a)) ∈ m (idb →
T m id ()). By equational reasoning, we get

(π (g a), run�T (g ′ a))

≡ {-unfold g ′ -}
(π (g a), run�T ◦ �T ◦ fmap (out (�T ◦ π)) $ π (g a))

≡ {-run�T ◦ �T ≡ id -}
(π (g a), fmap (out (�T ◦ π)) $ π (g a))

≡ {-unfold fmap and out -}
(π (g a), π (g a) >>= λf → return (�T ◦ π ◦ f ))

≡ {-Bind-Return law -}
(π (g a) >>= return ,

π (g a) >>= λf → return (�T ◦ π ◦ f ))

Note that (π (g a), π (g a)) ∈ m R, and (>>=, >>=) ∈ m R → (R → m S) → m S,

where R = idb → t m id () = idb→t m () and S = idb → T m id (). Thus, we must

show that (return , λf → return (�T ◦ π ◦ f )) ∈ (R → m S). So for any (f, f) ∈ R, we

must show that (return f , return (�T ◦ π ◦ f )) ∈ mS. As (return , return) ∈ S → mS,

this amounts to showing that (f , �T ◦ π ◦ f ) ∈ S. Take any (b, b) ∈ idb,b, then

(f b, �T ◦π$ f b) ∈ T m id () should hold. In other words, �T ◦ id ◦π$ f b ≡ �T ◦π$ f b

should hold. This is indeed true. Hence, the assumption about (g, g′) does hold.

�

Here is the fourth auxiliary lemma.

Lemma 6

Consider a function mix :: ∀m .Monad m ⇒ a → t m (b → t m ()), then we

have that:

(out (�T ◦ fmap (out (�T ◦ π)) ◦ π)) mix

≡
const (return (const (return ())))

where t is a MonadTrans .



Modular reasoning about interference 841

Proof

(out (�T ◦ fmap (out (�T ◦ π)) ◦ π)) mix

≡ {-out (f ◦ g) ≡ out f ◦ out g -}
(out (�T ◦ fmap (out �T ◦ out π) ◦ π)) mix

≡ {-fmap (g ◦ h) ≡ fmap g ◦ fmap h -}
(out (�T ◦ fmap (out �T) ◦ fmap (out π) ◦ π)) mix

≡ {-out (f ◦ g) ≡ out f ◦ out g -}
(out (�T ◦ fmap (out �T)) ◦ out (fmap (out π) ◦ π)) mix

≡ {-unfold def. of (◦) -}
(out (�T ◦ fmap (out �T))) (out (fmap (out π) ◦ π) mix )

≡ {-Lemma 2 -}
(out (�T ◦ fmap (out �T))) ((out (return ◦ out (return ◦ run�) ◦ run�))

(out (fmap (out π) ◦ π) mix ))

≡ {-out (f ◦ g) ≡ out f ◦ out g (×3) -}
(out (�T ◦ fmap (out �T))) ((out (return ◦ out return)

(out(outrun� ◦ run�)(out(fmap(outπ) ◦ π)mix ))))

≡ {-Totality assumption -}
(out (�T ◦ fmap (out �T))) ((out (return ◦ out return)) (const (const ())))

≡ {-unfold def. of (◦) and out -}
(out (�T ◦ fmap (out �T))) (const (return (const (return ()))))

≡ {-unfold def. of out -}
const ((�T ◦ fmap (out �T) ◦ return) (const (return ())))

≡ {-fmap h ◦ return ≡ return ◦ h -}
const ((�T ◦ return ◦ out �T) (const (return ())))

≡ {-�T ◦ return ≡ return -}
const ((return ◦ out �T) (const (return ())))

≡ {-out f (const x ) ≡ const (f x ) -}
const (return (const (�T (return ()))))

≡ {-�T ◦ return ≡ return -}
const (return (const (return ())))

�

Define � as the counterpart of �:

(�) :: ∀t m a b.(Monad m ,MonadTrans t ,Monad (t m))

⇒ Augment a t m b

→ Open (a → t m b)

→ Open (a → t m b)

mixin � base = around mixin � base

Here is the fifth auxiliary lemma.



842 B. C. d. S. Oliveira et al.

Lemma 7

Consider a function bse :: ∀t .MonadTrans t ⇒ Open (a → t m b), then we

have that:

new ((const (return (const (return ())))) � bse)

≡
new bse

where m is a Monad .

Proof

new ((const (return (const (return ())))) � bse)

≡ {-unfold def. of � -}
new (λp x → const (return (const (return ()))) x >>= λaft → bse p x

>>= λr → aft r >>= \ → return r)

≡ {-unfold const -}
new (λp x → return (const (return ())) >>= λaft → bse p x

>>= λr → aft r >>= \ → return r)

≡ {-Return-Bind law -}
new (λp x → bse p x >>= λr → const (return ()) r >>= \ → return r)

≡ {-unfold const -}
new (λp x → bse p x >>= λr → return () >>= \ → return r)

≡ {-Return-Bind law -}
new (λp x → bse p x >>= λr → return r)

≡ {-η-reduction -}
new (λp x → bse p x >>= return)

≡ {-Bind-Return law -}
new (λp x → bse p x )

≡ {-η-reduction -}
new bse

�

C.2 Main proof

The main theorem follows from the above lemmas.

Proof

π ◦ new ((bef , aft) � bse)

≡ { Lemma 1 }
π ◦ new (convert (bef , aft) � bse)

≡ { let mix = convert (bef , aft) }
π ◦ new (mix � bse)

≡ { abstract over mix }
π ◦ ((λx → new (x � bse)) mix )

≡ { fold out }
(out π ◦ (λx → new (x � bse))) mix



Modular reasoning about interference 843

≡ { Lemma 3 }
(out run�T ◦ (λx → new (x � bse)) ◦ out (�T ◦ fmap (out (�T ◦ π)) ◦ π)) mix

≡ { unfold def. of (◦) }
(out run�T ◦ (λx → new (x � bse))) ((out (�T ◦ fmap (out (�T ◦ π)) ◦ π)) mix )

≡ { Lemma 6 }
(out run�T ◦ (λx → new (x � bse))) (const (return (const (return ()))))

≡ { unfold def. of (◦) }
out run�T ((λx → new (x � bse)) (const (return (const (return ())))))

≡ { β-reduction }
out run�T (new ((const (return (const (return ())))) � bse))

≡ { Lemma 7 }
out run�T (new bse)

�

Appendix D Proofs of projection functions

In this section we prove the projection function precondition of the Harmless Mixin

theorem for two specific monads. The proofs are fairly straightforward equational

reasoning and application of the monad axioms.

D.1 The πW function

Proof

πW ◦ lift

≡ {-unfold ◦ -}
(λm → πW (lift m))

≡ {-unfold lift -}
(λm → πW (�T (m >>= λx → return (x ,mempty))))

≡ {-unfold πW -}
(λm → run�T (�T (m >>= λx → return (x ,mempty))) >>= return ◦ fst)

≡ {-run�T (�T m) ≡ m -}
(λm → m >>= λx → return (x ,mempty) >>= return ◦ fst)

≡ {-Return-Bind law -}
(λm → m >>= λx → (return ◦ fst) (x ,mempty))

≡ {-unfold ◦ -}
(λm → m >>= λx → return (fst (x ,mempty)))

≡ {-unfold fst -}
(λm → m >>= λx → return x )

≡ {-η-reduction -}
(λm → m >>= return)

≡ {-Bind-Return law -}
(λm → m)

≡ {-fold id -}
id

�



844 B. C. d. S. Oliveira et al.

D.2 The πS function

Proof

πS s0 ◦ lift

≡ {-unfold ◦ -}
(λm → πS s0 (lift m))

≡ {-unfold lift -}
(λm → πS s0 (�T (λs → m >>= λx → return (x , s))))

≡ {-unfold πS -}
(λm → run�T (�T (λs → m >>= λx → return (x , s))) s0 >>= return ◦ fst)

≡ {-run�T (�T f ) ≡ f -}
(λm → (λs → m >>= λx → return (x , s)) s0 >>= return ◦ fst)

≡ {-β-reduction -}
(λm → m >>= λx → return (x , s0 ) >>= return ◦ fst)

≡ {-Return-Bind law -}
(λm → m >>= λx → (return ◦ fst) (x , s0 ))

≡ {-unfold ◦ -}
(λm → m >>= λx → return (fst (x , s0 )))

≡ {-unfold fst -}
(λm → m >>= λx → return x )

≡ {-η-reduction -}
(λm → m >>= return)

≡ {-Bind-Return law -}
(λm → m)

≡ {-fold id -}
id

�

Appendix E Proof of harmless observation mixin

The structure of the Harmless Observation Mixin proof is the same as that of the

Harmless Mixin proof. We can even reuse two of the five lemmas. The other three

lemmas need to be adjusted to the MGet additional constraint. Notably, Lemma 8

derives the corresponding parametricity result which is weaker than that of Lemma 2.

Fortunately, Lemma 9 compensates for this by exploiting the MGet axioms.

E.1 Auxiliary lemmas

Again we turn to the same convenient intermediate form for augmentation mixins

that we used for the proof of orthogonal harmless mixins. We define � as the

counterpart of � for:

(�) :: (MGet s m ,MonadTrans t ,Monad (t m))

⇒ (a → t m (b → t m ()))

→ Open (a → t m b)



Modular reasoning about interference 845

→ Open (a → t m b)

mixin � base = around mixin ‘observation ‘ base

Again we first formulate and prove a few lemmas before we proceed with the

main proof.

Lemma 8

Consider a function f :: ∀m .MGet s m ⇒ a → m (b → m c), then we have

that:

fm ≡ (out (λm → aux m >>= return ◦ out aux )) f(� s)

where

aux :: MGet s m ⇒ � s a → m a

aux m = get >>= λs → return (run� m s)

Proof

Let F : m⇔ � s be the MGet s action

F R = (get>>=)−1 ; out return−1 ; id s → R ; �

.

This is indeed a MGet s action:

• Assume that (a, b) ∈ R. We have that (get>>=)−1 (returnma) = const (returnma).

Also, out return−1 (const (returnma)) = const a . Finally, note that � (const b) =

return� s b. In conclusion, (returnm, return� s) ∈ R →F R.

• For getm we do have that (get>>=)−1 getm = returnm, and out return−1 returnm =

id . Moreover, id ◦ id ◦ id = id . Finally, � id = get� s. Ergo, (getm, get� s) ∈
F id s.

• For all R,S, (f1 , f2 ) ∈ id s → R and for all (k1 , k2 ) ∈ iR → id s → S, We

have that (get >>= λs → return (f1 s), get >>= λs → return (f2 s)) ∈ F R.

Similarly, we have that (λx → get >>=λs → return (k1 x s), λx → get >>=λs →
return (k2 x s)) ∈ R →FS. Moreover,

get >>= λs → return (f1 s)

≡ {-unfold return -}
get >>= λs → � (const (f1 s))

≡ {-unfold get -}
� id >>= λs → � (const (f1 s))

≡ {-unfold >>= -}
� $ λs → run� (� (const (f1 (run� (� id ) s)))) s

≡ {-run� (� f ) ≡ f -}
� $ λs → const (f1 (id s)) s

≡ {-unfold const -}
� $ λs → f1 (id s)

≡ {-unfold id -}
� $ λs → f1 s



846 B. C. d. S. Oliveira et al.

≡ {-η-reduction -}
� f1

Similarly, we can show that

λx → get >>= λs → return (k2 x s)

≡ {-... -}
λx → � (k2 x )

Now consider (get>>=λs → return (f1 s)>>=λx → get>>=λs ′ → return (k1 x s ′),

� f2 >>= λx → � (k2 x )). We can rewrite the first component

get >>= λs → return (f1 s) >>= λx → get >>= λs ′ → return (k1 x s ′)

≡ {-Return-Bind law -}
get >>= λs → get >>= λs ′ → return (k1 (f1 s) s ′)

≡ {-get idempotence -}
get >>= λs → return (k1 (f1 s) s)

If we apply (get>>=)−1 ; out return−1 to this, we get λs → (k1 (f1 s) s).

Similarly, we can rewrite the second component

� f2 >>= λx → � (k2 x )

≡ {-unfold >>= -}
� $ λs → run� (� (k2 (run� (� f2 ) s))) s

≡ {-run� (� f ) ≡ f -}
� $ λs → run� (� (k2 (f2 s))) s

≡ {-run� (� f ) ≡ f -}
� $ λs → k2 (f2 s) s

Summarizing, the original pair is inFS. Hence, we have that (>>=m,>>=� s) ∈
F R → (R →FS)→FS.

Note that the function aux captures F id . The theorem follows.

�

The next lemma is the counterpart of Lemma 6.

Lemma 9

Consider a function mix :: ∀m .MGet s m ⇒ a → t m (b → t m ()), then we

have that:

(out (�T ◦ fmap (out (�T ◦ π)) ◦ π)) mix

≡
const (return (const (return ())))

where t is a MonadTrans .

Proof

(out (�T ◦ fmap (out (�T ◦ π)) ◦ π)) mix

≡ {-out (f ◦ g) ≡ out f ◦ out g -}
(out (�T ◦ fmap (out �T ◦ out π) ◦ π)) mix



Modular reasoning about interference 847

≡ {-fmap (g ◦ h) ≡ fmap g ◦ fmap h -}
(out (�T ◦ fmap (out �T) ◦ fmap (out π) ◦ π)) mix

≡ {-out (f ◦ g) ≡ out f ◦ out g -}
(out (�T ◦ fmap (out �T)) ◦ out (fmap (out π) ◦ π)) mix

≡ {-unfold def. of (◦) -}
(out (�T ◦ fmap (out �T))) (out (fmap (out π) ◦ π) mix )

≡ {-let adv ′ = (out (fmap (out π) ◦ π) mix ) -}
(out (�T ◦ fmap (out �T))) adv ′

≡ {-Lemma 8 -}
(out (�T ◦ fmap (out �T))) ((out (λm → aux m >>= return ◦ out aux )) adv ′)

≡ {-unfold aux -}
(out (�T ◦ fmap (out �T))) ((out (λm → aux m

>>= return ◦ out (λn → get >>= λs → return (run� n s)))) adv ′)

≡ {-Totality assumption -}
(out (�T ◦ fmap (out �T))) ((out (λm → aux m

>>= return ◦ out (λn → get >>= λs → return ()))) adv ′)

≡ {-Get-Query law -}
(out (�T ◦ fmap (out �T))) ((out (λm → aux m

>>= return ◦ out (λn → return ()))) adv ′)

≡ {-fold const -}
(out (�T ◦ fmap (out �T))) ((out (λm → aux m

>>= return ◦ out (const (return ())))) adv ′)

≡ {-unfold aux -}
(out (�T ◦ fmap (out �T))) ((out (λm → get >>= λs → return (run� m s)

>>= return ◦ out (const (return ())))) adv ′)

≡ {-Return-Bind law -}
(out (�T ◦ fmap (out �T)))

((out (λm → get >>= λs → return (out (const (return ())) (run� m s)))) adv ′)

≡ {-out (const x ) y ≡ const y -}
(out (�T ◦ fmap (out �T)))

((out (λm → get >>= λs → return (const (return ())))) adv ′)

≡ {-Get-Query law -}
(out (�T ◦ fmap (out �T))) ((out (λm → return (const (return ())))) adv ′)

≡ {-fold const -}
(out (�T ◦ fmap (out �T))) ((out (const (return (const (return ()))))) adv ′)

≡ {-out (const x ) y ≡ const y -}
(out (�T ◦ fmap (out �T))) (const (return (const (return ()))))

≡ {-out (f ◦ g) ≡ out f ◦ out g -}
(out �T ◦ out (fmap (out �T))) (const (return (const (return ()))))

≡ {-unfold ◦ -}
out �T (out (fmap (out �T)) (const (return (const (return ())))))

≡ {-out f (const x) == const (f x) -}
out �T (const (fmap (out �T) (return (const (return ())))))

≡ {-fmap f (return x ) = return (f x ) -}



848 B. C. d. S. Oliveira et al.

out �T (const (return (out �T (const (return ())))))

≡ {-out f (const x ) ≡ const (f x ) -}
out �T (const (return (const (�T (return ())))))

≡ {-�T (return x ) ≡ return x -}
out �T (const (return (const (return ()))))

≡ {-out f (const x) == const (f x) -}
const (�T (return (const (return ()))))

≡ {-�T (return x ) ≡ return x -}
const (return (const (return ())))

�

Lemma 10

Consider a function bse :: ∀t .MonadTrans t ⇒ Open (a → t m b), then we

have that:

new ((const (return (const (return ())))) � bse)

≡
new bse

where m is a Monad .

Proof

new ((const (return (const (return ())))) � bse)

≡ {-unfold def. of � -}
new (λp x → const (return (const (return ()))) x >>= λaft → bse p x

>>= λr → aftr >>= \ → returnr)

≡ {-fold def. of � -}
new ((const (return (const (return ())))) � bse)

≡ {-Lemma 7 -}
new bse

�

E.2 Main proof

The main proof is similar to the Harmless Mixin proof. The only difference lies in

the use of Lemma 9, which relies on the Get-Query law.

Proof

π ◦ new ((bef , aft) � bse)

≡ {-Lemma 1 -}
π ◦ new (convert (bef , aft) � bse)

≡ {-let mix = convert (bef , aft) -}
π ◦ new (mix � bse)

≡ {-abstract over mix -}
π ◦ ((λx → new (x � bse)) mix )



Modular reasoning about interference 849

≡ {-fold out -}
(out π ◦ (λx → new (x � bse))) mix

≡ {-Lemma 3 -}
(out run�T ◦ (λx → new (x � bse)) ◦ out (�T ◦ fmap (out (�T ◦ π)) ◦ π)) mix

≡ {-unfold def. of (◦) -}
(out run�T ◦ (λx → new (x � bse))) ((out (�T ◦ fmap (out (�T ◦ π)) ◦ π)) mix )

≡ {-Lemma 9 -}
(out run�T ◦ (λx → new (x � bse))) (const (return (const (return ()))))

≡ {-unfold def. of (◦) -}
out run�T ((λx → new (x � bse)) (const (return (const (return ())))))

≡ {-β-reduction -}
out run�T (new ((const (return (const (return ())))) � bse))

≡ {-Lemma 10 -}
out run�T (new bse)

�

Acknowledgments

We are grateful to Jonathan Aldrich, Benjamin Delaware, Marko van Dooren,

Jeremy Gibbons, Simon Peyton Jones, Steven Keuchel, Shriram Krishnamurthi,

Adriaan Moors, Janis Voigtländer, Meng Wang, and the anonymous reviewers for

their useful comments; and to Andres Löh for supporting lhs2tex.

Bruno Oliveira was supported by the Engineering Research Center of Excellence

Program of Korea Ministry of Education, Science and Technology (MEST)/Korea

Science and Engineering Foundation (KOSEF) grant number R11-2008-007-01002-

0, the Mid-Career Researcher Program (2010-0022061) through NRF grant funded

by the MEST, and by a grant from the Portugal-UT Austin CoLab program.

References

Aldrich, J. (2005) Open modules: Modular reasoning about advice. In Proceedings of the 19th

European Conference on Object-Oriented Programming (ECOOP’05), Berlin, Heidelberg:

Springer-Verlag, pp. 144–168.

Bagherzadeh, M., Rajan, H., Leavens, G. T. & Mooney, S. (2011) Translucid contracts:

Expressive specification and modular verification for aspect-oriented interfaces. In

Proceedings of the 10th International Conference on Aspect-Oriented Software Development

(AOSD’11), New York, NY, USA: ACM, pp. 141–152.

Bird, R. S. & De Moor, O. (1997) Algebra of Programming. International Series in Computing

Science, vol. 100. Upper Saddle River, NJ: Prentice Hall.

Bracha, G. & Cook, W. (1990) Mixin-based inheritance. In Proceedings of the European

Conference on Object-Oriented Programming on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA/ECOOP ’90). New York, NY: ACM, pp. 303–

311.

Chen, K., Weng, S.-C., Lin, J.-Y., Wang, M. & Khoo, S.-C. (2011) Side-effect localization for

lazy, purely functional languages via aspects. Higher-Order Symb. Comput. 24(1–2), 1–39.



850 B. C. d. S. Oliveira et al.

Chen, K., Weng, S., Wang, M., Khoo, S. & Chen, C. (2007) A compilation model for

aspect-oriented polymorphically typed functional languages. In Proceedings of the 14th

International Symposium on Static Analysis (SAS’07), Berlin, Heidelberg: Springer-Verlag,

pp. 34–51.

Clifton, C. & Leavens, G. T. (2002) Observers and assistants: A proposal for modular aspect-

oriented reasoning. In Proceedings of the 1st Workshop on Foundations of Aspect-Oriented

Languages (FOAL’02), pp. 33–44.

Clifton, C., Leavens, G. T. & Noble, J. (2007) MAO: Ownership and effects for more effective

reasoning about aspects. In Proceedings of the 21st European Conference on Object-Oriented

Programming (ECOOP’07), Berlin: Springer-Verlag, pp. 451–475.

Cook, W. R. (1989) A Denotational Semantics of Inheritance. PhD thesis, Brown University,

Providence, RI.

Cook, W. & Palsberg, J. (1989) A denotational semantics of inheritance and its

correctness. In Conference Proceedings on Object-Oriented Programming Systems, Languages

and Applications (OOPSLA ’89), New York, NY, USA: ACM, pp. 433–443.

Dahl, O.-J. & Nygaard, K. (1966) Simula: An ALGOL-based simulation language. Commun.

ACM 9(9), 671–678.

Dantas, D. S. & Walker, D. (2006) Harmless advice. In Proceedings of the 33rd Symposium

on Principles of Programming Languages (POPL’06), New York, NY, USA: ACM,

pp. 383–396.

Dantas, D. S., Walker, D., Washburn, G. & Weirich, S. (2008) AspectML: A polymorphic

aspect-oriented functional programming language. ACM Trans. Program. Lang. Syst. 30(3),

1–60.

De Fraine, B. & Braem, M. (2007) Requirements for reusable aspect deployment. In Software

Composition, Lumpe, M. & Vanderperren, W. (eds), Lecture Notes in Computer Science,

vol. 4829. Berlin, Germany: Springer, pp. 176–183.

Douence, R., Fradet, P. & Südholt, M. (2004) Composition, reuse and interaction analysis

of stateful aspects. In Proceedings of the 3rd International Conference on Aspect-Oriented

Software Development (AOSD’04), New York, NY, USA: ACM, pp. 141–150.

Dutchyn, C., Tucker, D. B. & Krishnamurthi, S. (2006) Semantics and scoping of aspects in

higher-order languages. Sci. Comput. Program. 63(3), 207–239.

Flatt, M., Krishnamurthi, S. & Felleisen, M. (1998) Classes and mixins. In Proceedings of the

25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Popl

’98), San Diego, CA. New York, NY: ACM, pp. 171–183.

Gibbons, J. & Hinze, R. (2011) Just do it: Simple monadic equational reasoning. In Proceedings

of the 16th International Conference on Functional Programming (ICFP’11), New York, NY,

USA: ACM, pp. 2–14.

Hughes, J. (1998) Generalising monads to arrows. Sci. Comput. Program. 37, 67–111.

Hutton, G. & Fulger, D. (2008) Reasoning about effects: Seeing the wood through the trees.

Proceedings of the Symposium on Trends in Functional Programming, Nijmegen, The

Netherlands, May 26–28.

Jaskelioff, M. (2008) Monatron: An extensible monad transformer library. Proceedings of the

20th International Conference on Implementation and Application of Functional Languages

(IFL’08), pp. 233–248.

Jones, Mark P. (2000) Type classes with functional dependencies. In Proceedings of the 2000

European Symposium on Programming (ESOP’00), Lecture Notes in Computer Science,

vol. 1782, London, UK: Springer-Verlag, pp. 230–244.

Katz, S. (1993) A superimposition control construct for distributed systems. ACM Trans.

Program. Lang. Syst. 15(2), 337–356.



Modular reasoning about interference 851

Katz, S. (2006) Aspect categories and classes of temporal properties. Trans. Aspect-Oriented

Softw. Dev. 3880, 106–134.

Kiczales, G. & Lamping, J. (1992) Issues in the design and specification of class libraries.

In Proceedings of the 7th Annual Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA’92), New York, NY, USA: ACM, pp. 435–451.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J., & Irwin, J.

(1997) Aspect-oriented programming. In Proceedings of the 17th European Conference on

Object-Oriented Programming (ECOOP’97), Berlin, Heidelberg: Springer-Verlag, pp. 220–

242.

Kiczales, G. & Mezini, M. (2005) Aspect-oriented programming and modular reasoning.

Proceedings of the 27th International Conference on Software Engineering (ICSE’05), New

York, NY, USA: ACM, St. Louis, MO, May 15–21, pp. 49–58.

Lamping, J. (1993) Typing the specialization interface. In Proceedings of the 8th

Annual Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA’93), New York, NY, USA: ACM, pp. 201–214.

Leino, K. & Rustan M. (1998) Data groups: Specifying the modification of extended state.

In Proceedings of the 13th Annual Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA’98), New York, NY, USA: ACM, pp. 144–153.

Lewis, J. R., Launchbury, J., Meijer, E. & Shields, M. B. (2000) Implicit parameters: Dynamic

scoping with static types. In Proceedings of the 27th Symposium on Principles of Programming

Languages (POPL’00), New York, NY, USA: ACM, pp. 108–118.

Liang, S. & Hudak, P. (1996) Modular denotational semantics for compiler construction.

In Proceedings of the European Symposium on Programming (ESOP’96). Berlin, Germany:

Springer-Verlag, pp. 219–234.

Liang, S., Hudak, P. & Jones, M. (1995) Monad transformers and modular interpreters. In

Proceedings of the 22nd Symposium on Principles of Programming Languages (POPL’95),

New York, NY, USA: ACM, pp. 333–343.

Ligatti, J., Walker, D. & Zdancewic, S. (2006) A type-theoretic interpretation of pointcuts

and advice. Sci. Comput. Program. 63(3), 240–266.

Lopez-Herrejon, R., Batory, D. & Lengauer, C. (2006) A disciplined approach to aspect

composition. In Proceedings of the Symposium on Partial Evaluation and Semantics-Based

Program Manipulation (PEPM’06), New York, NY, USA: ACM, pp. 68–77.

Masuhara, H., Tatsuzawa, H. & Yonezawa, A. (2005) Aspectual Caml: An aspect-oriented

functional language. In Proceedings of the 10th International Conference on Functional

Programming (ICFP’05), New York, NY, USA: ACM, pp. 320–330.

McBride, C. & Paterson, R. (2008) Applicative programming with effects. J. Funct. Program.

18(1), 1–13.

Müller, P., Poetzsch-Heffter, A. & Leavens, G. T. (2003) Modular specification of frame

properties in JML. Concurrency Comput. Pract. Exp. 15(2), 117–154.

Oliveira, Bruno C. d. S., Schrijvers, T. & Cook, W. R. (2010) EffectiveAdvice: Disciplined

advice with explicit effects. In Proceedings of the 9th International Conference on Aspect-

Oriented Software Development (AOSD’10). New York, NY: ACM, pp. 109–120.

Peyton Jones, S., Vytiniotis, D., Weirich, S. & Shields, M. (2007) Practical type inference for

arbitrary-rank types. J. Funct. Program. 17(01), 1–82.

Prehofer, C. (1997) Feature-oriented programming: A fresh look at objects. In Proceedings

of the 11th European Conference on Object-Oriented Programming (ECOOP’97), Berlin,

Heidelberg: Springer-Verlag, pp. 419–443.



852 B. C. d. S. Oliveira et al.

Prehofer, C. (1999) Flexible Construction of Software Components: A Feature Oriented

Approach. Habilitation Thesis, Fakultät für Informatik der Technischen Universität

München.

Prehofer, C. (2006) Semantic reasoning about feature composition via multiple aspect-

weavings. In Proceedings of the 5th International Conference on Generative Programming

and Component Engineering (GPCE’06), New York, NY, USA: ACM, pp. 237–242.

Reynolds, J. C. (1974) Towards a theory of type structure. Proceedings of Programming

Symposium, Lecture Notes in Computer Science, vol. 19. New York: Springer-Verlag,

pp. 408–423.

Reynolds, John C. (1983) Types, abstraction and parametric polymorphism. In Proceedings

of the IFIP Congress, pp. 513–523.

Rinard, M., Salcianu, A. & Bugrara, S. (2004) A classification system and analysis for

aspect-oriented programs. ACM SIGSOFT Softw. Eng. Notes 29(6), 147–158.

Ruby, C. & Leavens, G. T. (2000) Safely creating correct subclasses without seeing superclass

code. In Proceedings of the 15th Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA’00), New York, NY, USA: ACM,

pp. 208–228.

Salcianu, A. & Rinard, M. C. (2005) Purity and side effect analysis for JAVA programs.

In Proceedings of the 6th International Conference on Verification, Model Checking, and

Abstract Interpretation (VMCAI’05), Berlin, Heidelberg: Springer-Verlag, Lecture Notes in

Computer Science, vol. 3385, pp. 199–215.

Schrijvers, T. & Oliveira, Bruno C. d. S. (2011) Monads, zippers and views: Virtualizing the

monad stack. In Proceedings of the 16th International Conference on Functional Programming

(ICFP’11), New York, NY, USA: ACM, pp. 32–44.

Stata, R. & Guttag, J. V. (1995) Modular reasoning in the presence of subclassing.

In Proceedings of the 10th Annual Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA’95), New York, NY, USA: ACM, pp. 200–214.

Tanter, É. (2008) Expressive scoping of dynamically deployed aspects. In Proceedings of the

7th International Conference on Aspect-Oriented Software Development (AOSD’08), New

York, NY, USA: ACM, pp. 168–179.

Voigtländer, J. (2009) Free theorems involving type constructor classes. In Proceedings of

the 14th International Conference on Functional Programming (ICFP’09), New York, NY,

USA: ACM, pp. 173–184.

Wadler, P. (1989) Theorems for free! In Proceedings of the 4th International Conference on

Functional Programming and Computer Architecture (FPLCA’89), New York, NY, USA:

ACM, pp. 347–359.

Wadler, P. (1992a) The essence of functional programming. In Proceedings of the 19th

Symposium on Principles of Programming Languages (POPL’92), New York, NY, USA:

ACM, pp. 1–14.

Wadler, P. (1992b) Monads for functional programming. Proceedings of the Marktoberdorf

Summer Schoolon Program Design Calculi, NATO ASI Series F: Computer and Systems

Sciences, vol. 118. New York: Springer-Verlag,

Wang, M. & Oliveira, Bruno C. d. S. (2009) What does aspect-oriented programming mean

for functional programmers? In Proceedings of the 8th Workshop on Generic Programming

(WGP’09), New York, NY, USA: ACM, pp. 37–48.


