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Chapter 1

Preliminaries

1.1 Preface

1.1.1 What?

This document is a series of notes about programming languages, originally
written for students of the undergraduate programming languages course at UT.

1.1.2 Why?

I’m writing these notes because I want to teach the theory of programming
languages with a practical focus, but I don’t want to use Scheme (or ML) as the
host language. Thus many excellent books do not fit my needs, including Pro-
gramming Languages: Application and Interpretation, Essentials of Programming
Languages or Concepts in Programming Languages.

This book uses Haskell, a pure functional language. Phil Wadler gives some
good reasons why to prefer Haskell over Scheme in his review of Structure and
Interpretation of Computer Programs. I agree with most but not all of his points.
For example, I do not care much for the fact that Haskell is lazy. Only small
portions of this book rely upon this feature.

I believe Haskell is particularly well suited to writing interpreters. But one must
be careful to read Haskell code as one would read poetry, not the way one would
read a romance novel. Ponder each line and extract its deep meaning. Don’t
skim unless you are pretty sure what you are doing.

The title of this book is derived from one of my favorite books, The Anatomy of
Lisp.
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1.1.3 Who?

These notes assume knowledge of programming, and in particular assume basic
knowledge of programming in Haskell. When I teach the course I give a few
hours of lectures to introduce Haskell. I teach the built-in data types including
lists, the basic syntax for conditionals, function definitions, function calls, list
comprehensions, and how to print out strings. I also spend a day on data
definitions (algebraic data types) and pattern matching. Finally, I give a quick
introduction to type classes so student will understand how Eq and Show work.
During the course I teach more advanced topics, including first-class functions
and monads. As background resources, I point students to the many excellent
tutorials on Haskell. Search Google for “Haskell Tutorial”. I recommend Learn
You a Haskell for Great Good! or the Gentle Introduction To Haskell.

1.1.3.1 Acknowledgments

I thank the students in the spring 2013 semester of CS 345 Programming
Languages at the University of Texas at Austin, who helped out while I was
writing the book. Special thanks to Jeremy Siek, Chris Roberts and Guy Hawkins
for corrections and Aiden Song and Monty Zukowski for careful proofreading.
Tyler Allman Young captured notes in class. Chris Cotter improved the makefile
and wrote the initial text for some sections.

1.2 Introduction

In order to understand programming languages, it is useful to spend some time
thinking about languages in general.

language A language is a means to communicate information.

Usually we treat language like the air we breathe: it is everywhere but it is
invisible. I say that language is invisible because we are usually more focused on
the message, or the content, that is being conveyed than on the structure and
mechanisms of the language itself. Even when we focus on our use of language,
for example in writing a paper or a poem, we are still mostly focused on the
message we want to convey, while working with (or struggling with) the rules
and vocabulary of the language as a given set of constraints. The goal is to work
around and avoid problems. A good language is invisible, allowing us to speak
and write our intent clearly and creatively.

The same is true for programming. Usually we have some important goal in mind
when writing a program, and the programming language is a vehicle to achieve
the goal. In some cases the language may fail us, by acting as an impediment or
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obstacle rather than an enabler. The normal reaction in such situations is to
work around the problem and move on.
The study of language, including the study of programming languages, requires
a different focus. We must examine the language itself, as an artifact. What are
its rules? What is the vocabulary? How do different parts of the language work
together to convey meaning? A user of a language has an implicit understanding
of answers to these questions. But to really study language we must create an
explicit description of the answers to these questions.
The concepts of structure and meaning have technical names.

syntax The structure of a language is called its syntax.
semantics The rules that define the meaning of a language are called semantics.

Syntax is a particular way to structure information, while semantics can be
viewed as a mapping from syntax to its meaning, or interpretation. The meaning
of a program is usually some form of behavior, because programs do things.
Fortunately, as programmers we are adept at describing the structure of infor-
mation, and at creating mappings between different kinds of information and
behaviors. This is what data structures and functions/procedures are for.
Thus the primary technique in these notes is to use programming to study
programming languages. In other words, we will write programs to represent and
manipulate programs. One general term for this activity is metaprogramming.

metaprogram A metaprogram is any program whose input or output is a
program.

Familiar examples of metaprograms include compilers, interpreters, virtual
machines. In this course we will read, write and discuss many metaprograms.

1.3 Introduction to Haskell Programming

The goal of this tutorial is to get the students familiar with Haskell Programming.
Students are encouraged to bring their own laptops to go through the installation
process of Haskell and corresponding editors, especially if they haven’t tried
to install Haskell before or if they had problems with the installation. In any
case the lab machines will have Haskell installed and students can also use these
machines for the tutorial.

1.3.1 Installing Haskell and related tools

If you have your laptop and have not installed Haskell yet, you can try to install
it now. The Haskell platform is the easiest way to install Haskell in Windows or
Mac OS.
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In Ubuntu Linux you can use:

sudo apt-get install haskell-platform

1.3.2 Installing Emacs

We recommend using emacs as the editor for Haskell, since it is quite simple
to use and it has a nice Haskell mode. In Ubuntu you can do the following to
install emacs and the corresponding Haskell mode:

sudo apt-get install emacs
sudo apt-get install haskell-mode

In Mac OS you can try to use Aquamacs. Look here for a version of emacs for
Windows.

However students are welcome to use whatever editor they prefer. If students
are more comfortable using Vim, for example, they are welcome to. The choice
of the editor is not important.

1.3.3 Basic steps in Haskell

In this tutorial we are going to implement our first Haskell code. To begin with,
Haskell has normal data as in other programming languages. When writing
Haskell code, lines that begin Prelude> are input to the Haskell interpreter,
ghci, and the next line is the output.

Prelude> 3 + 8 * 8
67
Prelude> True && False
False
Prelude> "this is a " ++ "test"
"this is a test"

As illustrated above, Haskell has standard functions for manipulating numbers,
booleans, and strings. Haskell also supports tuples and lists, as illustrated below:

Prelude> (3 * 8, "test" ++ "1", not True)
(24, "test1", False)
Prelude> ()
()
Prelude> [1, 1+1, 1+1+1]
[1, 2, 3]
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Prelude> 1 : [2, 3]
[1, 2, 3]
Prelude> 1 : 2 : 3 : []
[1, 2, 3]
Prelude> length [1, 2, 3]
3

Tuples are fixed length but can contain different types of values. Lists are
variable length but must contain only one type of value. The colon function :
adds a new item to the front of a list.

1.3.3.1 Functions

First, create a file called “Tutorial1.hs”. After the creation of the file define the
module header as follows:

module Tutorial1 where

It is possible to define simple functions in Haskell. For example, consider a
function that computes the absolute value of a number:

absolute :: Int -> Int
absolute x = if x < 0 then -x else x

This first line declares a function absolute with type Int -> Int, which means
that it takes a single integer as an input, and produces a single integer result. The
second line defines absolute by naming the input value x and then providing
an expression to compute the result. Everything is an expression in Haskell.
This means that everything, including if expressions, have a value. Generally
speaking Haskell definitions have the following basic form:

name arg1 ... argn = expression

Note that in the right side of = (the body of the definition) is an expression.
This is different from a conventional imperative language, where the body of a
definition is usually a statement, which does not have a value.

expression An expression is a syntactic category for syntax that produces a
value, and possibly has other side effects.

statement A statement is a syntactic category for syntax that has a side effect
rather than producing a value.

side effect A side effect is an effect on the program state. Examples of side
effects include allocating memory, assigning to memory, input/output, or
exceptions.
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In Haskell there are no statements, only expressions. As mentioned above, the
if construct is also an expression.

Question 1: Are both of the following Haskell programs valid?

nested_if1 x = if ( absolute x <= 10)
then x
else error "Only numbers between [-10, 10] allowed"

nested_if2 x = if ( (if x < 0 then -x else x) <= 10)
then x
else error "Only numbers between [-10, 10] allowed"

Once you have thought about it you can try these definitions on your Haskell
file and see if they are accepted or not.

Question 2: Can you have nested if statements in Java, C or C++? For example,
would this be valid in Java?

int m(int x) {
if ((if (x < 0) -x else x) > 10)

return x;
else

return 0;
}

1.3.3.2 Data Types

Data types in Haskell are defined by variants and components. In other words,
a data type has a set of variants each with their own constructor, or tag, and
each variant has a set of components or fields. For example, here is a data type
for simple geometry:

data Geometry = Point Int Int -- x and y
| Circle Int Int Int -- x, y, and radius
| Rectangle Int Int Int Int -- top, left, right, bottom

A data type definition always begins with data and is followed by the name
of the data type, in this case Geometry. There then follows a list of variants
with unique tag names, in this case Point, Circle, and Rectangle, which are
separated by a vertical bar |. Following each constructor tag is a list of data
types specifying the types of components of that variant. A Point has two
components, both integers. A Circle has three components, and a rectangle
has 4 integer components. One issue with this notation is that it is not clear
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what the components mean. The meaning of each component is specified in a
comment.
The tags are called constructors because they are defined to construct values
of the data type. For example, here are three expressions that construct three
geometric objects:

Point 3 10
Circle 10 10 10
Rectangle 0 0 100 10

Data types can also be recursive, allowing the definition of complex data types.

data Geometry = Point Float Float -- x and y
| Circle Float Float Float -- x, y, and radius
| Rectangle Float Float Float Float -- top, left, right, bottom
| Composite [Geometry] -- list of geometry objects

Here is a composite geometric value:

Composite [Point 3 10, Circle 10 10 10, Rectangle 0 0 100 10]

Two special cases of data types are enumerations, which only have variants and
no components, and structures which only have a single variant, with multiple
components. An example enumeration is the data type of days of the week:

data Days = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday

In this case the tags are constants. One well known enumeration is the data
type Boolean:

data Boolean = True | False

An example of a structure is a person data type:

data Person = Person String Int Int -- name, age, shoe size

Note that the data type and the constructor tag are the same. This is common for
structures, and doesn’t cause any confusion because data types and constructor
functions are always distinguished syntactically in Haskell. Here is an example
person:

Person "William" 42 10

A Haskell program almost always includes more than one data type definition.
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1.3.3.3 Parametric Polymorphism and Type-Inference

We have seen that Haskell supports definitions with a type-signature or without.
When a definition does not have a signature, Haskell infers one and it is still able
to check whether some type-errors exist or not. For example, for the definition

newline s = s ++ "\n"

Haskell is able to infer the type: String -> String.
In Haskell strings are represented as lists of characters, whose type is written
[Char]. The operator ++ is a built-in function in Haskell that allows concatenat-
ing two lists. However for certain definitions it appears as if there is not enough
information to infer a type. For example, consider the definition:

identity x = x

This is the definition of the identity function: the function that given some
argument returns that argument unmodified. This is a perfectly valid definition,
but what type should it have? The answer is:

identity :: a -> a

The function identity is a (parametrically) polymorphic function. Polymor-
phism means that the definition works for multiple types; and this type of
polymorphism is called parametric because it results from abstracting/parame-
terizing over a type. In the type signature the a is a type variable (or parameter).
In other words it is a variable that can be replaced by some valid type (for
example Int, Char or String). Indeed the identity function can be applied to
any type of values. Try the following in ghci, and see what is the resulting type:

identity 3
identity ’c’
identity identity --- you may try instead :t identity

Question 3: Have you seen this form of polymorphism in other languages?
Perhaps under a different name?

1.3.3.4 Pattern matching

One feature that many functional languages support is pattern matching. Pattern
matching plays a role similar to conditional expressions, allowing us to create
definitions depending on whether the input matches a certain pattern. For
example, the function hd (to be read as “head”) given a list returns the first
element of the list:
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hd :: [a] -> a
hd [] = error "cannot take the head of an empty list!"
hd (x:xs) = x

In this definition, the pattern [] denotes the empty list, whereas the pattern
(x:xs) denotes a list where the first element (or the head) is x and the remainder
of the list is xs. The parentheses are required because hd x:xs would group
as (hd x):xs which is meaningless. Note that instead of a single clause in the
definition there are now two clauses for each case.

Question 4: Define a tl function that given a list, drops the first element and
returns the remainder of the list. That is, the function should behave as follows
for the sample inputs:

Prelude> tl [1, 2, 3]
[2, 3]

Prelude> tl [’a’, ’b’]
[’b’]

More Pattern Matching: Pattern matching can be used with different types. For
example, here are two definitions with pattern matching on tuples and integers:

first :: (a, b) -> a
first (x, y) = x

isZero :: Int -> Bool
isZero 0 = True
isZero n = False

1.3.3.5 Pattern Matching Data Types

Functions are defined over data types by pattern matching. For example, to
compute the area of a geometric figure, one would define:

area :: Geometry -> Float
area (Point x y) = 0
area (Circle x y r) = pi * r ^ 2
area (Rectangle t l r b) = (b - t) * (r - l)
area (Composite cs) = sum [ area c | c <- cs ]
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1.3.3.6 Recursion

In functional languages mutable state is generally avoided and in the case of
Haskell (which is purely functional) it is actually forbidden. So how can we write
many of the programs we are used to? In particular how can we write programs
that in a language like C would normally be written with some mutable state
and some type of loop? For example:

int sum_array(int a[], int num_elements) {
int i, sum = 0;
for (i = 0; i < num_elements; i++) {

sum = sum + a[i];
}
return sum;

}

The answer is to use recursive functions. For example here is how to write a
function that sums a list of integers:

sumList :: [Int] -> Int
sumList [] = 0
sumList (x:xs) = x + sumList xs

Question 5: The factorial function can be defined as follows:

n! = 1 if n = 0
n * (n-1)! if n > 0

Translate this definition into Haskell using recursion and pattern matching.

Question 6: The Fibonacci sequence is:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

write a function:

fib :: Int -> Int

that given a number returns the corresponding number in the sequence. (If you
don’t know Fibonacci numbers you may enjoy finding the recurrence pattern;
alternatively you can look it up in WikiPedia).

Question 7: Write a function:
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mapList :: (a -> b) -> [a] -> [b]

that applies the function of type a -> b to every element of a list. For example:

Prelude> mapList absolute [4, -5, 9, -7]
[4, 5, 9, 7]

Question 7: Write a function that given a list of characters returns a list with
the corresponding ASCII number of the character. Note that in Haskell, the
function ord:

ord :: Char -> Int

gives you the ASCII number of a character. To use it add the following just
after the module declaration:

import Data.Char

to import the character handling library.

Question 8: Write a function filterList that given a predicate and a list
returns another list with only the elements that satisfy the predicate.

filterList :: (a -> Bool) -> [a] -> [a]

For example, the following filters all the even numbers in a list (even is a built-in
Haskell function):

Prelude> filterList even [1, 2, 3, 4, 5]
[2, 4]

Question 9: Haskell has a function zip:

zip :: [a] -> [b] -> [(a, b)]

that given two lists pairs together the elements in the same positions. For
example:

Prelude> zip [1, 2, 3] [’a’, ’b’, ’c’]
[(1, ’a’), (2, ’b’), (3, ’c’)]

For lists of different lengths it truncates the larger list:
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Prelude> zip [1, 2, 3] [’a’, ’b’, ’c’, ’d’]
[(1, ’a’), (2, ’b’), (3, ’c’)]

Write a definition zipList that implements the zip function.

Question 10: Define a function zipSum:

zipSum :: [Int] -> [Int] -> [Int]

that sums the elements of two lists at the same positions. Suggestion: You can
define this function recursively, but a simpler solution can be found by combining
some of the previous functions.

Assignment 0 (Optional and not graded):

Your first assignment is to try to complete as many questions in the tutorial as
you can.
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Chapter 2

Expressions, Syntax, and
Evaluation

This chapter introduces three fundamental concepts in programming languages:
expressions, syntax and evaluation. These concepts are illustrated by a simple
language of arithmetic expressions.

expression An expression is a combination of variables, values and operations
over these values. For example, the arithmetic expression 2+3 uses two
numeric values 2 and 3 and an operation + that operates on numeric values.

syntax The syntax of an expression prescribes how the various components of
the expressions can be combined. In general it is not the case that the
components of expressions can be combined arbitrarily: they must obey
certain rules. For example 2 3 or + + are not valid arithmetic expressions.

evaluation Each expression has a meaning (or value), which is defined by the
evaluation of that expression. Evaluation is a process where expressions
composed of various components get simplified until eventually we get a
value. For example evaluating 2 + 3 results in 5.

2.1 Simple Language of Arithmetic

Lets have a closer look at the language of arithmetic, which is familiar to every
grade-school child.

4
-5+6
3--2--7
3*(8+5)
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Figure 2.1: Graphical illustration of abstract structure

1+(8*2)
1+8*2

These are examples of arithmetic expressions. The rules for understanding such
expressions are surprisingly complex. For example, in the third expression the
first and third minus signs (−) mean subtraction, while the second and fourth
mean that the following number is negative. The last two examples mean the
same thing, because of the rule that multiplication must be performed before
addition. The third expression is potentially confusing, even given knowledge
of the rules for operations. It means (3− (−2))− (−7) not 3− ((−2)− (−7))
because subtraction operations are performed left to right.

Part of the problem here is that there is a big difference between our conceptual
view of what is going on in arithmetic and our conventions for expressing
arithmetic expressions in written form. In other words, there isn’t any confusion
about what negative numbers are or what subtraction or exponentiation do, but
there is room for confusion about how to write them down.

The conceptual structure of a given expression can be defined much more clearly
using pictures. For example, the following pictures make a clear description of
the underlying arithmetic operations specified in the expressions given above:

These pictures are similar to sentence diagramming that is taught in grade school
to explain the structure of English.

The last picture represents the last two expressions in the previous example. This
is because the pictures do not need parentheses, since the grouping structure is
explicit.

2.2 Syntax

Syntax comes in two forms: abstract and concrete.

abstract syntax The conceptual structure (illustrated by the pictures) is called
the abstract syntax of the language.

concrete syntax The particular details and rules for writing expressions as
strings of characters is called the concrete syntax.
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The abstract syntax for arithmetic expressions is very simple, while the concrete
syntax is quite complex. To make these concepts more precise, we show how to
represent abstract syntax as a data structure, and how to define a parser, which
converts from the concrete written form to the abstract syntax.

parser A parser is a program that converts concrete syntax into abstract syntax.
A parser typically inputs text and outputs the abstract syntax structure.

2.2.1 Abstract Syntax in Haskell

This section describes how to represent abstract syntax using Haskell. The code
for this section is found in the Simple.zip file. Arithmetic expressions can be
represented in Haskell with the following data type:

data Exp = Number Int
| Add Exp Exp
| Subtract Exp Exp
| Multiply Exp Exp
| Divide Exp Exp

This data type defines five representational variants, one for numbers, and four
for the the binary operators of addition, subtraction, multiplication, and division.
The symbols Number, Add, Subtract etc are the constructors of the data type.
The types that follow the constructors are the components of the data type.
Thus a Number expression has an integer component, while the other constructors
all have two expression components. A number that appears in a program is
called a literal.

literal A literal is a constant value that appears in a program. A literal can be
a number, string, boolean, or other constant.

As an example of abstract syntax, consider this expression:

-- 3 - -2 - -7
t1 = Subtract (Subtract (Number 3) (Number (-2))) (Number (-7))

NOTE: It is not legal to write Subtract 3 (-2) because 3 and -2 are of type
Int not Exp. Also, Haskell requires parentheses around negative numbers when
used with other infix operators to prevent parsing ambiguity.
Writing abstract syntax directly in Haskell is certainly very ugly. There is
approximately a 10-fold expansion in the number of characters needed to represent
a concept: a 5-character mathematical expression 1 + 8 * 2 uses 47 characters
to create the corresponding Haskell data structure. This is not a defect of Haskell,
it is merely because we haven’t developed a way to convert concrete syntax into
abstract syntax.
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2.2.2 Concrete Syntax and Grammars

The concrete syntax of a language describes how the abstract concepts
in the language are represented as text. For example, lets consider
how to convert the string ‘‘3 + 81 * 2’’ into the abstract syntax
Add (Number 3) (Multiply (Number 81) (Number 2)). The first step
is to break a text up into tokens.

2.2.2.1 Tokens

Tokens are the basic units of a language. In English, for example, words are
tokens. But English also uses many symbol tokens, including “.”, “!”, “?”, “(”
and “)”. In the example ‘‘3 + 81 * 2’’ the tokens are 3, ‘‘+’’, 81, ‘‘*’’,
and 2. It is also important to classify tokens by their kind. The tokens 3, 81
and 2 are sequences of digits. The tokens ‘‘+’’ and ‘‘*’’ are symbol tokens.

token A token is the basic syntactic unit of a language. Tokens can be individual
characters, or groups of characters. Token are often classified into kinds,
for example integers, strings, identifiers.

identifier An identifier is a string of characters that represents a name. Identi-
fiers usually begin with a alphabetic character, then continue with one or
more numeric digits or special symbols. Special symbols that may be used
include underscore "_" and “$”, but others may be included.

Tokens are typically as simple as possible, and they must be recognizable without
considering any context. This means that the integer ‘‘-23’’ might not be a
good token, because it contains the symbol ‘‘-’’, which is also used in other
contexts.

More complex languages may have other kinds of tokens (other common kinds of
token are keyword and identifier tokens, which are discussed later in the book).
Token kinds are similar to the kinds of words in English, where some words are
verbs and other words are nouns.

The following data structure is useful for representing basic tokens.

data Token = Digits Int
| Symbol String

A Token is either an integer token or a symbol token with a string. For example,
the tokens from the string ‘‘3 + 81 * 2’’ are:

Digits 3
Symbol "+"
Digits 81
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Symbol "*"
Digits 2

The Lexer.hs file contains the code for a simple lexer that creates tokens in
this form. It defines a function lexer that transforms a string (i.e. a list of
characters) into a list of tokens. The lexer function takes as input a list of
symbols and a list of keywords.

2.2.2.2 Grammars

Grammars are familiar from studying natural languages, but they are especialy
important when studying computer languages.

grammar A grammar is a set of rules that specify how tokens can be placed
together to form valid expressions of a language.

To create a grammar, it is essential to identify and name the different parts of
the language.

syntactic category The parts of a language are called syntactic categories. For
example, in English there are many different parts, including verb, noun,
gerund, prepositional phrase, declarative sentence, etc. In software lan-
gauges, example syntactic categories include expressions, terms, functions,
types, or classes*.

It is certainly possible to be a fluent English speaker without any explicit
awareness of the rules of English or the names of the syntactic categories. How
many people can identify a gerund? But understanding syntactic categories is
useful for studying a language. Creating a complete syntax of English is quite
difficult, and irrelevant to the purpose of this book. But defining a grammar for
a (very) small fragment of English is useful to illustrate how grammars work.
Here is a simple grammar:

Sentence : Noun Verb | Sentence PrepositionalPhase
PrepositionalPhase : Preposition Noun
Noun : ’Dick’ | ’Jane’ | ’Spot’
Verb : ’runs’ | ’talks’
Preposition : ’to’ | ’with’

The names Sentence, PrepositionalPhase, Noun, Verb, and Preposition are
the syntactic categories of this grammar. Each line of the grammar is a rule
that specifies a syntactic category, followed by a colon (:) and then sequence
of alternative forms for that syntactic category. The words in quotes, including
Dick, Jane, and Runs are the tokens of the language.
Here is a translation of the grammar into English:
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• a sentence is either:
– a noun followed by a verb, or
– a sentence followed by a prepositional phase

• a prepositional phase is a preposition followed by a noun
• a noun is one of “Dick”, “Jane”, or “Spot”
• a verb is either “runs” or “talks”
• a preposition is either “to” or “with”

Some sentences in the language defined by this grammar are:

Dick talks
Jane runs
Dick runs with Spot
Dick runs to Jane with Spot
Spot runs to Jane to Dick to Jane to Dick

There are also some sentences that don’t make much sense:

Dick talks with Dick
Jane runs to Jane to Jane to Jane to Jane

These sentences are syntactically correct because they follow the pattern specified
by the grammar, but that doesn’t ensure that they are meaningful.
To summarize, here is a formal description of grammars.

production rule A production rule defines how a non-terminal can be trans-
lated into a sequence of tokens and other syntactic categories.

terminal A terminal is a token used in a grammar rule.
non-terminal The non-terminals are the names of syntactic categories used in

a grammar.

The intuition behind the use of the terms non-terminal and terminal is that
the grammar rules produce sequences of tokens. Starting with a start symbol, a
grammar can be viewed as generating sequences of non-terminal/terminals by
replacing the left side with the right side. As long as the resulting sentence still
has non-terminals that haven’t been replaced by real words, the process is not
done (not terminated).

2.2.2.3 Grammar Actions and Construction of Abstract Syntax

In addition to specifying the set of legal sentences, a grammar can also specify
the meaning of those sentences. Rather than try to specify a meaning for English,
here is a simple grammar for arithmetic expressions, which has been annotated to
specify the meaning that should be associated with each pattern in the grammar:
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Exp : digits { Number $1 }
| ’-’ digits { Number (- $2) }
| Exp ’+’ Exp { Add $1 $3 }
| Exp ’-’ Exp { Subtract $1 $3 }
| Exp ’*’ Exp { Multiply $1 $3 }
| Exp ’/’ Exp { Divide $1 $3 }
| ’(’ Exp ’)’ { $2 }

This grammar is similar to the one given above for English, but each rule includes
an action enclosed in curly braces { ... }. The action says what should happen
when that rule is recognized. In this case, the action is some Haskell code
with calls to constructors to create the abstract syntax that corresponds to the
concrete syntax of the rule. The special syntax \$n in an action means that the
value of the nth item in the grammar rule should be used in the action. For
example, in the last rule the \$2 refers to the second item in the parenthesis
rule, which is Exp.
Written out explicitly, this grammar means:

• An expression Exp is either
– a digit token

∗ which creates a Number with the integer value of the digits
– a minus sign followed by a digits token

∗ which creates a Number with the negative of the integer value of
the digits

– an expression followed by a + followed by an expression
∗ which creates an Add node containing the value of the expressions

– an expression followed by a - followed by an expression
∗ which creates a Subtract node containing the value of the ex-

pressions
– an expression followed by a * followed by an expression

∗ which creates a Multiply node containing the value of the ex-
pressions

– an expression followed by a / followed by an expression
∗ which creates a Divide node containing the value of the expres-
sions

– a open parenthesis ‘(’ followed by an expression followed by a close
parenthesis ‘)’

∗ which returns the expression an throws away the parentheses

Given this lengthy and verbose explanation, I hope you can see the value of
using a more concise notation!
Just like other kinds of software, there are many design decisions that must
be made in creating a grammar. Some grammars work better than others,
depending on the situation.
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2.2.2.4 Ambiguity, Precedence and Associativity

One problem with the straightforward grammar is allows for ambiguity.

ambiguity A sentence is ambiguous if there is more than one way that it can
be derived by a grammar.

For example, the expression 1-2-3 is ambiguous because it can be parsed in two
ways to create two different abstract syntax trees [TODO: define “parse”]:

Subtract (Number 1) (Subtract (Number 2) (Number 3))
Subtract (Subtract (Number 1) (Number 2)) (Number 3)

TODO: show the parse trees? define “parse tree”

The same abstract syntax can be generated by parsing 1-(2-3) and (1-2)-3.
We know from our training that the second one is the “correct” version, because
subtraction operations are performed left to right. The technical term for this is
that subtraction is left associative. (note that this use of the associative is not
the same as the mathematical concept of associativity.) But the grammar as it’s
written doesn’t contain any information associativity, so it is ambiguous.

Similarly, the expression 1-2*3 can be parsed in two ways:

Subtract (Number 1) (Multiply (Number 2) (Number 2))
Multiply (Subtract (Number 1) (Number 2)) (Number 2)

The same abstract syntax can be generated by parsing 1-(2\emph{3) and
(1-2)}3. Again we know that the first version is the correct one, because
multiplication should be performed before subtraction. Technically, we say that
multiplication has higher precedence than subtraction.

precedence Precedence is an order on grammar rules that defines which rule
should apply first in cases of ambiguity. Precedence rules are applied before
associativity rules.

associativity Associativity specifies whether binary operators are grouped from
the left or the right in order to resolve ambiguity.

The grammar can be adjusted to express the precedence and associativity of the
operators. Here is an example:

Exp : Term { $1 }

Term : Term ’+’ Factor { Add $1 $3 }
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| Term ’-’ Factor { Subtract $1 $3 }
| Factor { $1 }

Factor : Factor ’*’ Primary { Multiply $1 $3 }
| Factor ’/’ Primary { Divide $1 $3 }
| Primary { $1 }

Primary : digits { Number $1 }
| ’-’ digits { Number (- $2) }
| ’(’ Exp ’)’ { $2 }

This grammar works by splitting the Exp non-terminal of the original grammar
into multiple non-terminals, each of which represents a precedence level. The low-
precedence operators + and - are grouped into a Term non-terminal, which allows
addition and subtraction of factors. A Factor non-terminal allows multiplication
and division, but does not allow addition. A Primary non-terminal allows
primitive constructs, including a parenthesized expression, which allows addition
and subtraction to be used under multiplication.

2.2.2.5 Parser Generators

The grammar notation used above is also a language. It is a language of
grammars.

How to create simple grammars using the Happy Parser Generator.

2.3 Evaluating Arithmetic Expressions

The normal meaning assigned to arithmetic expressions is the evaluation of the
arithmetic operators to compute a final answer. This section describes how
to define a simple evaluator as defined in the Simple.zip file. This evaluation
process is defined by cases in Haskell:

evaluate :: Exp -> Int
evaluate (Number i) = i
evaluate (Add a b) = evaluate a + evaluate b
evaluate (Subtract a b) = evaluate a - evaluate b
evaluate (Multiply a b) = evaluate a * evaluate b
evaluate (Divide a b) = evaluate a ‘div‘ evaluate b

In Haskell, the two-argument function div can be used as an infix operator by
surrounding it in back-quotes. Here is a main program that tests evaluation:
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main = do
putStrLn "Evaluating the following expression:"
putStr " "
print t1
putStrLn "Produces the following result:"
putStr " "
print (evaluate t1)

The output is

Evaluating the following expression:
Subtract (Subtract (Number 3) (Number (-2))) (Number (-7))

Produces the following result:
12

TODO: Explain Show

2.3.1 Errors

There are many things that can go wrong when evaluating an expression. In
our current, very simple language, the only error that can arise is attempting to
divide by zero. These examples are given in the Simple zip file. For example,
consider this small expression:

evaluate (parseExp "8 / 0")

In this case, the div operator in Haskell throws a low-level error, which terminates
execution of the program and prints an error message:

*** Exception: divide by zero

As our language becomes more complex, there will be many more kinds of errors
that can arise. For now, we will rely on Haskell to terminate the program when
these situations arise, but in Chapter 5 we will investigate how to manage errors
within our evaluator.

2.4 Object Language and Meta-Language

TODO: talk about meta language: language of study versus language of imple-
mentation. Better words?
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To implement our interpreter we have to deal with two different languages. On
the one hand Haskell is the language being used to implement the interpreter,
and on the other hand a simple language of arithmetic is being defined and
interpreted. The use of two languages can lead to some ambiguity and confusion.
For example when referring to an expression 2 + 3 do we mean an expression of
the implementation language (in this case Haskell), or do we mean an expression
of the language being defined (in this case arithmetic)?

In general it is useful to have different terminology to distinguish the roles of
the two different languages. We say that Haskell is the meta language, whereas
the language of arithmetic is the object language being defined. The term meta-
language is used to denote the language used for the implementation. The term
object language (or just language) is used to denote the language that is the
object of our study, or in other words the language being defined. Using this
terminology allows us to eliminate sources of potential ambiguity. For example
when referring to the meta-language expression 2 + 3, it becomes clear that
what is meant is an expression of the implementation language. Similarly when
referring to the object language expression 2 + 3 what is meant is an expression
of the language being defined. When there is space for potential confusion we will
use this terminology to disambiguate meaning. However, we also want to avoid
being repetitive and overly explicit, especially when it is clear by the context
which of the two meanings is intended. By default it is safe to assume that when
we are not explicit about which of the two languages are we talking about what
we mean is the object language. In other words, when referring to the expression
2 + 3 the default meaning is the object language expression 2 + 3.
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Chapter 3

Variables

Arithmetic expressions often contain variables in addition to constants. In grade
school the first introduction to variables is usually to evaluate an expression
where a variable has a specific value. For example, young students learn to
evaluate x+ 2 where x = 5. The rule is to substitute every occurrence of x with
the value 5 and the perform the required arithmetic computations.

variable A variable is a symbol that refers to a value.

To program this in Haskell, the first thing needed is to extend the abstract
syntax of expressions to include variables. Since the name of a variable “x” can
be represented as a string of characters, it is easy to represent variables as an
additional kind of expression. The code for the section is given in the Substitute
zip file. The following data definition modifies Exp to include a Variable case.

data Exp = Number Int
| Add Exp Exp
| Subtract Exp Exp
| Multiply Exp Exp
| Divide Exp Exp
| Variable String -- added

deriving (Eq, Show)

An association of a variable x with a value v is called a binding, which can be
written x 7→ v.

binding A binding x 7→ v is an association of a variable with its value.

Bindings can be represented in Haskell as a pair. For example, the binding of
x 7→ 5 can be represented as (‘‘x’’, 5).
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3.0.1 Variable Discussion

We are used to calling x and y “variables” without really thinking much about
what it means to be a “variable”. Intuitively a variable is something that varies.
But what does it mean for a name x to vary? My view on this is that we call
them variables because they can have different values in different contexts. For
example, the equation πr2 defines a relationship between several variables, but
in the context of a particular word problem, the radius r has a particular value.
In any particular context, a variable does not vary or change. It has exactly one
value that is fixed and constant within that context. A variable can be bound
to different values in different contexts, but in a given context the binding of a
variable is fixed. In the examples above, the context is indicated by the phrase
“where x = 5”. The same expression, x+ 2 can be evaluated in different contexts,
for example, where x = 7.

This interplay between being constant and being variable can be quite confusing,
especially since variables in most programming languages can change over time.
The process of actually changing a variable’s value over time, within a single
context, is called mutation.

mutation Mutation refers to the ability of a variable or data structure to change
over time.

This seems to be a major difference between programming language variables and
mathematical variables. However, if you think about things in a slightly different
way then it is possible to unify these two apparently conflicting meanings for
“variable”. As a preview, we will keep the idea of variables having a fixed binding,
but introduce the concept of a mutable container that can change over time.
The variable will then be bound to the container. The variable’s binding will
not change (it will remain bound to the same container), but the contents of
the container will change. Mutable variables are discussed in the Section on
Mutable State later in this book. For now, just remember that a variable has a
fixed binding to a value in a given context.

Note that another common use for variables is to define equations or constraints.
In this case, it is normal to use algebraic operations to simplify or solve the
equation to find a value for the variable that satisfies the equation. While
equation solving and constraints are fascinating topics, we will not discuss them
directly here. For our purposes, we will assume that we already know the value
of the variable, and that the problem is to compute a result using that value.

3.1 Substitution

Substitution replaces a variable with a value in an expression. Here are some
examples of substitution:
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• substitute x 7→ 5 in x+ 2 −→ 5 + 2
• substitute x 7→ 5 in 2 −→ 2
• substitute x 7→ 5 in x −→ 5
• substitute x 7→ 5 in x ∗ x+ x −→ 5 ∗ 5 + 5
• substitute x 7→ 5 in x+ y −→ 5 + y

Note that if the variable names don’t match, they are left alone. Given these
data types, the process of substitution can be defined by cases. The following
Haskell function implements this behavior:

substitute1:: (String, Int) -> Exp -> Exp
substitute1 (var, val) exp = subst exp where

subst (Number i) = Number i
subst (Add a b) = Add (subst a) (subst b)
subst (Subtract a b) = Subtract (subst a) (subst b)
subst (Multiply a b) = Multiply (subst a) (subst b)
subst (Divide a b) = Divide (subst a) (subst b)
subst (Variable name) = if var == name

then Number val
else Variable name

The subst helper function is introduced avoid repeating the var and val param-
eters for each of the specific cases of substitution. The var and val parameters
are the same for all substitutions within an expression.

The first case says that substituting a variable for a value in a literal expression
leaves the literal unchanged. The next three cases define substitution on binary
operators as recursively substituting into the sub-expressions of the operator.
The final case is the only interesting one. It defines substitution into a Variable
expression as a choice: if the variable in the expression (name) is the same as
the variable being substituted (var) then the value is the substitution val.

Running a few tests produces the following results:

substitute1 ("x", 5) Add (Variable "x") (Number 2)
==> Add (Number 5) (Number 2)

substitute1 ("x", 5) Number 32
==> Number 32

substitute1 ("x", 5) Variable "x"
==> Number 5

substitute1 ("x", 5) Add (Multiply (Variable "x") (Variable "x")) (Variable "x")
==> Add (Multiply (Number 5) (Number 5)) (Number 5)
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substitute1 ("x", 5) Add (Add (Variable "x") (Multiply (Number 2) (Variable "y"))) (Variable "z")
==> Add (Add (Number 5) (Multiply (Number 2) (Variable "y"))) (Variable "z")

Note that the test case prints the concrete syntax of the expression in square brack-
ets, as [x + 2]. The print format represents the more longwinded abstract syntax
representation of the expression x+2: Add (Variable ‘‘x’’) (Number 2). So
the first expression corresponds to the following piece of real Haskell code:

substitute1 ("x", 5) (Add (Variable "x") (Number 2))
==> [5 + 2]

However it will be useful to us to use the pseudo-code [x+2] instead, since it
can be quite difficult to read abstract syntax directly.

It is important to keep in mind that there are now two stages for evaluating an
expression containing a variable. The first stage is to substitute the variable for
its value, then the second stage is to evaluate the resulting arithmetic expression.

3.2 Multiple Substitution using Environments

There can be multiple variables in a single expression. For example, evaluating
2 ∗ x + y where x = 3 and y = −2. A collection of bindings is called an
environment.

environment An environment is a mapping from variables to values.

Since a binding is represented as a pair, an environment can be represented as a
list of pairs. The environment mentioned above would be

e1 = [ ("x", 3), ("y", -2) ]

The corresponding type is

type Env = [(String, Int)]

An important operation on environments is variable lookup. Variable lookup
is an operation that given a variable name and an environment looks up that
variable in the environment. For example:

• lookup “x” in e1 −→ 3
• lookup “y” in e1 −→ −2
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In each case the corresponding value of the variable being looked up in the
environment is returned. However what happens when a variable that is not in
the environment is looked up?

• lookup “z” in e1 −→ ???

In this case variable lookup fails, and it is necessary to deal with this possibility
by signaling an error or triggering an exception.

unbound variable An unbound variable is a variable that does not have a
binding. Unbound variables are a common form of errors in programs.

Haskell already provides a function, called lookup, that implements the func-
tionality that is needed for variable lookup. The type of lookup is as follows:

lookup :: Eq a => a -> [(a, b)] -> Maybe b

This type is more general than what we need for variable lookup, but we can see
that if a is instantiated to String and b is instantiated to Int, then the type
is almost what we expect: String -> Env -> Maybe Int. The return type of
lookup (Maybe b) deserves a little bit more of explanation. The type Maybe is
part of the Haskell libraries and it is widely used. The definition is as follows:

data Maybe a = Nothing | Just a

The basic intuition is that Maybe is a container that may either contain a value
of type a (Just a) or no value at all (Nothing). This is exactly what we need
for lookup: when lookup succeeds at finding a variable in the environment it
can return the looked-up value v using Just v; otherwise if variable lookup
fails lookup returns Nothing. The Maybe datatype provides us with a way
to deal with lookup-up errors gracefully and later to detect such errors using
pattern-matching to check whether the result was Just v or Nothing.
The substitution function is easily modified to work with environments rather
than single bindings:

substitute :: Env -> Exp -> Exp
substitute env exp = subst exp where

subst (Number i) = Number i
subst (Add a b) = Add (subst a) (subst b)
subst (Subtract a b) = Subtract (subst a) (subst b)
subst (Multiply a b) = Multiply (subst a) (subst b)
subst (Divide a b) = Divide (subst a) (subst b)
subst (Variable name) =

case lookup name env of
Just val -> Number val
Nothing -> Variable name
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The last case is the only one that is different from the previous definition of
substitution for a single binding. It uses the lookup function to search the list of
bindings to find the corresponding value (Just val) or Nothing if the variable
is not found. For the Nothing case, the substitute function leaves the variable
alone.
The test results below show that multiple variables are substituted with values,
but that unknown variables are left intact:

e1 = [ ("x", 3), ("y", -2) ]

substitute e1 Add (Variable "x") (Number 2)
==> Add (Number 3) (Number 2)

substitute e1 Number 32
==> Number 32

substitute e1 Variable "x"
==> Number 3

substitute e1 Add (Multiply (Variable "x") (Variable "x")) (Variable "x")
==> Add (Multiply (Number 3) (Number 3)) (Number 3)

substitute e1 Add (Add (Variable "x") (Multiply (Number 2) (Variable "y"))) (Variable "z")
==> Add (Add (Number 3) (Multiply (Number 2) (Number (-2)))) (Variable "z")

Note that it is also possible to substitute multiple variables one at a time:

substitute1R env exp = foldr substitute1 exp env

The foldr fun init list function applies a given function to each item in a
list, starting with a given initial value.

3.2.1 Local Variables

So far all variables have been defined outside the expression itself. It is also
useful to allow variables to be defined within an expression. Most programming
languages support this capability by allowing definition of local variables.
In C or Java one can define local variables in a declaration:

int x = 3;
return 2 * x + 5;

JavaScript is similar but does not specify the type of the variable:
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var x = 3;
return 2 * x + 5;

Haskell defines local variables with a let expression:

let x = 3 in 2*x + 5

In Haskell let is an expression, because it can be used inside other expressions:

2 * (let x = 3 in x + 5)

Haskell’s where allows a declarative style (vs let’s expressive style) that states an
algorithm in a manner that that assumes equations shall be eventually satisfied.
There are nuanced performance and binding differences between the two, but
most uses are relatively straightforward:

isOdd n = if predicate then t else f
where

predicate = odd n
t = True
f = False

It is also possible to define multiple local variables in Java or C:

int x = 3;
int y = x * 2;
return x + y;

and in Haskell

let x = 3 in let y = x*2 in x + y

which is equivalent to

let x = 3 in (let y = x*2 in x + y)

Since the language we are defining is a subset of JavaScript, we will use its
syntax. In general a variable declaration expression has the following concrete
syntax:
var variable = bound-expression; body

The meaning of a variable declaration expression is to evaluate the bound
expression, then bind the local variable to the resulting value, and then evaluate
the body of the expression
In our Haskell code, a variable declaration expression can be represented by
adding another case to the definition of expressions:
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Figure 3.1: Variable Scope

data Exp = ...
| Declare String Exp Exp

where the string is the variable name, the first Exp is the bound expression and
the second Exp is the body.

3.2.2 Scope

Variables have a range of text in which they are defined.

scope The scope of a variable is the portion of the text of a program in which
a variable is defined.

Normally the scope of a local variable is all of the body of the declaration in
which the variable is defined. However, it is possible for a variable to be redefined,
which creates a hole in the scope of the outer variable:
In this example Figure [Variable Scope] there are two variables named x. Even
though two variables have the same name, they are not the same variable.
TODO: talk about free versus bound variables
TODO: talk about renaming

3.2.3 Substituting into Variable Declarations

When substituting a variable into an expression, care must be taken to correctly
deal with holes in the variable’s scope. In particular, when substituting for x in
an expression, if the expression is of the form var x = e; body then x should be
substituted within e but not in body. Because x is redefined, the body is a hole
in the scope of x.
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substitute1 (var, val) exp = subst exp
...
subst (Declare x exp body) = Declare x (subst exp) body’

where body’ = if x == var
then body
else subst body

In the Declare case for subst, the variable is always substituted into the bound
expression e. But the substitution is only performed on the body b if the variable
var being substituted is not the same as the variable x defined in the variable
declaration.

TODO: need some test cases here

3.2.4 Undefined Variable Errors

With the introduction of variables into our language, a new kind of error can
arise: attempting to evaluate an expression containing a variable that does not
have a value. For example, these expressions all contain undefined variables:

x + 3
var x = 2; x * y
(var x = 3; x) * x

What will happen when these expressions are evaluated? The definition of
evaluate does not include a case for evaluating a variable. This is because
all variables should be substituted for values before evaluation takes place. If
a variable is not substituted then it is undefined. Since no case is defined for
evaluate of a Variable, Haskell terminates the program and prints this error
message:

*** Exception: anatomy.lhs: Non-exhaustive patterns in function evaluate

The fact that a variable is undefined is a static property of the program: whether
a variable is undefined depends only on the text of the program, not upon the
particular data that the program is manipulating. This is different from the
divide by zero error, which depends upon the particular data that the program
is manipulating. As a result, divide by zero is a dynamic error.

static A static property of a program can be determined by examining the text
of the program but without executing or evaluating it.

dynamic A dynamic property of a program can only be determined by evaluat-
ing the program.
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Of course, it might be possible to identify, just from examining the text of a
program, that it will always divide by zero. Alternatively, it may be the case
that the code containing an undefined variable is never executed at runtime.
Thus the boundary between static and dynamic errors is not absolute. The issue
of static versus dynamic properties of programs is discussed in more detail later
(TODO: reference to chapter on Types).

3.2.5 Summary

Here is the full code evaluation using substitution of a language with local
variables.

data Exp = Number Int
| Add Exp Exp
| Subtract Exp Exp
| Multiply Exp Exp
| Divide Exp Exp
| Variable String
| Declare String Exp Exp

substitute1 (var, val) exp = subst exp where
subst (Number i) = Number i
subst (Add a b) = Add (subst a) (subst b)
subst (Subtract a b) = Subtract (subst a) (subst b)
subst (Multiply a b) = Multiply (subst a) (subst b)
subst (Divide a b) = Divide (subst a) (subst b)
subst (Variable name) = if var == name

then Number val
else Variable name

subst (Declare x exp body) = Declare x (subst exp) body’
where body’ = if x == var

then body
else subst body

evaluate :: Exp -> Int
evaluate (Number i) = i
evaluate (Add a b) = evaluate a + evaluate b
evaluate (Subtract a b) = evaluate a - evaluate b
evaluate (Multiply a b) = evaluate a * evaluate b
evaluate (Divide a b) = evaluate a ‘div‘ evaluate b
evaluate (Declare x exp body) =

evaluate (substitute1 (x, evaluate exp) body)
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3.3 Evaluation using Environments

For the basic evaluator substitution and evaluation were completely separate,
but the evaluation rule for variable declarations involves substitution. One
consequence of this rule is that the body of every variable declaration is copied,
because substitution creates a copy of the expression with variables substituted.
When variable declarations are nested, the body of the inner variable declaration
is copied multiple times. In the following example, the expression x * y * z is
copied three times:

var x = 2;
var y = x+1;
var z = y+2;
x*y*z

The steps are as follows:

Step Result
initial expression var x = 2;

var y = x + 1;
var z = y + 2;
x * y * z

evaluate bound expression 2 ⇒ 2
substitute x 7→ 2 in body var y = 2 + 1;

var z = y + 2;
2 * y * z

evaluate bound expression 2 + 1 ⇒ 3
substitute y 7→ 3 in body var z = 3 + 2;

2 * 3 * z
evaluate bound expression 3 + 2 ⇒ 5
substitute z 7→ 5 in body 2 * 3 * 5
evaluate body 2 * 3 * 5 ⇒ 30

While this is a reasonable approach it is not efficient. We have already seen
that multiple variables can be substituted at the same time. Rather than
performing the substitution fully for each variable declaration, instead the
variable declaration can add another binding to the list of substitutions being
performed.

-- Evaluate an expression in an environment
evaluate :: Exp -> Env -> Int
evaluate (Number i) env = i
evaluate (Add a b) env = evaluate a env + evaluate b env
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evaluate (Subtract a b) env = evaluate a env - evaluate b env
evaluate (Multiply a b) env = evaluate a env * evaluate b env
evaluate (Divide a b) env = evaluate a env ‘div‘ evaluate b env
evaluate (Variable x) env = fromJust (lookup x env)
evaluate (Declare x exp body) env = evaluate body newEnv

where newEnv = (x, evaluate exp env) : env

In most cases the environment argument is simply passed unchanged to all
recursive calls to evaluate. But in the final case, for Declare, the environment
does change.

The case for Declare first evaluates the bound expression in the current environ-
ment env, then it creates a new environment newEnv that binds x to the value
of the bound expressions. It then evaluates the body b in the new environment
newEnv.

The Haskell function fromJust raises an exception if its argument is Nothing,
which occurs when the variable named by x is not found in the environment env.
This is where undefined variable errors arise in this evaluator. TODO: define
exception?

The steps in evaluation with environments do not copy the expression:

Environment Evaluation
∅ var x = 2;

var y = x + 1;
var z = y + 2;
x * y * z
evaluate bound expression 2

∅ 2 ⇒ 2
add new binding for x and evaluate body of variable declaration

x 7→ 2 var y = x + 1;
var z = y + 2;
x * y * z
evaluate bound expression x + 1

x 7→ 2 x + 1 ⇒ 3
add new binding for y and evaluate body of variable declaration

y 7→ 3, x 7→ 2 var z = y + 2;
x * y * z
evaluate bound expression y + 2

y 7→ 3, x 7→ 2 y + 2 ⇒ 5
add new binding for z and evaluate body of variable declaration

z 7→ 5, y 7→ 3, x 7→ 2 x * y * z ⇒ 30

In the Declare case of evaluate, a new environment newEnv is created and
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used as the environment for evaluation of the body b.

The new environments add the additional bindings to the front of the list of
environments. Since lookup searches an environment list from left to right,
it will find the most recent enclosing binding for a variable, and ignore any
additional bindings. For example, consider the evaluation of this expression:

var x = 9;
var x = x*x;
x+x

Environment Evaluation
∅ var x = 9; var x = x * x; x + x

evaluate bound expression 9
∅ 9 ⇒ 9

add new binding for x and evaluate body of variable declaration
x 7→ 9 var x = x * x; x + x

evaluate bound expression x * x
x 7→ 9 x * x ⇒ 81

add new binding for x and evaluate body of variable declaration
x 7→ 81, x 7→ 9 x + x ⇒ 162

Note that the environment contains two bindings for x, but only the first one is
used. Having multiple bindings for the same name implements the concept of
‘holes’ in the scope of a variable: when a new binding for the same variable is
added to the environment, the original binding is no longer accessible.

The old environment is not changed, so there is no need to reset or restore the
previous environment. For example, evaluating the following expression creates
to extensions of the base environment

var x = 3;
(var y = 3*x; 2+y) + (var z = 7*x; 1+z)

The first variable declaration creates an environment x 7→ 3 with a single binding.
The next two variable declarations create environments

y 7→ 9, x 7→ 3

z 7→ 21, x 7→ 3

Internally Haskell allows these two environments to share the definition of the
original environment x 7→ 3.

The code for this section is given in the Declare zip file.
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3.4 More Kinds of Data: Booleans and Condi-
tionals

In addition to arithmetic computations, it is useful for expressions to include
conditions and also return different kinds of values. Until now our expressions
have always returned Int results, because they have only performed arithmetic
computations. The code for this section is given in the Int Bool zip file. The
type Value is defined to support multiple different kinds of values:

data Value = IntV Int
| BoolV Bool

deriving (Show, Eq)

Some example values are BoolV True and IntV 3. We will define additional
kinds of values, including functions and lists, later. The names IntV and BoolV
in this type definition are the tags for data variants, while Int and Bool uses
are types that specify what kind of data are associated with that data variant.

The abstract syntax of expressions can now be expanded to include operations
involving booleans. Some examples are 4 < 10 and 3 * 10 = 7. Once booleans
are included in the language, it is possible to define a conditional expression,
with the following concrete syntax:

if ( test ) true-exp else false-exp

A conditional expression allows selection of one of two different values based
on whether a boolean is true or false. Note that a conditional expression is
expected to produce a value. This is different from the conditional statement
found in many languages (most notably C and Java), which executes one of two
blocks but does not produce a value. In these languages, conditional expressions
are written test ? true-exp : false-exp. Haskell, however, only has conditional
expressions of the kind discussed here.

Given a full set of arithmetic operators, some comparison operators (equality
EQ, less than LT, greater than GT, less than or equal LE), plus and, or and not
for booleans, it is useful to generalize the abstract syntax to support a general
notation for binary and unary operators. When an expression includes a value
it is called a literal value. Literals generalize the case of Number used above to
include constants in an arithmetic expression. The conditional expression is
sometimes called a ternary operator because it has three arguments. But since
there is only one ternary operator, and also because a conditional expression
is fairly special, it is included directly as If expression. These changes are
implemented in the following definition for the abstract syntax Exp:

data BinaryOp = Add | Sub | Mul | Div | And | Or
| GT | LT | LE | GE | EQ
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deriving (Show, Eq)

data UnaryOp = Neg | Not
deriving (Show, Eq)

data Exp = Literal Value
| Unary UnaryOp Exp
| Binary BinaryOp Exp Exp
| If Exp Exp Exp
| Variable String
| Declare String Exp Exp

Evaluation is then defined by cases as before. Two helper functions, binary and
unary (defined below), perform the actual computations for binary and unary
operations, respectively.

type Env = [(String, Value)]

-- Evaluate an expression in an environment
evaluate :: Exp -> Env -> Value
evaluate (Literal v) env = v
evaluate (Unary op a) env = unary op (evaluate a env)
evaluate (Binary op a b) env =

binary op (evaluate a env) (evaluate b env)
evaluate (Variable x) env = fromJust (lookup x env)
evaluate (Declare x exp body) env = evaluate body newEnv

where newEnv = (x, evaluate exp env) : env

The conditional expression first evaluates the condition, forces it to be a boolean,
and then evaluates either the then or else expression.

evaluate (If a b c) env =
let BoolV test = evaluate a env in

if test then evaluate b env
else evaluate c env

The binary and unary helper functions perform case analysis on the operator
and the arguments to compute the result of basic operations.

unary Not (BoolV b) = BoolV (not b)
unary Neg (IntV i) = IntV (-i)

binary Add (IntV a) (IntV b) = IntV (a + b)
binary Sub (IntV a) (IntV b) = IntV (a - b)
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binary Mul (IntV a) (IntV b) = IntV (a * b)
binary Div (IntV a) (IntV b) = IntV (a ‘div‘ b)
binary And (BoolV a) (BoolV b) = BoolV (a && b)
binary Or (BoolV a) (BoolV b) = BoolV (a || b)
binary LT (IntV a) (IntV b) = BoolV (a < b)
binary LE (IntV a) (IntV b) = BoolV (a <= b)
binary GE (IntV a) (IntV b) = BoolV (a >= b)
binary GT (IntV a) (IntV b) = BoolV (a > b)
binary EQ a b = BoolV (a == b)

TODO: talk about strictness!

Using the new format, here are the expressions for the test cases given above:

4

# IntV 4

-4 - 6

# IntV (-10)

if (3==6) -2 else -7

# IntV (-7)

3*(8 + 5)

# IntV 39

3 + 8 * 2

# IntV 19

In addition, new expressions can be defined to test conditional expressions:

if (3 > 3*(8 + 5)) 1 else 0

# IntV 0

2 + (if (3 <= 0) 9 else -5)

# IntV (-3)
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3.4.1 Type Errors

Now that our language supports two kinds of values, it is possible for an expression
to get type errors. A type error occurs when evaluation of an expression attempts
to perform an operation but one or more of the values involved are not of the
right type. For example, attempting to add an integer and a boolean value, as
in 3 + True, leads to a type error.
In our Haskell program, type errors exhibit themselves in the binary and unary
functions, which match certain legal patterns of operations, but leave illegal
combinations of operations and arguments undefined. Attempting to evaluate
3 + True results in a call to binary Add (IntV 3) (BoolV True), which is
not one of the patterns handled by the binary function. As a result, Haskell
generates a Non-exhaustive pattern error:

Main> evaluate [] (parseExp "3 + true")
*** Exception: Non-exhaustive patterns in function binary

Here are some examples of expression that generate type errors:

if (true) 5 else 8

# IntV 5

3 + true

# Error: Value.hs:(19,1)-(29,47): Non-exhaustive patterns in function binary

3 || true

# Error: Value.hs:(19,1)-(29,47): Non-exhaustive patterns in function binary

-true

# Error: Value.hs:(16,1)-(17,31): Non-exhaustive patterns in function unary

Running these tests produce error messages, but the errors are not very descriptive
of the problem that actually took place.
We will discuss techniques for preventing type errors later, but for now it is
important to realize that programs may fail at runtime.

Assignment 1: Basic Interpreter

Extend the parser and interpreter of Section on Evaluating Using Environments
to allow multiple bindings in a variable binding expression. For example,
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var x = 3, y = 9;
x * y

The abstract syntax of the Exp language with multiple bindings can be expressed
by changing the Declare rule to support a list of pairs of strings and expressions:

data Exp = ...
| Declare [(String, Exp)] Exp

If a Declare expression has duplicate identifiers, your program must signal an
error. It is legal for a nested Declare to reuse the same name. Two examples:

var x = 3, x = x + 2; x*2 -- illegal
var x = 3; var x = x + 2; x*2 -- legal

The meaning of a var declaration is that all of the expressions associated with
variables are evaluated first, in the environment before the var is entered. Then
all the variables are bound to the values that result from those evaluations. Then
these bindings are added to the outer environment, creating a new environment
that is used to evaluate the body of the var declaration. This means that the
scope of all variables is the body of the var in which they are defined.

Note that a multiple declare is not the same as multiple nested declares. For
examle,

var a = 3; var b = 8; var a = b, b = a; a + b -- evaluates to 11
var a = 3; var b = 8; var a = b; var b = a; a + b -- evaluates to 16

You must write and include test cases that amply exercise all of the code you’ve
written.

You can assume that the inputs are valid programs and that your program may
raise arbitrary errors when given invalid input.

Here is an example test case:

var a = 2, b = 7; (var m = 5 * a, n = b - 1; a * n + b / m) + a

The previous version of this example contained an unbound use of the variable m:

var a = 2, b = 7; (var m = 5 * a, n = m - 1; a * n + b / m) + a

The code that you must modify is given in the Declare.zip file.
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Chapter 4

Functions

Functions are familiar to any student of mathematics. The first hint of a function
in grade school may be some of the standard operators that are introduced early
in the curriculum. Examples include absolute value | x | and square root

√
x.

The concept of a function is also implicit in the standard equation for a line
y = mx+ b. Trigonometry introduces the standard functions sin(a) and cos(a)
to support computation on angles. While these operators use more traditional
function syntax, they are still considered predefined computations, much like
absolute value or square root. However, the concept of a function as an explicit
object of study is not usually introduced until calculus.

Programming languages all support some form of function definition. A function
allows a computation to be written down once and reused many times.

So while you might already have a good grasp of what functions do, there’s
a good chance that the more abstract question of what functions are remains
unanswered. In order to help you answer this question, first we will implement
the ability to evaluate a restricted subset of functions called Top-Level Functions
in our developing language. Then, to help you actually answer the question of
what a function is, we will explore the idea of functions as first-class values in a
programming language.

4.1 Top-Level Function Definitions

Some programming languages, including C and ACL2, allow functions to be
defined only at the top level of the program. The “top level” means outside of
any expression. In this case, the program itself is a list of function definitions
followed by a main expression. The main expression in a C program is an implicit
call to a function named main. Even if a programming language does support
more flexible definition of functions, top-level functions are quite common. The
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code for this section is given in the Top Level Functions zip file. Here is an
example of some top-level functions, written in JavaScript:

// compute n raised to the m-th power
function power(n, m) {

if (m == 0)
return 1;

else
return n * power(n, m - 1);

}

function main() {
return power(3, 4);

}

This code is written in JavaScript. It resembles C or Java, but without types. Our
expression language does not need return statements, because every expression
automatically returns a value. A similar program can be written in Haskell, also
without return statements:

power(n, m) =
if (m == 0) then

1
else

n * power(n, m - 1)

main =
print (power(3, 4))

These examples provides an outline for the basic concrete syntax of a function:

function name(parameter, . . . , parameter) body-expression

The exact syntax varies from language to language. Some languages begin with
a keyword function or def. Other languages require brackets { ... } around the
body of the function. These functions are less powerful than Haskell, because
they take a simple parameter list rather than a full pattern. But this simple
form of function defined above captures the essence of function definition in
many languages.

A call to a function is an expression that has the following concrete syntax:

name(expression, . . . , expression)

Again, there are some variations on this theme. For example, in Haskell the
parentheses are optional.
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A program is a sequence of function definitions, followed by a main expression.
Each function definition has a list of parameter names and a body expression.
The following data type definitions provide a means to represent such programs:

type FunEnv = [(String, Function)]
data Function = Function [String] Exp

A list of function definitions is a function environment. This list represents a list
of bindings of function names to function definitions.

A program is then a function environment together with a main expression:

data Program = Program FunEnv Exp

Any of the expressions can contain calls to the top-level functions. A call has a
function name and a list of actual argument expressions:

data Exp = ...
| Call String [Exp]

As an example, here is an encoding of the example program:

function power(n, m) {
if (m == 0)

1
else

n * power(n, m - 1)
}

power(3, 4)
=>> IntV 81

4.1.1 Evaluating Top-Level Functions

A new function, execute, runs a program. It does so by evaluating the main
expression in the context of the programs’ function environment and an empty
variable environment:

execute :: Program -> String
execute (Program funEnv main) = show (evaluate main [] funEnv)

The evaluator is extended to take a function environment funEnv as a additional
argument.
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evaluate :: Exp -> Env -> FunEnv -> Value

All the cases of evaluation are the same as before, except for the new case for
calling a function:

evaluate (Call fun args) env funEnv = evaluate body newEnv funEnv
where Function xs body = fromJust (lookup fun funEnv)

newEnv = zip xs [evaluate a env funEnv | a <- args]

Evaluation of a call expression performs the following steps:

1. Look up the function definition by name lookup fun funEnv, to get the
function’s parameter list xs and body.

2. Evaluate the actual arguments [evaluate a env funEnv | a <- args]
to get a list of values

3. Create a new environment newEnv by zipping together the parameter
names with the actual argument values.

4. Evaluate the function body in the new environment newEnv

TODO: work out an example to illustrate evaluation of functions?

The only variables that can be used in a function body are the parameters of
the function. As a result, the only environment needed to evaluate the function
body is the new environment created by zipping together the parameters and
the actual arguments.

The evaluator now takes two environments as input: one for functions and one
for normal variables. A given name is always looked up in one or the other of
these two environments, and there is never any confusion about which place to
look. The certainty about where to look up a name comes from the the fact that
the names appear in completely different places in the abstract syntax:

data Exp = ...
| Variable String -- variable name
| Call String [Exp] -- function name

A variable name is tagged as a Variable and a function name appears in a Call
expression.

Because the names of function and the names of variables are completely distinct,
they are said to be in different namespaces. The separation of the variable and
function namespace is clear in the following (silly) example:

function pow(pow)
if pow <= 0 then
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2
else (

var pow = pow(pow - 1);
pow * pow(pow - 2)

)

This is the same as the following function, in which variables are renamed to be
less confusing:

function pow(a)
if a <= 0 then

2
else (

var b = pow(a - 1);
b * pow(b - 2)

)

When renaming variables, the functions are not renamed. This is because
functions and variables are in separate namespaces.

Another consequence of the separation between variable and function namespaces
is that functions can not be passed as arguments to other functions, or returned
as values from functions. In the expression pow(pow) the two uses of pow are
completely distinct. This is analogous to the concept of a homonym in natural
languages. The exact same word has two completely different meanings, which
are distinguished only by context. English has many homonyms, including ‘stalk’
and ‘left’. In our expression language, the first pow must mean the function
because it appears in front of a parenthesis where a function name is expected,
while the second pow must be a variable because it appears where an expression
is expected.

In this language functions are not values. When something is treated specially in
a programming language, so that it cannot be used where a any value is allowed,
it is called second class.

It is worth noting that many of the example functions presented above, includ-
ing power and pow, are recursive. Recursion is possible because the function
definitions can be used in any expression, including in the body of the functions
themselves. This means that all functions have global scope.

4.1.2 Summary

Here is the full code for the evaluator supporting top-level functions definitions,
taken from the Top Level Functions zip file.
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data Exp = Literal Value
| Unary UnaryOp Exp
| Binary BinaryOp Exp Exp
| If Exp Exp Exp
| Variable String
| Declare String Exp Exp
| Call String [Exp]

deriving Show

evaluate :: Exp -> Env -> FunEnv -> Value
evaluate (Literal v) env funEnv = v

evaluate (Unary op a) env funEnv =
unary op (evaluate a env funEnv)

evaluate (Binary op a b) env funEnv =
binary op (evaluate a env funEnv) (evaluate b env funEnv)

evaluate (If a b c) env funEnv =
let BoolV test = evaluate a env funEnv in

if test then evaluate b env funEnv
else evaluate c env funEnv

evaluate (Variable x) env funEnv = fromJust (lookup x env)

evaluate (Declare x exp body) env funEnv =
evaluate body newEnv funEnv

where newEnv = (x, evaluate exp env funEnv) : env

evaluate (Call fun args) env funEnv = evaluate body newEnv funEnv
where Function xs body = fromJust (lookup fun funEnv)

newEnv = zip xs [evaluate a env funEnv | a <- args]

4.2 First-Class Functions

In the Section on Top-Level Functions, function definitions were defined using
special syntax and only at the top of a program. The function names and the
variable names are in different namespaces. One consequence of this is that
all the expressive power we have built into our language, for local variables,
conditionals and even functions, does not work for creating function themselves.
If you believe that functions are useful for writing reusable computations, as
suggested above, then it should be useful to use functions to create and operate
on functions. In this section we rework the concept of functions presented above
to integrate them into the language, so that functions are first-class values.
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first-class values A first-class value is a value that can be used like any other
value. A value is first class if it can be passed to functions, returned from
functions, and stored in a variable binding.

Consider the following function definition:

f(x) = x * 2

The intent here is to define f, but it doesn’t really say what f is, it only says
what f does when applied to an argument. A true definition for f would have
the form f = \ldots.

Finding a value for f is related the idea of solving equations in basic algebra.
For example, consider this equation:

x2 = 5

This means that x is value that when squared equals 5. We can solve this
equation to compute the value of x:

x =
√

5

But this involved creating a new concept, the square root of a number. We know
we have a solution for a variable when the variable appears by itself on the left
side of an equation.

The function definition f(x) = x * 2 is similar. It means that f is a function
that when applied to an argument x computes the value x * 2. But we don’t
have a solution for f, because f does not appear on the left side of an equation
by itself. To ‘solve for f’ we need some new notation, just the way that the
square root symbol

√
x was introduced to represent a new operation.

4.2.1 Lambda Notation

The standard solution is to use a lambda expression, or function expression,
which is a special notation for representing a function. Here is a solution for f
using a lambda:

f = λx. x * 2

The symbol λ is the greek letter lambda. Just like the symbol
√
x, λ has no

inherent meaning, but is assigned a meaning for our purposes.

lambda or function expression A lambda expression is an expression that
creates a function. The general form of a function expression is:
λ variable . body
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This represents a function with parameter variable that computes a result defined
by the body expression. The variable may of course be used within the body. In
other words, variable may be free in body, but variable is bound (not free) in λ
variable . body. A function expression is sometimes called an abstraction or a
function abstraction (we).

Thus f = λx. x * 2 means that f is defined to be a function of one parameter
x that computes the result x * 2 when applied to an argument. One benefit
of function expressions is that we don’t need special syntax to name functions,
which was needed in dealing with top-level functions. Instead, we can use the
existing variable declarations to name functions, because functions are just
another kind of value.

Lambda notation was invented in 1930s by Alonzo Church, who was investigating
the foundations of functions. Lambda notation is just one part of the lambda
calculus, which is an extremely elegant analysis of functions. Lambda calculus
has had huge influence on programming languages. We will study the lambda
calculus in more detail in a later section, but the basic concepts are introduced
here.

4.2.1.1 Using Lambdas in Haskell

Haskell is based directly on the lambda calculus. In fact, the example illustrating
how to “solve” for the function f can be written in Haskell. The Examples zip
file contains the code for the simples examples in this section, and the more
complex examples given in the subsections below. The following definitions are
all equivalent in Haskell:

f(x) = x * 2
f x = x * 2
f = \x -> x * 2

The last example uses Haskell’s notation for writing a lambda expression. Because
λ is not a standard character on most keyboards (and it is not part of ASCII),
Haskell uses an ASCII art rendition of λ as a backslash \. The dot used in a
traditional lambda expression is replaced by ASCII art -> for an arrow. The
idea is that the function maps from x to its result, so an arrow makes some
sense.

The concept illustrated above is an important general rule, which we will call
the Rule of Function Arguments:

name var = body ≡ name = \var -> body

A parameter can always be moved from the left of an equality sign to the right.
Haskell programmers prefer to write them on the left of the equals if possible,
thus avoiding explicit use (and somewhat ugly ASCII encoding) of lambdas.
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Technically in Haskell the var can be any pattern, but for now we will focus on
the case where the pattern is just a single variable. (TODO: see later chapter?)
Since every function definition in Haskell is implicitly a lambda expression, you
have already been using lambdas without realizing it. As the old dishwashing
soap commercial said “You are soaking in it.”

4.2.2 Function Calls

A function call in Haskell is represented by placing one expression next to
another expression. Placing two expressions next to each other is sometimes
called juxtaposition. It is useful to think of juxtaposition as an operator much
like +. The only difference is that juxtaposition is the invisible operator. In
other words, just as n+m means addition, f n means function call. This is not to
say that the space character is an operator, because the space is only needed to
separate the two characters, which otherwise would be a single symbol fn. It
is legal to add parenthesis, yielding the more traditional function call syntax,
f(n), just as it is legal (but useless) to add parentheses to n+(m). A function
call in Haskell can also be written as (f)n or (f)(n). There are no spaces in
these examples, but they do exhibit juxtaposition of two expressions.1

Haskell has the property that definitions really are equations, so that it is legal to
substitute f for \x -> x * 2 anywhere that f occurs. For example, we normally
perform a function call f(3) by looking up the definition of f and then evaluating
the body of the function in the normal way. However, it is also legal to substitute
f for its definition.

-- version A
f(3)

In this form, the function f is applied to the argument 3. The expression f(3)
is called a function application. In this book I use “function call” and “function
application” interchangeably.

-- version B
(\x -> x * 2)(3)

The A and B versions of this expression are equivalent. The latter is a juxta-
position of a function expression \x -> x * 2 with its argument, 3. When a
function expression is used on its own, without giving it a name, it is called an
anonymous function.

1Church’s original presentation of the lambda calculus followed the mathematical convention
that all variables were single characters. Thus xy means a function call, x y, just as xy is taken
to mean x * y in arithmetic expressions. Normally in computer science we allow variables
to have long names, so xy would be the name of a single variable. We don’t like it when foo
means f o o, which in Haskell means (f(o))(o).
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The Rule of Function Invocation says that applying a function expression to an
argument is evaluated by substituting the argument in place of the function’s
bound variable everywhere it occurs in the body of the function expression.
Rule of Function Invocation (informal):
(λ var . body ) arg evaluates to body with arg substituted for var
For now this is an informal definition. We will make it more precise when we
write an evaluator that handles function expressions correctly.

4.3 Examples of First-Class Functions

Before we begin a full analysis of the semantics of first-class functions, and
subsequently implementing them in Haskell, it is useful to explore some examples
of first-class functions. Even if you have used first-class functions before, you
might find these examples interesting.

4.3.1 Function Composition

One of the simplest examples of a using functions as values is defining a general
operator for function composition. The composition f ◦ g of two functions f and
g is a new function that first performs g on an input, then performs f on the
result. Composition can be defined in Haskell as:

compose f g = \x -> f(g x)

The two arguments are both functions, and the result of composition is also a
function. The type of compose is

compose :: (b -> c) -> (a -> b) -> (a -> c)

As an example of function composition, consider two functions that operate on
numbers:

square n = n * n
mulPi m = pi * m

Now using composition we can define a function for computing the area of a
circle, given the radius:

areaR = compose mulPi square

To compute the area given the diameter, we can compose this function with a
function that divides by two:

areaD = compose areaR (\x -> x / 2)
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4.3.2 Mapping and List Comprehensions

One of the earliest and widely cited examples of first class functions is in the
definition of a map function, which applies a function to every element of a list,
creating a new list with the results.

For example, given the standard Haskell function negate that inverts the sign
of a number, it is easy to quickly negate a list of numbers:

map negate [1, 3, -7, 0, 12]
-- returns [-1, -3, 7, 0, -12]

The map function takes a function as an argument. You can see that map takes a
function argument by looking at its type:

map :: (a -> b) -> [a] -> [b]

The first argument a -> b is a function from a to b where a and b are arbitrary
types.

Personally, I tend to use list comprehensions rather than map, because list
comprehensions give a nice name to the items of the list. Here is an equivalent
example using comprehensions:

[ negate n | n <- [1, 3, -7, 0, 12] ]
-- returns [-1, -3, 7, 0, -12]

A function that takes another function as an input is called a higher-order
function. Higher-order functions are quite useful, but what I find even more
interesting are functions that return functions as results.

The comprehensions used earlier in this document could be replaced by invoca-
tions of map:

[evaluate a env | a <- args] ≡ map (\a -> evaluate a env) args

TODO: is a function that returns a function also called higher order?

4.3.3 Representing Environments as Functions

In Chapter 1, an environment was represented as a list of bindings. However,
it is often useful to consider the behavior of a concept rather than its concrete
representation. The purpose of a environment is to map variable names to values.
A map is just another name for a function. Thus it is very reasonable to think of
an environment as a function from names to values. Consider the environment

52



type EnvL = [(String, Value)]
envL1 = [("x", IntV 3), ("y", IntV 4), ("size", IntV 10)]

Since environments always have a finite number of bindings, it is more precise
to say that an environment is a partial function from names to values. A partial
function is one that produces a result for only some of its inputs. One common
way to implement partial functions in Haskell is by using the Maybe type, which
allows a function to return a value (tagged by Just) or Nothing. Here is an
implementation of the same environment as a function:

type EnvF = String -> Maybe Value

envF1 "x" = Just (IntV 3)
envF1 "y" = Just (IntV 4)
envF1 "size" = Just (IntV 10)
envF1 _ = Nothing

Looking up the value of a variable in either of these environments is quite
different:

x1 = lookup "x" envL1
x2 = envF1 "x"

The lookup function searches a list environment envL1 for an appropriate
binding. An functional environment envF1 is applied to the name to get the
result. One benefit of the function environment is that we don’t need to know
how the bindings are represented. All we need to do is call it to get the desired
answer.2 There is no need to use a lookup function, because the functional
environment is the lookup function.

The only other thing that is done with an environment is to extend it with
additional bindings. Let’s define bind functions that add a binding to an
environment, represented as lists or functions. For lists, the bindL function
creates a binding (var, val) and then prepends it to the front of the list:

bindL :: String -> Value -> EnvL -> EnvL
bindL var val env = (var, val) : env

Since lookup searches lists from the front, this new binding can shadow existing
bindings.

2This kind of behavioral representation will come up again when we discuss object-oriented
programming.
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envL2 = bindL "z" (IntV 5) envL1
-- [("z", IntV 5), ("x", IntV 3), ("y", IntV 4), ("size", IntV 10)]
envL3 = bindL "x" (IntV 9) envL1
-- [("x", IntV 9), ("x", IntV 3), ("y", IntV 4), ("size", IntV 10)]

To extend an environment expressed as a partial function, we need to write a
higher-order function. A higher-order function is one that takes a function as
input or returns a function as an result. The function bindF takes an EnvF as
an input and returns a new EnvF.

bindF :: String -> Value -> EnvF -> EnvF

Expanding the definition of EnvF makes the higher-order nature of bindF clear:

bindF :: String -> Value -> (String -> Maybe Int) -> (String ->
Maybe Int)

The definition of bindF is quite different from bindL:

bindF var val env = \testVar -> if testVar == var
then Just val
else env testVar

Understanding how this function works takes a little time. The first thing to keep
in mind is that env is a function. It is a function representing an environment,
thus it has type EnvF = String -> Maybe Int. The other arguments, var and
val are the same as for bindL: a string and an integer.

The second thing to notice is that the return value (the expression on the right
side of the = sign) is a function expression \testVar -> \ldots. That means the
return value is a function. The argument of this function is named testVar and
the body of the function is a conditional expression. The conditional expression
checks if testVar is equal to var. It returns val if they are equal, and otherwise
it calls the function env with testVar as an argument.

The key to understanding how this works is to keep in mind that there are two
very different times or contexts involved in bindF. The first time is when an
environment is being extended with a new binding. At this time the arguments
var, val, and env are determined. The second important time is when the
newly extended environment is searched for a particular variable. This is when
testVar is bound. Since the environment can be searched many times, testVar
will be bound many times. Consider a specific example:

-- version A
envF2 = bindF "z" (IntV 5) envF1

54



Let’s execute this program manually. The call to bindF has three arguments,
creating these bindings: var 7→ ‘‘z’’, val 7→ 5, env 7→ envF1. Substituting
these bindings into the definition of bindF gives

-- version B
envF2 = \testVar -> if testVar == "z"

then Just (IntV 5)
else envF1 testVar

This makes more sense! It says that envF2 is a function that takes a variable
name as an argument. It first tests if the variable is named z and if so it returns
5. Otherwise it returns what envF1 returns for that variable. Another way to
write this function is

-- version C
envF2 "z" = Just (IntV 5)
envF2 testVar = envF1 testVar

These two versions are the same because of the way Haskell deals with functions
defined by cases: it tries the first case (argument == ‘‘z’’), else it tries the
second case. Since bindF tests for the most recently bound variable first, before
calling the base environment, variables are properly shadowed when redefined.

It is also useful to consider the empty environment for both list and function
environments.

emptyEnvL :: EnvL
emptyEnvL = []

emptyEnvF :: EnvF
emptyEnvF = \var -> Nothing

The empty function environment emptyEnvF is interesting: it maps every variable
name to Nothing.

In conclusion, functions can be used to represent environments. This example
illustrates passing a function as an argument as well as returning a function as a
value. The environment-based evaluators for expressions and top-level functions
could be easily modified to use functional environments rather than lists of
bindings. For example, the environment-based evaluation function becomes:

-- Evaluate an expression in a (functional) environment
evaluateF :: Exp -> EnvF -> Value
evaluateF (Literal v) env = v

55



evaluateF (Unary op a) env =
unary op (evaluateF a env)

evaluateF (Binary op a b) env =
binary op (evaluateF a env) (evaluateF b env)

evaluateF (Variable x) env =
fromJust (env x) -- changed

evaluateF (Declare x exp body) env =
evaluateF body newEnv

where newEnv = bindF x (evaluateF exp env) env -- changed

The result looks better than the previous version, because it does not have
spurious references to list functions lookup and :, which are a distraction from
the fundamental nature of environments as maps from names to values. It is
still OK to think of environments as ‘data’, because functions are data and this
function is being used to represent an environment. In this case it is a functional
representation of data. In the end, the line between data and behavior is quite
blurry.

TODO: define “shadow” and use it in the right places.

4.3.4 Multiple Arguments and Currying

Functions in the lambda calculus always have exactly one argument. If Haskell
is based on Lambda calculus, how should we understand all the functions we’ve
defined with multiple arguments? The answer is surprisingly subtle. Let’s
consider a very simple Haskell function that appears to have two arguments:

add a b = b + a

The Rule of Function Arguments for Haskell says that arguments on the left of
a definition are short-hand for lambdas. The b argument can be moved to the
right hand side to get an equivalent definition:

add a = \b -> b + a

Now the a argument can also be moved. We have now “solved” for add:

add = \a -> \b -> b + a

It’s useful to add parentheses to make the grouping explicit:
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add = \a -> (\b -> b + a)

What this means is that add is a function of one argument a whose return
value is the function \b -> b + a. The function that is returned also takes one
argument, named b, and finally returns the value of b + a. In other words, a
function of two arguments is actually a function that takes the first argument and
returns a new function that takes the second argument. Even for this simplest
case Haskell uses a function returning a function!

One consequence of this arrangement is that it is possible to apply the add
function to the arguments one at a time. For example applying add to just one
argument returns a new function:

inc = add 1 -- \b. b + 1
dec = add (-1) -- \b. b + (-1)

These two functions each take a single argument. The first adds one to its
argument. The second subtracts one. Here are two examples that use the
resulting functions:

eleven = inc 10
nine = dec 10

To see how the definition of inc works, we can analyze the function call add 1
in more detail. Replacing add by its definition yields:

inc = (\a -> (\b -> b + a)) 1

The Rule of Function Invocation says that in this situation, a is substituted for
1 in the body \b -> b + a to yield:

inc = \b -> b + 1

Which is the same (by the Rule of Function Arguments) as:

inc b = b + 1

One way to look at what is going on here is that the two arguments are split
into stages. Normally both arguments are supplied at the same time, so the
two stages happen simultaneously. However, it is legal to perform the stages at
different times. After completing the first stage to create an increment/decrement
function, the new increment/decrement function can be used many times.

inc 5 + inc 10 + dec 20 + dec 100
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(remember that this means (inc 5) + (inc 10) + (dec 20) + (dec 100))

Separation of arguments into different stages is exactly the same technique used
in the section on representing environments as functions. The bindF function
takes three arguments in the first stage, and then returns a function of one
argument that is invoked in a second stage. To make it look nice, the first three
arguments were listed to the left of the = sign, while the last argument was
placed to the right as an explicit lambda. However, this choice of staging is just
the intended use of the function. The function could also have been defined as
follows:

bindF var val env testVar = if testVar == var
then Just val
else env testVar

The ability to selectively stage functions suggests a design principle for Haskell
that is not found in most other languages: place arguments that change most
frequently at the end of the argument list. Conversely, arguments that change
rarely should be placed early in the argument list.

It is also possible to convert between functions that take multiple arguments
and chains of functions taking one argument. The standard way to represent
multiple arguments in Haskell is with a tuple, or a collection of values. One
simple case of a tuple is a pair. For example, here are two pairs:

(3, 5)
("test", 99)

A Haskell function that takes a tuple as an argument resembles functions in
most other programming languages:

max(a, b) = if a > b then a else b

But in Haskell this is really just a function taking one argument, which is pattern
matched to be a tuple, in this case a pair that binds a to the first component
and b to the second component. This function performs that same computation
as the standard max function, which is a function that takes a single argument
and returns a function that takes the second argument,

max a b = if a > b then a else b

which is equivalent to

max = \a -> \b -> if a > b then a else b
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Note that multiple functions can be represented in a lambda expression as well:

max = \a b -> if a > b then a else b -- equivalent to above definition

currying The process of converting from a function taking a tuple to a chain
of functions that take one argument at a time is called currying.

A curry function is a higher-order function that performs this operation:

curry2 f = \a b -> f(a, b)

The function curry2 converts a function f that takes a pair to a new function
that takes one argument and returns a function that takes the second argument.
A function that takes a 3-tuple and converts it to curryied form can also be
defined:

curry3 f = \a b c -> f(a, b, c)

In Haskell it is not possible to take a arbitrary length tuple and curry it. It is
possible to write uncurry functions that perform that opposite transformation,
from a function with multiple arguments to a function with a single tuple
argument:

uncurry2 f = \(a, b) -> f a b
uncurry3 f = \(a, b, c) -> f a b c

uncurrying The process of converting from a chain of functions that take one
argument at a time into a function that takes a single tuple argument is
called uncurrying.

4.3.5 Church Encodings

Other kinds of data besides environments can be represented as functions. These
examples are known as Church encodings.

4.3.5.1 Booleans

Booleans represent a choice between two alternatives. Viewing the boolean itself
as a behavior leads to a view of a boolean as a function that chooses between
two options. One way to represent a choice is by a function with two arguments
that returns one or the other of the inputs:
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true x y = x
false x y = y

The true function returns its first argument. The false function returns its sec-
ond argument. For example true 0 1 returns 0 while false ‘‘yes’’ ‘‘no’’
returns ‘‘no’’. One way to write the type for booleans is a generic type:

type BooleanF = forall a. a -> a -> a
true :: BooleanF
false :: BooleanF

Things get more interesting when performing operations on booleans. Negation
of a boolean b returns the result of applying b to false and true. If b is true
then it will return the first argument, false. If b is false then it will return the
second argument, true.

notF :: BooleanF -> BooleanF
notF b = b false true

The unary function not is a higher-order function: it takes a functional boolean
as an input and returns a functional boolean as a result. We can also define
binary operations on booleans:

orF :: BooleanF -> BooleanF -> BooleanF
orF a b = a true b

The behavior of “or” is to return true if a is true, and return b if a is false. It
works by calling a as a function, passing true and b as arguments.

andF :: BooleanF -> BooleanF -> BooleanF
andF a b = a b false

You get the idea. Calling a with b and false as arguments will return b if a is
true and false otherwise.

To use a Church boolean, the normal syntax for if expressions is completely
unnecessary. For example,

if not True then 1 else 2

is replaced by

(notF true) 1 2
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This code is not necessarily more readable, but it is concise. In effect a Church
boolean is an if expression: it is a function that chooses one of two alternatives.

Church Boolean A Church Boolean is a encoding of a boolean value as a
function of two arguments, which returns the first argument for true, and
the second argument for false.

4.3.5.2 Natural Numbers

Natural numbers can also be represented functionally. The Church encoding
of natural numbers is known as Church Numerals. The idea behind Church
Numerals is related to the Peano axioms of arithmetic. The Peano axioms define
a constant 0 as the first natural number and a successor function, succ. succ
takes a natural number and returns the next natural number. For example,

1 = succ(0)

2 = succ(1) = succ(succ(0))

3 = succ(2) = succ(succ(succ(0)))

n = succn(0)

The last equation uses the notation succn, which means to apply the successor
function n times. Basic arithmetic can be carried out by applying the following
relations.

fn+m(x) = fn(fm(x))

fn∗m(x) = (fn)m(x)

Functionally, we can represent the Church numerals as functions of two arguments,
f and x. Thus, a Church numeral is a function, not a simple value like 0 or 1.
The Church numeral 0 applies f zero times to x. Similarly, 1 applies f once to x.

zero = \f -> \x -> x
one = \f -> \x -> f x
two = \f -> \x -> f (f x)
three = \f -> \x -> f (f (f x))

succ = \n -> (\f -> \x -> f (n f x))

Note that f and x have no restrictions. To demonstrate Church numerals, let us
evaluate three by setting f to the successor function (+1) and x to 0.

three (+1) 0 ==> 3
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To further demonstrate the flexibility, suppose we want our Church numerals
to start with [] as the base value, and our successor function to append the
character ‘A’ to the beginning of the list.

three (’A’:) [] ===> "AAA"

In Haskell we can write the generic type for Church numerals as

type ChurchN = forall a. (a -> a) -> a -> a

If we are given a Haskell Integer, we can represent the equivalent Church
numeral with the following Haskell definition.

church :: Integer -> ChurchN
church 0 = \f -> \x -> x
church n = \f -> \x -> f (church (n-1) f x)

To retrieve the Integer value of a Church numeral, we can evaluate the lambda
using the usual successor and base value.

unchurch :: ChurchN -> Integer
unchurch n = n (+1) 0
-- 5 == (unchurch (church 5)) -- this evaluates to True

We define addition and multiplication in Haskell by using the above arithmetic
relations.

plus :: ChurchN -> ChurchN -> ChurchN
plus n m = \f -> \x -> n f (m f x)
mul :: ChurchN -> ChurchN -> ChurchN
mul n m = \f -> n (m f)

We can use these functions to produce simple arithmetic equations.

x = church 10
y = church 5
z = church 2
a = plus x (mul y z) -- is equivalent to church 20
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4.3.6 Relationship between Declarations and Functions

TODO: prove that var x = e; b is equivalent to (λx.b)e

The variable declaration expression in our language is not necessary, because a
var can be simulated using a function. In particular, any expression var x =
e; b is equivalent to (function(x) { b })e.

The expression var x = e; b binds value of e to the variable x for use in the
body, b. The creation of bindings in a var statement is equivalent to the bindings
created from arguments provided to a function. So, if a function was defined as:
foo = function(x) { b } Calling foo(e) is equivalent to var x = e; b. So, a
var statement is another rewording of a lambda function that takes a certain
argument binding before interpreting the body.

4.3.7 Others

There are many other uses of first-class functions, including callbacks, event
handlers, thunks, continuations, etc.

4.4 Evaluating First-Class Functions using En-
vironments

It’s now time to define the syntax and semantics of a language with first-class
functions. Based on the examples in the previous section, some features are no
longer needed. For example, variable declaration expressions are not needed
because they can be expressed using functions. Functions only need one argument,
because multi-argument functions can be expressed by returning functions from
functions.

Evaluation of first-class functions (lambdas) is complicated by the need to
properly enforce lexical scoping rules.

lexical scope Lexical scope means that a variable refers to the closest enclosing
definition of that variable.

4.4.1 A Non-Solution: Function Expressions as Values

The first idea for achieving “functions are values” is to make function expressions
be values. It turns out that this “solution” does not really work. The reason
I spend so much time discussing an incorrect solution is that understanding
why the obvious and simple solution is wrong helps to motivate and explain the
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correct solution. This section is colored red to remind you that the solution
it presents is incorrect. The correct solution is given in the next section, on
closures. The code for the incorrect solution mentioned here is in the Incorrect
Functions zip file.

To try this approach, function expressions are included in the Value data type,
which allows functions appears a literal values in a program:

data Value = ...
| Function String Exp -- new

deriving Eq

The two components of a function expression Function are the bound variable
String and the body expression Exp. This new kind of value for functions looks
a little strange. Its not like the others.

We normally think of values as things that a simple data, like integers, strings,
booleans, and dates. Up until now, this is what values have been. Up until
now, values have not contained expressions in them. On the other hand, we
are committed to making functions be values, and the body of a function is
necessarily an expression, so one way or the other values are going to contain
expressions.

TODO: the call expression discussion is really not part of this incorrect solution,
so it could be moved out? The only problem is that the code assumes that
functions are literals, which is not the code in the correct version. Sigh.

The call expression changes slightly from the version with top-level functions.
Instead of the name of the function to be called, the Call expression now contains
an expression Exp for both the function and the argument:

data Value = IntV Int
| BoolV Bool
| Function String Exp -- new

deriving (Eq, Show)

To clarify the effect of this change, consider these two versions of a simple
program, written using top-level functions or first-class functions:

Top-Level Functions (A) First-Class Functions (B)
function f(x) { x * x } var f = function(x) { x * x };
f(10) f(10)

The explicit abstract syntax for the call in example (A) is:
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Call "f" (Literal (IntV 10))

The explicit abstract syntax for the call in example (B) is:

Call (Variable "f") (Literal (IntV 10))

Note that the function in the Call is string ‘‘f’’ in the first version, but is an
expression Variable ‘‘f’’ in the second version.

In many cases the first expression (the function) will be a variable that names the
function to be called. Since there is no longer any special function environment,
the names of functions are looked up in the normal variable environment.

There are many examples where the function to be called is not a variable. For
example, one could call one of two different functions depending on a condition.
The following example calls either f or g depending on whether a > b.

(if a > b then f else g)(4)

This is similar to calling a function on a conditional argument:

f(if a > b then 4 else 7)

Which is equivalent to the perhaps more familiar form:

if a > b then
f(4)

else
f(7)

Another example of not using a variable to name a function is the use of function
literals. The following example applies a function literal that squares a number
to the argument 7.

(function(x) { x * x })(7)

Lets now define the (incorrect) interpreter. The first few cases for evaluation are
exactly the same as before. In particular, evaluating a literal value is the same,
except that now the literal value might be a function.

evaluate :: Exp -> Env -> Value
evaluate (Literal v) env = v
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Calling a function works almost the same as the case for function calls in the
language with top-level functions. Here is the code:

evaluate (Call fun arg) env = evaluate body newEnv
where Function x body = evaluate fun env

newEnv = bindF x (evaluate arg env) env

To evaluate a function call Call fun arg,

1. First evaluate the function fun of the call: evaluate fun env

2. Use pattern matching to ensure that the result of step 1 is a Function
value, binding x and body to the argument name and body of the function.

3. Evaluate the actual argument (evaluate arg env) and then extend the
environment env with a binding between the function parameter x and
the argument value:
newEnv = bindF x (evaluate arg env) env

4. Evaluate the body of the function in the extended environment newEnv:
evaluate newEnv body

Note that this explanation jumps around in the source code. The explanation
follows the sequence of data dependencies in the code: what logically needs
to be evaluated first, rather than the order in which expressions are written.
Since Haskell is a lazy language, it will actually evaluate the expressions in a
completely different order!
The main difference from the case of top-level functions is that the function is
computed by calling evaluate fun env rather than lookup fun funEnv. The
other difference is that functions now only have one argument, while we allowed
multiple arguments in the previous case.
There are two problems. One has to do with returning functions as values, and
the other with passing functions as arguments. They both involve the handling
of free variables in the function expression.

4.4.1.1 Problems with Returning Functions as Values

Let’s look at the problem of returning functions as values first. The section on
Multiple Arguments showed how a two-argument function could be implemented
by writing a function that takes one argument, but then returns a function that
takes the second argument. Here is a small Haskell program that illustrates this
technique:

let add = \a -> (\b -> b + a) in add 3 2

66



This program is encoded in our language as follows:

var add = function(a) { function(b) { b + a } };
add(3)(2)

Here is how evaluation of this sample program proceeds:

1. Evaluate var add = function(a) { function(b) { b + a }}; add 3 2
2. Bind add 7→ function(a) { function(b) { b + a }}
3. Call (add 3) 2

a. Call add 3
b. Evaluate the variable add, which looks it up in the environment to

get function(a) { function(b) { b + a }}
c. Bind a 7→ 3
d. Return function(b) { b + a } as result of add 3

4. Call function(b) { b + a } on argument 2

a. Bind b 7→ 2
b. Evaluate b + a
c. Look up b to get 2
d. Look up a to get... unbound variable!

To put this more concisely, the problem arises because the call to add 3 returns
function(b) { b + a }. But this function expression is not well defined be-
cause it has a free variable a. What happened to the binding for a? It had a
value in Steps 3.c through 3.d of the explanation above. But this binding is
lost when returning the literal function(b) { b + a }. The problem doesn’t
exhibit itself until the function is called.
The problems with returning literal function expressions as values is that bindings
for free variables that occur in the function are lost, leading to later unbound
variable errors. Again, this problem arises because we are trying to treat
function expressions as literals, as if they were number or booleans. But function
expressions are different because they contain variables, so care must be taken
to avoid losing the bindings for the variables.

4.4.1.2 Problems with Rebinding Variables

A second problem can arise when passing functions as values. This problem can
occur, for example, when composing two functions, mapping a function over a
list, or many other situations. Here is a program that illustrates the problem.

let k = 2 in
let double = \n -> k * n in

let k = 9 in
double k
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The correct answer, which is produced if you run this program in Haskell, is
18. The key point is that k is equal to 2 in the body of double, because that
occurrence of k is within the scope of the first let. Evaluating this function
with the evaluator given above produces 81, which is not correct. In summary,
the evaluation of this expression proceeds as follows:

1. Bind k 7→ 2
2. Bind double 7→ \n -> k * n
3. Bind k 7→ 9
4. Call double k

a. Bind n 7→ 9
b. Evaluate body k * n
c. Result is 81 given k=9 and n=9

The problem is that when k is looked up in step 4b, the most recent binding
for k is 9. This binding is based on the control flow of the program, not on the
lexical structure. Looking up variables based on control flow is called dynamic
binding.

dynamic binding dynamic binding occurs when a symbol’s value is found by
scanning the dynamic calls for the most recent binding of the symbol.

4.4.2 A Correct Solution: Closures

As we saw in the previous section, the problem with using a function expression
as a value is that the bindings of the free variables in the function expression are
either lost or may be overwritten. The solution is to preserve the bindings that
existed at the point when the function was defined. The mechanism for doing
this is called a closure.

closure A closure is a combination of a function expression and an environment.

Rather than think of a function expression as a function value, instead think of
it as a part of the program that creates a function. The actual function value is
represented by a closure, which captures the current environment at the point
when the function expression is executed. The code for this section is given in
the First-Class Functions zip file.

To implement this idea, we revise the definition of Exp and Value. First we add
function expressions as a new kind of expression:

data Exp = ....
| Function String Exp -- new
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As before, the two components of a function expression are the bound variable
String and the body expression Exp. Function expressions resemble variable
declarations, so they fit in well with the other kinds of expressions.

The next step is to introduce closures as a new kind of value. Closures have all
the same information as a function expressions (which we previously tried to
add as values), but they have one important difference: closures also contain an
environment.

data Value = IntV Int
| BoolV Bool
| ClosureV String Exp Env -- new

deriving (Eq, Show)

The three parts of a closure are the bound variable String, the function body
Exp, and the closure environment Env. The bound variable and function body
are the same as the components of a function expression.

With these data types, we can now define a correct evaluator for first-class
functions using environments. The first step is to create a closure when evaluating
a function expression.

evaluate (Function x body) env = ClosureV x body env -- new

The resulting closure is the value that represents a function. The function
expression Function x body is not actually a function itself, it is an expression
that creates a function when executed. Once a closure value has been created, it
can be bound to a variable just like any other value, or passed to a function or
returned as the result of a function. Closures are values.

Since closures represent functions, the only thing you can do with a closure is
call it. The case for evaluating a function call starts by analyzing the function
call expression, evaluate (Call fun arg) env. This pattern says that a call
expression has two components: a function fun and an argument arg. Here is
the code for this case:

evaluate (Call fun arg) env = evaluate body newEnv -- changed
where ClosureV x body closeEnv = evaluate fun env

newEnv = (x, evaluate arg env) : closeEnv

The code starts by evaluating both the function part fun to produce a value.
The where clause ClosureV x body newEnv = evaluate fun env says that
the result of evaluating fun must be a closure, and the variables x, body, and
newEnv are bound to the parts of the closure. If the result is not a closure,
Haskell throws a runtime error.
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Next the environment from the closure newEnv is extended to include a new
binding (x, evaluate arg env) of the function parameter to the value of the
argument expression. The new environment is called newEnv. At a high level,
the environment is the same environment that existed when the function was
created, together with a binding for the function parameter.

Finally, the body of the function is evaluated in this new environment,
evaluate body newEnv.

TODO: give an example of how this runs?

4.4.2.1 Exercise 3.2: Multiple Arguments

Modify the definition of Function and Call to allow multiple arguments. Modify
the evaluate function to correctly handle the extra arguments.

4.5 Environment/Closure Tree

The behavior of this evaluator is quite complex, but its operation on specific
programs can be illustrated by showing all the environments and closures created
during its execution, together with the relationships between these structures.

An Environment/Closure Tree is text file that concisely shows the environ-
ments and closures created during execution of an expression. This is a new
representation that follows the structure of environments more explicitly.

4.5.1 Example 1

var k = 2;
var double = function (n) { k * n };
var k = 9;
double(k)

Here is the Environment/Closure Tree that results from executing this code.

* k = 2
|
+--+ CLOSURE C1: n, k*n
| |
| | INVOKE I1:
| +--* n = 9
| RESULT: 18
|
* double = C1
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|
* k = 9
|
| CALL I1: C1(9)
| RESULT: 18
RESULT: 18

The idea here is that the bindings created during execution have their parent
environment implicitly represented by the text: A binding x = v appears below
the environment it extends. If it is a local binding or function argument binding,
it is indented.

Closures have environments, which capture the environment in which they were
created. This is represented by a CLOSURE name. They key point is that calls to
this function create invocations below the closure. This means that the function
call/invoke’s environment is the same as the closure’s environment.

Here is a step-by-step discussion of the first example.

1. A binding is created for k = 2.
2. The expression in the var double is evaluated. This creates a closure

named C1, with argument n and body k*n
3. A binding is created for double = C1 which refers to the closure C1.
4. A binding is created for k = 9.
5. A call is created to double, which is the closure C1. The argument is 9.

The call is named I1.
6. The call creates an INVOKE I1: under the closure C1.
7. A binding for the argument n = 9 is created under the INVOKE
8. The closure body k*n is evaluated, creating a RESULT: 18.

• Note that k=2 and n=9 because lookup starts within the closure, not
at the CALL site.

9. The result is copied to the CALL I1.

Here are some rules for defining Environment/Closure Trees (ECTs):

• Case var x = exp; body

1. Create an ECT for evaluation of exp.

2. Create a binding x = \emph{result}.

3. Create an ECT for body

• Case function (x) { e }

1. Make a CLOSURE with a unique name C, variable x, body e
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2. The result is C, which refers to the new closure

• Case fun(arg)

1. Create an ECT for evaluation of fun.
– The result must be a CLOSURE named C with x, body.

2. Create an ECT for evaluation of arg.
– Let the result be called argval

3. Create a CALL I: C(argval)
4. Make an INVOKE I: under the CLOSURE with a vertical bar to the left

5. Make a binding x = argval under the INVOKE
6. Create an ECT for body under the INVOKE
7. Under the INVOKE I and CALL I create a RESULT: result

• Case exp

1. Evaluate exp, setting result to the value
2. Find value of variable x by moving up and to the left on the ECT

searching for x = val

The vertical bars below a closure are there to highlight the fact that these
INVOKEs are created later, when the closure is called, not when it is created.

4.5.2 Example 2

var add = function(a) {
function(b) {

b + a
} };

add(3)(2)

Here is the Environment/Closure Tree (ECT)

| CLOSURE C1: a, function-1
|
| INVOKE I1:
+--* a = 3
| | CLOSURE C2: b, function-2
| |
| | INVOKE I2:
| +--* b = 2
| | RESULT: 5 -- b + a
| |
| RESULT: C2
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|
* add = C1
|
| CALL I1: C1(3)
| RESULT: C2
| CALL I2: C2(2)
| RESULT: 5
RESULT: 5

4.5.3 Example 3

var m = 2;
var proc = function(n) {

m + n
};

var part = function(g, n) {
function(m) {

n * g(m)
}};

var inc = part(proc, 3);
inc(7)

Here is the Environment/Closure Tree (ECT)

* m = 2
|
| CLOSURE C1: n, function-1
|
| INVOKE I3
+--* n = 7
| RESULT: 9
|
* proc = C1
|
| CLOSURE C2: g, n, function-2
|
| INVOKE I1:
+--* g = C1
| * n = 3
| | CLOSURE C3: m, function-3 -- n * g(m)
| |
| | INVOKE I2
| +--* m = 7
| | | CALL I3: C1(7)

73



| | | RESULT: 9
| | RESULT: 27 -- n * g(m)
| |
| RESULT: C3
|
* part = C2
|
| CALL I1: C2(C1, 3) -- part(proc, 3)
| RESULT: C3
* inc = C3
|
| CALL I2: C3(7) -- inc(7)
| RESULT: 27
| RESULT: 27

4.6 Call-by-value and Call-by-name

In languages with declarations, functions or first-class functions there are a few
different design options when it comes to evaluation.

4.6.1 Call-by-value

So far all our interpreters have explored one particular design option, called
call-by-value.

call-by-value In call-by-value interpretation, expressions, such as parameters
of functions arguments or variable initializers, are always evaluated before
being added to the environment.

Here is the code of evaluation for declarations and function application:

evaluate (Declare x exp body) env =
case evaluate exp env of

VException -> VException
v -> evaluate body ((x,v) : env)

evaluate (Call fun arg) env =
case evaluate arg env of

VException -> VException
v -> case evaluate fun env of

ClosureV name body denv -> evaluate body ((name,v) : denv)
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In the case of Declare expressions, expression exp is evaluated before evaluating
the body of the declaration. In the case of Call expressions the argument arg
is evaluated before evaluating the function and function body. Note also that
we need to be a bit more careful in the presence of exception values to ensure
that exceptional values propagate.

Call-by-value is the most common design option for function calls in programming
languages. All major programming languages (including C, Java or C#) use call-
by-value. Note that some programming languages also support other function
call mechanisms. For example, C also supports call-by-reference.

Drawbacks of call-by-value: Call-by-value can waste resources when evaluating
expressions in some cases. For example, consider the following expressions:

var x = longcomputation; 3

(\x -> 3) longcomputation

In the two expressions the idea is that longcomputation stands for an expression
that takes a long time to compute. In both cases the returned value will
be 3 and the final result does not depend on the value that is computed by
longcomputation. So, in this case, it seems wasteful to spend time computing
longcomputation.

4.6.2 Call-by-Name

A different design option is to use call-by-name.

call-by-name In call-by-name an expression is not evaluated until it is needed.

So, in the programs:

var x = longcomputation; 3

(\x -> 3) longcomputation

the expression longcomputation is never evaluated and therefore evaluating
such expressions is very fast.

Haskell is one of the few languages where (a variant of) call-by-name is the
default mechanism for evaluating function applications.

Drawbacks of call-by-name: While for the program above there seems to benefit
from using call-by-name, there are also programs where call-by-name is worse
than call-by-value. For example:
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var x = longcomputation; x + x

(\x -> x + x) longcomputation

In both programs a call-by-name language will evaluate longcomputation twice.
Since evaluation is delayed to the use-point of the expression, the expression
bound to x is evaluated twice.

In languages like Haskell this drawback is avoided by using an optimization of
call-by-name called call-by-need.

call-by-need In call-by-need, when the use of a variable forces the evaluation
of an expression, the result of that evaluation is cached and next time the
variable is needed the cached value is simply returned.

This means that in call-by-need an expression will be evaluated at most once.

4.6.3 Call-by-Value, Call-by-Name and Exceptions

In a language with exceptions, the same expression may evaluate to different
results. under call-by-name or call-by-value. For example:

var x = 3 / 0; 7

evaluates to:

1) an exception in a call-by-value language;
2) 7 in a call-by-name language.

The reason is that exceptions propagate. Since in call-by-value all expressions
arguments (or initializers) are evaluated, the program will raise an exception
which is then propagated throughout evaluation. In contrast in call-by-name the
expression bound to x is not needed to compute the result. Therefore, because
that expression is not evaluated, no exception is propagated.

4.7 Summary of First-Class Functions

Here is the full code for first-class functions with non-recursive definitions. The
grammar changes are as follows, taken from the FirstClassFunctionsParse.y file:

Exp : function ’(’ id ’)’ ’{’ Exp ’}’ { Function $3 $6 }
Primary : Primary ’(’ Exp ’)’ { Call $1 $3 }
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Here is the definition of the abstract syntax and the evaluator, taken from the
First Class Functions zip file:

data Exp = Literal Value
| Unary UnaryOp Exp
| Binary BinaryOp Exp Exp
| If Exp Exp Exp
| Variable String
| Declare String Exp Exp
| Function String Exp -- new
| Call Exp Exp -- changed

deriving (Eq, Show)

type Env = [(String, Value)]

evaluate :: Exp -> Env -> Value
evaluate (Literal v) env = v

evaluate (Unary op a) env =
unary op (evaluate a env)

evaluate (Binary op a b) env =
binary op (evaluate a env) (evaluate b env)

evaluate (If a b c) env =
let BoolV test = evaluate a env in

if test then evaluate b env
else evaluate c env

evaluate (Variable x) env = fromJust (lookup x env)

evaluate (Declare x exp body) env = evaluate body newEnv
where newEnv = (x, evaluate exp env) : env

evaluate (Function x body) env = ClosureV x body env -- new

evaluate (Call fun arg) env = evaluate body newEnv -- changed
where ClosureV x body closeEnv = evaluate fun env

newEnv = (x, evaluate arg env) : closeEnv

Test cases can be found in and the FirstClassFunctionsTest.js file.
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Assignment 2: First-Class Functions

Extend the parser and interpreter of Section on First-Class Functions to allow
passing multiple parameters, by adding a tuple data type and allowing patterns
to be used in function and variable definitions. For example:

Here are two example test cases:

var f = function(a, b) { a + 2 * b };
f(3, 4) - f(5, 2)

var z = 12;
var tup = (3, z*2);
var (x, y) = tup;
z / x + y

You must change the parser to allow creation of tuples, patterns in function and
variable definitions, and functions called with a tuple. Here are required changes
to your abstract syntax:

data Exp = ...
| Declare Pattern Exp Exp -- declarations bind patterns
| Function Pattern Exp -- functions have patterns
| Tuple [Exp] -- tuple expression

data Pattern = VarP String -- variable patterns
| TupleP [Pattern] -- tuple patterns

data Value = ...
| ClosureV Pattern Exp Env -- functions have patterns
| TupleV [Value] -- tuple value

deriving (Eq, Show)

This will cause you to make significant changes to the evaluate function, because
of the change to the types. You’ll need to define a function to match a Pattern
against a Value to get a environment Env.

match :: Pattern -> Value - Env

Here are some notes on special interpretation of singleton tuples/patterns, as in
(x).

In the grammar “.y” file:
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1) In the Primary case for ‘(’ Exp ‘)’ you must change this to
‘(’ ExpList ‘)’ to allow for lists of expressions which will create Tuples
in the program. Define ExpList as a new rule for lists of expressions. Note
that the type of ExpList is [Exp], which doesn’t match Exp as required
by Primary. You’ll have to apply a function to convert it to the right type.
But special handling is needed for singleton tuples, like (exp). Based
on the change above, this will create Tuple [exp], which is not wanted.
That is a tuple with a single expression. It must be interpreted as just the
expression, exp.
The easiest way to do this is to put a condition that tests if the ExpList
has length 1 and return its single Exp, otherwise return it as a tuple. The
condition goes into the {\ldots} code for that Primary rule.

2) A similar problem happens with function ‘(’ PatList ‘)’. You can
either fix that in the grammar or (more easily) in your new match function.
You need a add a special case for TupleP [VarP x], where there is only
one variable in a tuple pattern. In this case (x) must work that same as x
(without parentheses).

3) As a hint, change the Declare rule to be var Pattern ‘=’ Exp ‘;’ Exp
where Pattern is your new rule that parses patterns (either a VarP or a
TupleP).

4) I’ll leave it as an optional challenge to figure out to handle empty tuples
().

You must write and include test cases that amply exercise all of the code
you’ve written. You can assume that the inputs are valid programs and that
your program may raise arbitrary errors when given invalid input (except as
mentioned above). Here are some examples that must signal errors:

var (a, b) = 3; a + b
var (a, b) = (3, 4, 5)

The first case is an error because 3 is not a tuple. The second case is an error
because the lengths are not the same. This must be checked in the match
function discussed above.

The files you need are in the First Class Functions zip file.
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Chapter 5

Recursive Definitions

One consequence of using a simple var expression to define functions is that it
is no longer possible to define recursive functions, which were supported in the
Section on Top-Level Functions.

recursive function A recursive function is a function that calls itself within
its own definition.

For example, consider this definition of the factorial function:

let fact = \n -> if n == 0 then 1 else n * fact(n-1)
in fact(10)

The fact function is recursive because it calls fact within its definition.
The problem with our existing language implementation is that the scope of the
variable fact is the body of the var expression, which is fact(10), so while the
use of fact in fact(10) is in scope, the other use in fact(n-1) is not in scope.
(TODO: wordy)
To solve this problem, we need to change how we understand the var expression:
the scope of the bound variable must be both the body of the let, and the
bound expression that provides a definition for the variable. This means that
the variable can be defined in terms of itself. This is exactly what we want for
recursive functions, but it can cause problems. For example,

let x = x + 1 in x

This is now syntactically correct, as the bound variable x is in scope for the
expression x + 1. However, such a program is either meaningless, or it can be
understood to mean “infinite loop”. There are similar cases that are meaningful.
For example, this program is meaningful:
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let x = y + 1
y = 99

in x * y

This example includes two bindings at the same time (which we do not currently
support. In this case the result is 9900 because x = 100 and y = 99. It works
because the binding expression for x, namely y + 1, is in the scope of y.

5.1 Semantics of Recursion

A more fundamental question is what does a recursive definition mean? In
grade school we get used to dealing with equations that have the same variable
on both sides of an equal sign. For example, consider this simple equation:

a = 1 + 3a

Our instinct, honed over many years of practice, is to “solve for a”.

• a = 1 + 3a
• { subtract 3a from both sides }
• −2a = 1
• { divide both sides by −2 }
• a = −1/2

I feel a little silly going through this in detail (although I have spent a lot of time
recently practicing algebra with my son, so I know how hard it is to master).
The point is that the definition of fact has exactly the same form:

fact = \n -> if n == 0 then 1 else n * fact(n-1)

This is an equation where fact appears on both sides, just as a appears on both
sides in a = 1 + 3a. The question is: how do we solve for fact? It’s not so
easy, because we don’t have algebraic rules to divide by lambda and subtract
conditionals, to get both occurrences of fact onto the same side of the equation.
We are going to have to take another approach.

The first thing to notice is that fact is a function, and like most functions it is
an infinite structure.

infinite structure An infinite structure is a structure that is conceptually
infinite, but cannot be represented explicitly in its entirety.
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This makes sense in several ways. It is infinite in the sense that it defines the
factorial for every natural number, and there is an infinity of natural numbers.
If you consider the grade-school definition of a function as a set of pairs, then
the set of pairs in the factorial function is infinite.

Finally, and most importantly for us, if you consider fact as a computational
method or rule, then the computational rule has an unbounded number of steps
that it can perform. We can count the steps: first it performs an equality
comparison n == 0, then it either stops or it performs a subtraction n-1 and
then performs the steps recursively, then when it is done with that it performs
a multiplication n * \ldots. In other words, given a natural number n the
computation will perform 3n+ 1 steps. Since it will handle any natural number,
there is no bound on the number of steps it performs. If you tried to write out
the steps that might be performed, then the list of steps would be infinite.

5.1.1 Three Analyses of Recursion

In what follows we will explore three ways to understand recursion. The first
explanation just allows us to define recursive var expression by using the ca-
pabilities for recursion that are built into Haskell. This explanation is elegant
and concise, but not very satisfying (like pure sugar!). The problem is that we
have just relied on recursion in Haskell, so we don’t really have an explanation
of recursion. The second explanation is a practical introduction to the concept
of fixed points. This solution can also be implemented elegantly in Haskell, and
has the benefit of providing a mathematically sound explanation of recursive
definitions. While fixed points can be implemented directly, they are not the
most efficient approach, especially in conventional languages. As a result, we
will consider a third implementation, based on self application. This explanation
is messy but practical. In fact, it is the basis for real-world implementations of
C++ and Java.

5.2 Understanding Recursion using Haskell Re-
cursion

Haskell makes it easy to create infinite structures and functions. Understanding
how this works can help us in implementing our language. We’ve already seen
many examples of recursive functions in Haskell: for example, every version of
evaluate has been recursive. However, Haskell also allows creation of recursive
data structures. For example, this line creates an infinite list of 2’s:

twos = 2 : twos
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Remember that the : operator adds an item to the front of a list. This means
that twos is a list with 2 concatenated onto the front of the list twos. In other
words, twos is an infinite list of 2’s:

twos ==> [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... ]

It’s also possible to make infinite lists that change:

numbers = 0 : [ n + 1 | n <- numbers ]

This creates an infinite list of the natural numbers:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...]

All these definitions work in Haskell because of laziness. Haskell creates an
internal representation of a potentially infinite value, but it only creates as
much of the value as the program actually needs. If you try to use all of two or
numbers then the result will be an infinite loop that never stops. However, if
the program only needs the first 10 items of twos or numbers then only the first
10 elements of the infinite value will be created.

Interestingly, Haskell also accepts the algebraic expression discussed earlier:

a = 1 + 3 * a

Haskell considers this a valid program, but it does not solve for a. Instead it
treats the definition as a computational rule: to evaluate a, add one to three
times the value of a, which requires evaluating a, and so on, again, and again,
and again. The result is an infinite loop. The quickest way to write an infinite
loop is:

inf = inf

TODO: make pictures to illustrate the cyclic values in this section.

Attempting to use this value leads to an immediate infinite loop1. If the value is
not used, then it has no effect on the program results.

It is not always easy to determine if a value will loop infinitely or not. One
rule of thumb is that if the recursive variable is used within a data constructor
(e.g. :) or inside a function (in the body of a lambda), then it will probably not
loop infinitely. This is because both data constructors and functions are lazy in
Haskell.

1Oddly enough, this kind of inf value is not useless! It has some legitimate uses in debugging
Haskell programs (more on this later).
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5.2.1 Using Results of Functions as Arguments

Another interesting use of recursion and laziness is the ability to use the result
of a calling a function as one of the arguments to the function call itself.

A type for trees:

data Tree = Leaf Int | Branch Tree Tree
deriving Show

An example tree:

Branch (Branch (Leaf 5) (Leaf 3))
(Leaf (-99))

Computing the minimum and maximum of a tree:

minTree (Leaf n) = n
minTree (Branch a b) = min (minTree a) (minTree b)

maxTree (Leaf n) = n
maxTree (Branch a b) = max (maxTree a) (maxTree b)

Point out that computing both requires two traversals.

Computing minimum and maximum at the same time.

minMax (Leaf n) = (n, n)
minMax (Branch a b) = (min min1 min2, max max1 max2)

where (min1, max1) = minMax a
(min2, max2) = minMax b

minMax is an example of fusing two functions together.

Another operation: copying a tree and replacing all the leaves with a specific
integer value:

repTree x (Leaf n) = Leaf x
repTree x (Branch a b) = Branch (repTree x a) (repTree x b)

Now for our key puzzle: replacing every leaf in a tree with the minimum value
of the tree:

repMinA tree = repTree (minTree tree) tree
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This requires two traversals. It seems to truly require two traversals the minimum
must be identified before the process of replacement can begin.

But lets fuse them anyway: TODO: need to develop this in a few more steps!
Here is a helper function:

repMin’ (Leaf n, r) = (n, Leaf r)
repMin’ (Branch a b, r) = (min min1 min2, Branch newTree1 newTree2)

where (min1, newTree1) = repMin’ (a, r)
(min2, newTree2) = repMin’ (b, r)

Finally to do the replacement with the minimum:

repMin tree = newTree
where (min, newTree) = repMin’(tree, min)

Note how one of the results of the function call, the min value, is passed as an
argument to the function call itself!

TODO: Explain how this works, and give a picture.

5.2.2 Implementing Recursive Variable Declarations with
Haskell

The powerful techniques for recursive definition illustrated in the previous
section are sufficient to implement recursive var expressions. In the Section on
Evaluation using Environments, var was defined as follows:

evaluate (Declare x exp body) env = evaluate body newEnv
where newEnv = (x, evaluate exp env) : env

The problem here is that the bound expression exp is evaluated in the parent
environment env. To allow the bound variable x to be used within the expression
exp, the expression must be evaluated in the new environment. Fortunately this
is easy to implement in Haskell:

evaluate (Declare x exp body) env = evaluate body newEnv
where newEnv = (x, evaluate exp newEnv) : env

The only change is the replace env with newEnv in the call to evaluate on exp.
The new environment being created is passed as an argument to the evaluation
function that is used during the creation of the new environment! It may see
odd to use the result of a function as one of its arguments. However, as we have
seen, Haskell allows such definitions.
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The explanation of recursion in Haskell is almost too simple. In fact, it is
too simple: it involved changing 6 characters in the code for the non-recursive
program. The problem is that we haven’t really explained recursion in a detailed
way, because we have simply used Haskell’s recursion mechanism to implement
recursive var expressions in our language. The question remains: how does
recursion work?

TODO: come up with a name for the little language we are defining and exploring.
PLAI uses names like ArithC and ExprC.

5.2.2.1 Recursive Definitions in Environment/Closure Trees

For the case of recursive bindings, a special case must be defined for a var
binding that defines a function:

• Case Recursive var f = function (x) { exp }; body

1. Create a binding f = C where C is the name of a new closure.
2. Create a CLOSURE C: x, exp to define the closure
3. Proceed with the ECT for the body

Note that the CLOSURE is within scope of the binding, not above it as before.

Here is an example an example that uses this approach.

var fact = function(n) {
if (n == 0)

1
else

n * fact(n - 1)
};
fact(4)

Below is an Environment/Closure Tree for evaluating this program. Note that
the binding of fact has moved from after the closure to before the closure. This
means that the binding is in scope for the body of the function.

* fact = C1
|
+--+ CLOSURE C1: n, function-1
| |
| | INVOKE I1
| +--* n = 4
| | | CALL I2: C1(3)
| | | RESULT: 24
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| | RESULT: 24
| |
| | INVOKE I2
| +--* n = 3
| | | CALL I3: C1(2)
| | | RESULT: 6
| | RESULT: 6
| |
| | INVOKE I3
| +--* n = 2
| | | CALL I4: C1(1)
| | | RESULT: 2
| | RESULT: 2
| |
| | INVOKE I4
| +--* n = 1
| | | CALL I5: C1(0)
| | | RESULT: 1
| | RESULT: 1
| |
| | INVOKE I5
| +--* n = 0
| RESULT: 1
|
| CALL I1: C1(4)
| RESULT: 24
RESULT: 24

5.3 Understanding Recursion with Fixed Points

Another way to explain recursion is by using the mathematical concept of a fixed
point.

fixed point A fixed point of a function f is a value x where x = f(x).

If you think of a function as a transformation on values, then fixed points
are values that are unchanged by the function. For example, if the function
represents a rotation (imagine simple rotation of a book on a table) then the
fixed point is the center of the rotation... that is the point on the book that is
unchanged by rotating it. If you really did rotate a book, you’d probably push
your finger down in the middle, then rotate the book around your finger. The
spot under your finger is the fixed point of the rotation function.
There is a large body of theory about fixed points, including applications in
mathematics and fundamental theorems (see the Knaster Tarski theorem), but
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I’m going to avoid the math and give a practical discussion of fixed-points with
examples. TODO: give citations to appropriate books.

TODO: nice picture of the book and the fixed point? Use a fun book, like
“Theory of Lambda Conversion”.

5.3.1 Fixed Points of Numeric Functions

Fixed-points can also be identified for simple mathematical functions:

function fixed point(s)
i10(x) = 10− x 5
square(x) = x2 0, 1
gφ(x) = 1 + 1/x 1.6180339887...
k4(x) = 4 4
id(x) = x all values are fixed points
inc(x) = x+ 1 no fixed points

As you can see, some functions have one fixed point. Some functions have
multiple fixed points. Others have an infinite number of fixed points, while some
don’t have any at all. The fixed point of gφ is the golden ratio, also known as φ.

Fixed points are useful because they can provide a general approach to solving
equations where a variable appears on both sides of an equation. Consider this
simple equation:

x = 10− x

Rather than performing the normal algebraic manipulation to solve it, consider
expressing the right side of the equation using a new helper function, g:

g(x) = 10− x

Functions created in this way are called generators for recursive equations.

generator A function that is passed as an argument to the fixed-point function,
with the intent of creating an infinite value.

Given the generator g, the original equation can be rewritten as:

x = g(x)

Any value x that satisfies x = g(x) is a fixed point of g. Conversely, any fixed
point of g is a solution to the original equation. This means that finding a
solution to the original equation is equivalent to finding a fixed point for g.
Imagine that there was a magic function fix that could automatically find a
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fixed point for any function2. Then one way to find a fixed point of g would be
to use fix, by calling fix(g). Then the solution to the equation above could be
rewritten using fix:

x = fix(g)

This result looks like a solution for x, in the sense that it is an equation where x
appears only by itself on the left of the equation. Any equation where a variable
appears by itself on the left and anywhere on the right side of the equation, can
be rewritten as a fixed point equation.

Note that fix is a higher-order function: it takes a function as an input, and
returns a value as a result.

The problem is that the solution relies on fix, a function that hasn’t been
defined yet, and maybe cannot be defined. Is it possible to automatically find a
fixed point of any function? Does the function fix exist? Can it be defined?

5.3.2 Fixed Points by Iterative Application

It turns out that there is no way to find fixed points for any arbitrary function
f , but for a certain class of well behaved functions, it is possible to compute
fixed points automatically. In this case, “well behaved” means that the function
converges on the solution when applied repeatedly. For example, consider
function gφ defined above:

gφ(x) = 1 + 1/x

Consider multiple invocations of gφ starting with gφ(1). The following table
summarizes this process. The first column represents the iteration number,
which starts at one and increases with each iteration. The second column is a
representation of the computation as an explicit power of a function. The power
of a function fn(x) means to apply f repeatedly until it has been performed n
times, passing the result of one call as the input of the next call. For example,
f3(x) means f(f(f(x))). The next column shows just the application of gφ to
the previous result. The final column gives the result for that iteration.

Here is a plot of how the function converges:

The result converges on 1.6180339887... which is the value of φ. It turns out
that iterating gφ converges on φ for any starting number. The fixed point is the
limit of applying the transformation function gφ infinitely many times. One way
to express the fixed point is

fix(f) = f∞(start)

This means the application of f an infinite number of times to some starting
value. Finding the right starting value can be difficult. In some cases any starting

2The function fix is often called Y . For further reading, see @ScottDataTypes, @GunterPL,
@WhyY and @thomas2006end.

89



Figure 5.1: Plot of convergence of φ

value will work, but in other cases it’s important to use a particular value. In
the theory of fixed points, (TODO: discuss the theory somewhere), the initial
value is the bottom of an appropriate lattice.

The fixed point of some, but not all, functions can be computed by repeated
function application. Here are the results for this technique, when applied to
the examples given above:

function result for repeated invocation
inv10(x) = 10− x infinite loop
square(x) = x2 infinite loop
gφ(x) = 1 + 1/x 1.6180339887...
const4(x) = 4 4
id(x) = x infinite loop
inc(x) = x+ 1 infinite loop

Only two of the six examples worked. Fixed points are not a general method for
solving numeric equations.

5.3.3 Fixed Points for Recursive Structures

The infinite recursive structures discussed in Section on Haskell Recursion can
also be defined using fixed points:

g_twos l = 2 : l

The function g_twos is a non-recursive function that adds a 2 to the front of a
list. Here are some test cases for applying g_twos to various lists:

input output input = output
[] [2] no
[1] [2, 1] no
[3, 4, 5] [2, 3, 4, 5] no
[2, 2, 2, 2, 2] [2, 2, 2, 2, 2, 2] no
[2, 2, 2, . . . ] [2, 2, 2, . . . ] yes

The function g_twos can be applied to any list. If it is applied to any finite list,
then the input and output lists cannot be the same because the output is one
element longer than the input. This is not a problem for infinite lists, because
adding an item to the front of an infinite list is still an infinite list. Adding a 2
onto the front of an infinite list of 2s will return an infinite list of 2s. Thus an
infinite list of 2s is a fixed point of g_twos.
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fix(g_twos) ==> [2, 2, 2, ...]

Functions used in this way are called generators because they generate recursive
structures. One way to think about them is that the function performs one step
in the creation of a infinite structure, and then the fix function repeats that
step over and over until the full infinite structure is created. Consider what
happens when the output of the function is applied to the input of the previous
iteration. The results are [], [2], [2, 2], [2, 2, 2], [2, 2, 2, 2], ... At
each step the result is a better approximation of the final solution.

The second example, a recursive definition that creates a list containing the
natural numbers, is more interesting:

g_numbers ns = 0 : [ n + 1 | n <- ns ]

This function takes a list as an input, it adds one to each item in the list and
then puts a 0 on the front of the list.

Here are the result when applied to the same test cases listed above:

input output input = output
[] [0] no
[1] [0, 2] no
[3, 4, 5] [0, 4, 5, 6] no
[2, 2, 2, 2, 2] [0, 3, 3, 3, 3, 3] no
[2, 2, 2, . . . ] [0, 3, 3, 3, . . . ] no

A more interesting set of test cases involves starting with the empty list, then
using each function result as the next test case:

input output input = output
[] [0] no
[0] [0, 1] no
[0, 1] [0, 1, 2] no
[0, 1, 2] [0, 1, 2, 3] no
[0, 1, 2, 3] [0, 1, 2, 3, 4] no
[0, 1, 2, 3, 4] [0, 1, 2, 3, 4, 5] no
[0, 1, 2, 3, 4, 5, . . . ] [0, 1, 2, 3, 4, 5, 6, . . . ] yes

The only list that is unchanged after applying g_numbers is the list of natural
numbers:

fix(g_numbers) ==> [0, 1, 2, 3, 4, 5, ...]
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By staring with the empty list and then applying g_numbers repeatedly, the result
eventually converges on the fixed point. Each step is a better approximation of
the final answer.

5.3.4 Fixed Points of Higher-Order Functions

TODO: text explaining how to implement fact using fix.

g_fact = \f -> \n -> if n == 0 then 1 else n * f(n-1)

fact = fix g_fact

more...

5.3.5 A Recursive Definition of fix

Haskell allows an elegant definition of fix using recursion, which avoids the issue
of selecting a starting value for the iteration.

fix g = g (fix g)

This definition is beautiful because it is a direct translation of the original
mathematic definition of a fixed point: fix(f) is a value x such that x = f(x).
Substituting fix(f) for x gives the definition above.

From an algorithmic viewpoint, the definition of fix only works because of lazy
evaluation in Haskell. To compute fix g Haskell evaluates g (fix g) but does
not immediately evaluate the argument fix g. Remember that arguments in
Haskell are only evaluated if they are needed. Instead it begins evaluating the
body of g, which may or may not use its argument.

5.3.6 A Non-Recursive Definition of fix

It is also possible to define fix non-recursively, by using self application.

self application Self application is when a function is applied to itself.

This works because functions are values, so a function can be passed as an
argument to itself. For example, consider the identity function, which simply
returns its argument:

id x = x
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The identity function can be applied to any value, because it doesn’t do anything
with the argument other than return it. Since it can be applied to any value, it
can be applied to itself:

id(id)
-- returns id

Self application is not a very common technique, but it is certainly interesting.
Here is a higher-order function that takes a function as an argument and
immediately applies the function to itself:

stamp f = f(f)

Unfortunately, the stamp function cannot be coded in Haskell, because it is
rejected by Haskell’s type system. When a function of type a→ b is applied to
itself, the argument type a must be equivalent to a→ b. There are no types in
the Haskell type system that can express a solution to type equation a = a→ b.
Attempting to define stamp results in a Haskell compile-time error:

Occurs check: cannot construct the infinite type: t1 = t1 -> t0

Many other languages allow stamp to be defined, either using more complex
or weaker type systems. Dynamic languages do not have any problem defining
stamp. For example, here is a definition of stamp in JavaScript:

stamp = function(f) { return f(f); }

The interesting question is what happens when stamp is applied to itself:
stamp(stamp). This call binds f to stamp and then executes f(f) which is
stamp(stamp). The effect is an immediate infinite loop, where stamp is applied
to itself over and over again. What is interesting is that stamp is not recursive,
and it does not have a while loop. But it manages to generate an infinite loop
anyway.

Given the ability to loop infinitely, it is also possible to execute a function
infinitely many times.

fix g = stamp (g . stamp)

The composition (.) operator composes two functions:

f . g = \x -> f (g x)

Here are the steps in executing fix for a function g:
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• fix g
• definition of fix
• = stamp (g . stamp)
• definition of stamp
• = (g . stamp)(g . stamp)
• definition of .
• = g(stamp(g . stamp))
• definition of fix
• = g(fix g)

This version of fix uses self-application to create a self-replicating program,
which is then harnessed as an engine to invoke a function infinitely many times.
This version of fix is traditionally written as λg.(λx.g(xx))(λx.g(xx)), but this
is the same as the version given above with the definition of stamp expanded.
A second problem with this definition of fix is that it diverges, or creates an
infinite loop, when executed in non-lazy languages.

diverge A function diverges if it doesn’t return a value.

Thus it cannot be used in Haskell because of self-application, and it cannot be
used in most other languages because of strict evaluation. A non-strict version
can be defined:
Y = stamp(λf.(λx.f(λv.(stamp x v))))
Finally, explicit fixed points involve creation of many closures.

5.4 Understanding Recursion with Self-Application

Another way to implement recursion is by writing self-application directly into a
function. For example, here is a non-recursive version of fact based on integrated
self-application, defined in JavaScript.

fact_s = function(f, n) {
if (n == 0)

return 1;
else

return n * f(f, n - 1);
}

To call fact_s to compute a factorial, it is necessary to pass fact_s as an
argument to itself:

fact_s(fact_s, 10);
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This definition builds the self-application into the fact_s function, rather than
separating it into a generator and a fixed point function. One way to derive
fact_s is from the self-applicative fix function. The actual fact function must
still be defined:

fact = function(n) { fact_s(fact_s, n) }

One interesting thing about this final implementation strategy is that it is exactly
the strategy used in the actual implementation of languages, including C++ and
Java.
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Chapter 6

Computational Strategies

In previous sections the Exp language was extended with specific kinds of
expressions and values, for example the var and functions. In addition to
augmenting the language with new expression types, it is also possible to consider
extensions that have a general impact on every part of the language. Some
examples are error handling, tracing of code, and mutable state.

6.1 Error Checking

Errors are an important aspect of computation. They are typically a pervasive
feature of a language, because they affect the way that every expression is
evaluated. For example, the expression a+b may not cause any errors, but if
evaluating a or b can cause an error, then the evaluation of a+b will have to deal
with the possibility that a or b is an error. The full code is given in the Error
Checking zip file.
Error checking is a notorious problem in programming languages. When coding
in C, everyone agrees that the return codes of all system calls should be checked
to make sure that an error did not occur. However, most C programs don’t check
the return codes, leading to serious problems when things start to go wrong.
Errors are pervasive because any expression can either return a value or it can
signal an error. One way to represent this possibility is by defining a new data
type that has two possibilities: either a good value or an error.

data Checked a = Good a | Error String
deriving Show

The declaration defines a generic Checked type that has a parameter a represent-
ing the type of the good value. The Checked type has two constructors, Good
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Good

Error

Figure 6.1: A computation that may produce an error.

and Error. The Good constructor takes a value of type a and labels it as good.
The Error constructor has an error message. The following figure is an abstract
illustration of a Checked value, which represents a computation that may either
be a good value or an error.

6.1.1 Error Checking in Basic Expressions

To keep things simple and focused on errors, this section will only consider
expressions with literals, variables, binary operators. This smaller language
is similar to the one that was introduced at the beginning of the book. More
features will be added later. Although the syntax of expressions does not have
to change, but the type of the evaluate function must be changed to return an
Error value:

evaluate :: Exp -> Env -> Checked Value
evaluate (Literal v) env = Good v

Evaluation of a literal can never cause an error. The value is marked as a Good
value and returned.
A variable can be undefined, so it evaluating a variable may return an error:

evaluate (Variable x) env =
case lookup x env of

Nothing -> Error ("Variable " ++ x ++ " undefined")
Just v -> Good v

6.1.2 Error Checking in Multiple Sub-expressions

The case for binary operations is more interesting. Here is the original rule for
evaluating binary expressions:

evaluate (Binary op a b) env =
binary op (evaluate a env) (evaluate b env)
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Figure 6.2: Composing computations that may produce errors.

The problem is that either evaluate a env or evaluate b env could return
an Error value. The actual binary operation is only performed if they both
return Good values. Finally, the binary operation itself might cause a new
error. Thus there are three places where errors can arise: in evaluate a env,
in evaluate b env, or in binary. This definition for evaluate of a binary
operator handles the first two situations:

evaluate (Unary op a) env =
case evaluate a env of

Error msg -> Error msg
Good av -> checked_unary op av

evaluate (Binary op a b) env =
case evaluate a env of

Error msg -> Error msg
Good av ->

case evaluate b env of
Error msg -> Error msg
Good bv ->

checked_binary op av bv

Now it should be clear why programmers do not always check all error return
codes: because it is tedious and requires lots of code! What was originally a
one-line program is now 8 lines and uses additional temporary variables. When
multiple sub-expressions can generate errors, it is necessary to compose multiple
error checks together. The situation in the case of Binary operations is illustrated
in the following figure:
This figure illustrates the composition of two sub-expressions A and B which
represent computations of checked values. The composition of the two computa-
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tions is a new computation that also has the shape of a checked value. If either
A or B outputs an error, then the resulting computation signals an errors. The
arrow from A to the top of B represents passing the good value from A into B as
an extra input. This means that B can depend upon the good value of A. But B
is never invoked if A signals an error.
The binary helper function must be updated to signal divide by zero:

checked_unary :: UnaryOp -> Value -> Checked Value
checked_unary Not (BoolV b) = Good (BoolV (not b))
checked_unary Neg (IntV i) = Good (IntV (-i))
checked_unary op v =

Error ("Unary " ++ show op
++ " called with invalid argument " ++ show v)

checked_binary :: BinaryOp -> Value -> Value -> Checked Value
checked_binary Add (IntV a) (IntV b) = Good (IntV (a + b))
checked_binary Sub (IntV a) (IntV b) = Good (IntV (a - b))
checked_binary Mul (IntV a) (IntV b) = Good (IntV (a * b))
checked_binary Div _ (IntV 0) = Error "Divide by zero"
checked_binary Div (IntV a) (IntV b) = Good (IntV (a ‘div‘ b))
checked_binary And (BoolV a) (BoolV b) = Good (BoolV (a && b))
checked_binary Or (BoolV a) (BoolV b) = Good (BoolV (a || b))
checked_binary LT (IntV a) (IntV b) = Good (BoolV (a < b))
checked_binary LE (IntV a) (IntV b) = Good (BoolV (a <= b))
checked_binary GE (IntV a) (IntV b) = Good (BoolV (a >= b))
checked_binary GT (IntV a) (IntV b) = Good (BoolV (a > b))
checked_binary EQ a b = Good (BoolV (a == b))
checked_binary op a b =

Error ("Binary " ++ show op ++
" called with invalid arguments "
++ show a ++ ", " ++ show b)

All the other cases are the same as before, so checked_binary calls binary and
then tags the resulting value as Good.

6.1.3 Examples of Errors

Evaluating an expression may now return an error for unbound variables:

x

# Error "Variable x undefined"

Or for divide by zero:
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3 / 0

# Error "Divide by zero"

Your take-away from this section should be that checking error everywhere is
messy and tedious. The code for binary operators has to deal with errors, even
though most binary operators don’t have anything to do with error handling.

6.1.3.1 Exercise 6.1: Complete Error Checking

Extend the evaluator with error checking for the remaining expression cases,
including if, non-recursive var, and function definition/calls. Ensure that all
errors, including pattern match failures, are captured by your code and converted
to Error values, rather than causing Haskell execution errors.

Start with the files for First Class Functions and Error Checking and combine
them and complete the error cases. The files you need are Error Checking zip
file.

As a bonus, implement error checking for recursive var expressions.

6.1.3.2 Exercise 6.2: Error Handling

In the code given above, all errors cause the program to terminate execution.
Extend the language with a try/catch expression that allows errors to be caught
and handled within a program. The syntax is try { Exp } catch { Exp },
and the meaning is to evaluate the first Exp and return its value if it is Good,
otherwise evaluate the second Exp and return its value (or an Error).

6.1.3.3 Exercise 6.3: Multiple Bindings and Arguments

If you really want to experience how messy it is to explicitly program error
handling, implement error checking where var expressions can have multiple
bindings, and functions can have multiple arguments.

6.2 Mutable State

A second common pervasive computational strategy, besides error handling, is
the use of mutable state.

mutable state Mutable state means that the state of a program changes or
mutates: that a variable can be assigned a new value or a part of a data
structure can be modified.
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Mutable state is a pervasive feature because it is something that happens in
addition to the normal computation of a value.

Here is one typical example of a program that uses mutable variables. The code
is valid in C, Java or JavaScript:

x = 1;
for (i = 2; i <= 5; i = i + 1) {

x = x * i;
}

It declares a local variable named x with initial value 1 and then performs an
iteration where the variable i changes from 1 to 5. On each iteration of the loop
the variable x is multiplied by i. The result of x at the end is the factorial of 5,
namely 120.

Another typical example of mutable state is modification of data structures. The
following code, written in JavaScript, creates a circular data structure:

record = { first: 2, next: null };
record.next = record;

Roughly equivalent code could be implemented in C or Java (or any other
imperative language), although the resulting code is usually somewhat longer.

It would be easy to recode the factorial example above as a pure functional
program. With more work it may be possible to encoding the circular data
structure as well. But the point of this book is not to teach you how to do
functional programming. The point is to explain programming languages, and
to code the explanation explicitly as an evaluator. Since many programming
languages allow mutable values, it is important to be able to explain mutation.
But we cannot use mutation to provide the explanation, because we have chosen
to write the evaluator in Haskell, a pure functional language. The hope is that
detailed and explicit analysis of how mutation works in programming languages
will lead to insights about the costs and benefits of using mutation. The code
for this section is in the Mutable State zip file.

6.2.1 Addresses

Imperative languages typically allow everything to be mutable by default: all
variables are mutable and all data structures are mutable. While this is often
convenient, it has the disadvantage that there is no way to turn off mutation.
Many variables and data structures, even in imperative languages, are logically
immutable. Even when the programmer intends for the variables or data structure
to be constant and unchanging, there is no way in most imperative languages
for the programmer to make this intention explicit.
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To rectify this situation, at the cost of being somewhat unconventional, this book
takes a different approach to mutable state, where mutability must be explicitly
declared. Variables are not mutable by default. Instead a new kind of value, an
address, is introduced to support mutation.

address An address identifies a mutable container that stores a single value,
but whose contents can change over time. Addresses are sometimes called
locations.

The storage identified by an address is sometimes called a cell. You can think
of it as a box that contains a value. (Note that the concept of an address of
a mutable container is also used in ML and BLISS for mutable values, where
they are known as ref values. This is also closely related to the concept of an
address of a memory cell, as it appears in assembly language or C).

There are three fundamental operations involving addresses: creating a new
cell with an initial value and a new address, accessing the current value at a
address, and changing the value stored at an address. The following table gives
the concrete syntax of these operations.

Operation Meaning
mutable e Creates a mutable cell with initial value given by e
@e Accesses the contents stored at address e
a = e Updates the contents at address a to be value of expression e

Using these operations, the factorial program given above can be expressed as
follows, using mutable cells:

x = mutable 1;
for (i = mutable 2; @i <= 5; i = @i + 1) {

x = @x * @i;
}

In this model a variable always denotes the address to which it is bound. If the
variable x appears on the right side of an assignment, it must be dereferenced as
@x.

dereferencing A address is dereferenced when the contents of the cell associated
with the address is looked up and returned.

If the variable appears on the left side of an assignment, it denotes an address
that is updated.
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It should be clear that the variables don’t actually change in this model. The
variables are bound to an address, and this binding does not change. What
changes is the value stored at an address. This interpretation resembles the
computational model underlying C, where address identify memory cells. (TODO:
make more careful comparison to C, with attention to l-values and r-values)
An address is a new kind of value. Although addresses can be represented by any
unique set of labels, one convenient representation for addresses is as integers.
Using integers as addresses is also similar to the use of integers for addresses in
a computer memory.

data Value = IntV Int
| BoolV Bool
| ClosureV String Exp Env
| AddressV Int -- new

deriving (Eq, Show)

When writing programs and values, it is useful to distinguish addresses from
ordinary integer values. As a convention, addresses will be tagged with a “pound
sign”, so that Address 3 will be written #3.
Another advantage of explicit cells for mutability is that the treatment of local
variables given in previous chapters is still valid. Variables are still immutably
bound to values. By introducing a new kind of value, namely addresses, it is
possible to bind a variable to an address. It is the content stored at an address
that changes, not the variable. (reminds me of the line of The Matrix: “it is not
the spoon that bends...”) Introducing cells and addresses does not fundamentally
change the nature or capabilities of imperative languages, it just modifies how
the imperative features are expressed.

6.2.1.1 Memory

The current value of all mutable cells used in a program is called memory.

memory memory is a map or association of addresses to values.

The same techniques used for environments could be used for memories, as a list
of pairs or a function. Memory can also be represented as a function mapping
integers to values, similar to the representation of environments as functions.
Note that a memory is also sometimes called a store, based on the idea that is
provides a form of storage.
Since addresses are integers, one natural representation is as a list or array of
values, where the address is the position or index of the value. Such an array is
directly analogous to the memory of a computer system, which can be thought
of as an array of 8 bit values. In this chapter memory will be implemented as a
list of values:
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type Memory = [Value]

One complication is that the memory must be able to grow by adding new
addresses. The initial empty memory is the empty list []. The first address
added is zero [#0]. The next address is one to create a memory [#0, #1]. In
general a memory with n cells will have addresses [#0, #1, . . . , #n− 1]. Here
is an example memory, with two addresses:

[IntV 120, IntV 6]

This memory has value 120 at address #0 and value 6 at address #1. More
concisely, this memory can be written as

[120, 6]

This memory could be the result of executing the factorial program given above,
under the assumption that x is bound to address 0 and i is bound to address
#1. An appropriate environment is:

[x 7→ #0, i 7→ #1]

During the execution of the program that computes the factorial of 5, there are
10 different memory configurations that are created:

Step Memory
start []
x = mutable 1; [1]
i = mutable 2; [1, 2]
x = @x * @i; [2, 2]
i = @i + 1; [2, 3]
x = @x * @i; [6, 3]
i = @i + 1; [6, 4]
x = @x * @i; [24, 4]
i = @i + 1; [24, 5]
x = @x * @i; [120, 5]
i = @i + 1; [120, 6]

6.2.2 Pure Functional Operations on Memory

The two fundamental operations on memory are memory access, which looks
up the contents of a memory cell, and update, which modifies the contents of a
memory cell.
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6.2.2.1 Access

The memory access function takes a memory address i and a memory (list)
and returns the item of the list at position i counting from the left and starting
at 0. The Haskell function !! returns the nth item of a list, so it is exactly what
we need:

access i mem = mem !! i

TODO: rename “access” to be “contents”?

6.2.2.2 Update

It is not possible to actually change memory in pure functional languages,
including Haskell, because there is no way to modify a data structure after is
has been constructed. But it is possible to compute a new data structure that is
based on an existing one. This is the notion of functional update or functional
change: a function can act as a transformation of a value into a new value. A
functional update to memory is a function of type Memory -> Memory. Such
functions take a memory as input and create a new memory as an output. The
new memory is typically nearly identical to the input memory, but with a small
change.
For example, the update operator on memory replaces the contents of a single
address with a new value.

update :: Int -> Value -> Memory -> Memory
update addr val mem =

let (before, _ : after) = splitAt addr mem in
before ++ [val] ++ after

The update function works by splitting the memory into the part before the
address and the part starting with the address addr. The pattern _ : after
binds after to be the memory after the address. The update function then
recreates a new memory containing the before part, the updated memory cell,
and the after part. The function is inefficient because it has to copy all the
memory cells it has scanned up to that point! We are not worried about efficiency,
however, so just relax. It is fast enough.
Using access and update it is possible to define interesting transformations on
memory. For example, the function mul10 multiplies the contents of a memory
address by 10:

mul10 addr mem =
let IntV n = access addr mem in

update addr (IntV (10 * n)) mem
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Here is an example calling mul10 on a memory with 4 cells:

mul10 1 [IntV 3, IntV 4, IntV 5, IntV 6]

The result is

[IntV 3,IntV 40,IntV 5,IntV 6]

The fact that mul10 is a transformation on memory is evident from its type:

mul10 :: Int -> Memory -> Memory

This means that mul10 takes an memory address as an input and returns a
function that transforms an input memory into an output memory.

6.2.3 Stateful Computations

A stateful computation is one that produces a value and also accesses and poten-
tially updates memory. In changing evaluate to be a stateful computation, the
type must change. Currently evaluate takes an expression and an environment
and returns a value:

evaluate :: Exp -> Env -> Value

Now that an expression can access memory, the current memory must be an
input to the evaluation process:

evaluate :: Exp -> Env -> Memory -> ...

The evaluator still produces a value, but it may also return a new modified
memory. These two requirements, to return a value and a memory, can be
achieved by returning a pair of a value and a new memory:

evaluate :: Exp -> Env -> Memory -> (Value, Memory)

This final type is the type of a stateful computation. Since it is useful to talk
about, we will give it a name:

type Stateful t = Memory -> (t, Memory)

This is a generic type for a memory-based computation which returns a value of
type t.
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Figure 6.3: Shape of a stateful computation.

stateful computation A stateful computation is represented functionally as
a function that takes an initial state and returns a value and an updated
state.

Just as in the case of errors, it is useful to give a visual form to the shape of a
stateful computation:

Thus the final type for evaluate is written concisely as:

evaluate :: Exp -> Env -> Stateful Value

This type is very similar to the type given for evaluate in the error section,
where Checked was used in place of Stateful. This similarity is not an accident,
as we will see in a later chapter.

6.2.4 Semantics of a Language with Mutation

The first step in creating a function with mutable cells is to add abstract syntax
for the three operations on mutable cells. The following table defines the abstract
syntax:

Operation Abstract Syntax Meaning
mutable e Mutable e Allocate memory
@a Access a Accesses memory
a = e Assign a e Updates memory

The abstract syntax is added to the data type representing expressions in our
language:

data Exp = ...
| Mutable Exp -- mutable e
| Access Exp -- @@a
| Assign Exp Exp -- a = e

The mutable e expression creates a new memory cell and returns its address.
First the expression e is evaluated to get the initial value of the new memory
cell. Evaluating e may modify memory, so care must be taken to allocate the
new cell in the new memory. The address of the new memory cell is just the
length of the memory.

evaluate (Mutable e) env mem1 =
let (ev, mem2) = evaluate e env mem1 in

(AddressV (length mem2), mem2 ++ [ev])
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Figure 6.4: Composing stateful computations.

The access expression @a evaluates the address expression a to get an address,
then returns the contents of the memory at that address. Note that if the
Address i pattern fails, Haskell raises an error. This is another case where error
handling, as in the previous section, could be used.

evaluate (Access a) env mem1 =
let (AddressV i, mem2) = evaluate a env mem1 in

(access i mem2, mem2)

An assignment statement a = e first evaluates the target expression a to get an
address. It is an error if a does not evaluate to an address. Then the source
expression e is evaluated. Evaluating a and e may update the memory, so

evaluate (Assign a e) env mem1 =
let (AddressV i, mem2) = evaluate a env mem1 in

let (ev, mem3) = evaluate e env mem2 in
(ev, update i ev mem3)

6.2.4.1 Mutable State with Multiple Sub-expressions

The interesting thing is that even parts of the evaluator that have nothing to do
with mutable cells have to be completely rewritten:

evaluate (Binary op a b) env mem1 =
let (av, mem2) = evaluate a env mem1 in

let (bv, mem3) = evaluate b env mem2 in
(binary op av bv, mem3)

This form of composition is illustrated in the following diagram:

The memory input of the combined expression is passed to A. The value out
and the memory output of A are given as inputs to B. The final result of the
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composition is the value of B and the memory that results from B. Note that
the shape of the overall composition (the thick box) is the same as the shape of
the basic stateful computations.

Similar transformations are needed for Unary operations and function definition-
s/calls.

Most languages with mutable state also have sequences of expressions, of the form
e1; e2; \ldots; eN. It would be relatively easy to add a semicolon operator
to the binary operators. In fact, C has such an operator: the expression e1, e2
evaluates e1 and then evaluates e2. The result of the expression is the value of
e2. The value of e1 is discarded. Note that var can also be used to implement
sequences of operations: e1; e2 can be represented as var dummy = e1; e2
where dummy is a variable that is not used anywhere in the program.

6.2.5 Summary of Mutable State

Again, the take-away should be that mutation is messy when programmed in
this way. Mutation affects every part of the evaluation process, even for parts
that are not involved with creating or manipulating mutable cells.

Here is the complete code for mutable cells.

data Exp = Literal Value
| Unary UnaryOp Exp
| Binary BinaryOp Exp Exp
| If Exp Exp Exp
| Variable String
| Declare String Exp Exp
| Function String Exp
| Call Exp Exp
| Seq Exp Exp
| Mutable Exp -- new
| Access Exp -- new
| Assign Exp Exp -- new

deriving (Eq, Show)

type Env = [(String, Value)]

All the existing cases of the evaluator are modified:

evaluate :: Exp -> Env -> Stateful Value
evaluate (Literal v) env mem = (v, mem)

evaluate (Unary op a) env mem1 =
let (av, mem2) = evaluate a env mem1 in
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(unary op av, mem2)

evaluate (Binary op a b) env mem1 =
let (av, mem2) = evaluate a env mem1 in

let (bv, mem3) = evaluate b env mem2 in
(binary op av bv, mem3)

evaluate (If a b c) env mem1 =
let (BoolV test, mem2) = evaluate a env mem1 in

evaluate (if test then b else c) env mem2

evaluate (Variable x) env mem = (fromJust (lookup x env), mem)

evaluate (Declare x e body) env mem1 =
let (ev, mem2) = evaluate e env mem1

newEnv = (x, ev) : env
in

evaluate body newEnv mem2

evaluate (Function x body) env mem = (ClosureV x body env, mem)

evaluate (Call f a) env mem1 =
let (ClosureV x body closeEnv, mem2) = evaluate f env mem1

(av, mem3) = evaluate a env mem2
newEnv = (x, av) : closeEnv

in
evaluate body newEnv mem3

evaluate (Seq a b) env mem1 =
let (_, mem2) = evaluate a env mem1 in

evaluate b env mem2

Here are the mutation-specific parts of the evaluator:

evaluate (Mutable e) env mem1 =
let (ev, mem2) = evaluate e env mem1 in

(AddressV (length mem2), mem2 ++ [ev])

evaluate (Access a) env mem1 =
let (AddressV i, mem2) = evaluate a env mem1 in

(access i mem2, mem2)

evaluate (Assign a e) env mem1 =
let (AddressV i, mem2) = evaluate a env mem1 in

let (ev, mem3) = evaluate e env mem2 in
(ev, update i ev mem3)
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6.3 Monads: Abstract Computational Strate-
gies

At first glance it does not seem there is anything that can be done about the
messy coding involved in implementing errors and mutable state. These features
are aspects of the evaluation process, because they affect all the code of the
evaluator, not just the part that directly involves the new feature.

What is worse is that combining the code for errors and mutable state is not
possible without writing yet another completely different implementation. The
features of our evaluator are not implemented in a modular way.

The concept of a monad provides a framework that allows different computational
strategies to be invoked in a uniform way. The rest of this section shows how
to derive the monad structure from the examples of error handing and mutable
state given above. The basic strategy is to compare the two examples and do
whatever is necessary to force them into a common structure, by moving details
into helper functions. By defining appropriate helper functions that have the
same interface, the two examples can be expressed in a uniform format.

6.3.1 Abstracting Simple Computations

The first step is to examine how the two evaluators deal with simple computations
that return values. Consider the way that the Literal expression is evaluated
for both the Checked and the Stateful evaluators.

Checked Stateful
evaluate (Literal v) env = Good vevaluate (Literal v) env m = (v, m)

One important point is that literal values never cause errors and they do not
modify memory. They represent the simple good base case for a computation.
In monad terminology, this operation is called return because it describes how
to return a value from the computation. The return functions for checked and
stateful computations are different, but they both have same interface: they take
a value as input and output an appropriate checked or stateful value.

Checked Stateful
returnC :: Value -> Checked Value returnS :: Value -> Stateful Value
returnC v = Good v returnS v = λ m.(v, m)

Using these return functions, the original evaluate code can be written so that
the two cases are nearly identical. The details of how to deal with the checked
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or stateful values are hidden in the return helper functions.

Checked Stateful
evaluate (Literal v) env = evaluate (Literal v) env =

returnC v returnS v

6.3.2 Abstracting Computation Composition

The next step is to unify the case when there are multiple sub-expressions that
must be evaluated. The binary operator provides a good example of multiple
sub-expressions.

Checked evaluate Stateful evaluate
evaluate (Binary op a b) env = evaluate (Binary op a b) env =

λm1.
case evaluate a env of let (av, m2) = evaluate a env m1 in
Error msg -> Error msg let (bv, m3) = evaluate b env m2 in
Good av -> (binary op av bv, m3)
case evaluate b env of
Error msg -> Error msg
Good bv ->
checked_binary op av bv

Note that the memory m1 argument has become a lambda! This is an instance
of the Rule of Function Arguments. It was done to allow the first lines to be
equivalent evaluate (Binary op a b) env.

In this case computation proceeds in steps: first evaluate one expression (checking
errors and updating memory) and then evaluating the second expression (checking
errors and updating memory as appropriate). They both have a similar pattern
of code for dealing with the evaluation of a and b. Factoring out the common
parts as first and next, the core of the pattern is:

Checked Stateful
case first of λm1.let (v, m2) = first m1 in

Error msg -> Error msg next v m2

Good v -> next v

This first corresponds to evaluate a env or evaluate b env in both the orig-
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inal versions. The next represents the remainder of the computation. It is just
everything that appears after the main pattern, but with all the free variables
made explicit. For the Checked case, the only variable needed in next is the
variable v that comes form the Good case. For the Stateful case, in addition to
v the next also requires access to m2

These patterns can be made explicit as a special operator named bind >>= that
combines the two parts, where the second part is a function with the appropriate
arguments. To be more concrete, these parts are converted into explicit variables.
The first is named A and the next, which is a function, is named F:

Checked Stateful
A >>=C F = A >>=S F =

case A of λm1.let (v, m2) = A m1 in
Error msg -> Error msg F v m2
Good v -> F v

These generic operators for Checked >>=C and Stateful >>=S computations
abstract away the core pattern composing two Checked or Stateful compu-
tations. The family of operators >>= are called bind operators, because they
bind together computations. This is unrelated to bindings discussed in earler
chapters.

Using these operators, the original code can be written in simpler form:

Checked Stateful
(evaluate a env) >>=C (λav. (evaluate a env) >>=S (λav.
(evaluate b env) >>=C (λbv. (evaluate b env) >>=S (λbv.

checked_binary op av bv)) λm. (binary op av bv, m)))

All mention of Error and Good have been removed from the Checked version!
The error ‘plumbing’ has been hidden. Most of the memory plumbing has
been removed from the Stateful version, but there is still a little at the end.
But the pattern that has emerged is the same one that was identified in the
previous section, where the returnS function converts a value (the result of
binary op av bv) into a default stateful computation. To see how this works,
consider that

returnS x ≡ λm. (x, m)

Using returnS the result is:

Checked Stateful
(evaluate a env) >>=C (λav. (evaluate a env) >>=S (λav.
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Checked Stateful
(evaluate b env) >>=C (λbv. (evaluate b env) >>=S (λbv.

checked_binary op av bv)) returnS (binary op av bv)))

Now all references to memory have been removed in these cases. Of course, in
the evaluation rules for Mutable, assignment, and access there will be explicit
references to memory. Similarly, in the cases where errors are generated, for
example for undefined variables, the code will still have to create Error values.
What we have done here is examine the parts of the program that don’t involve
errors or memory, namely literals and binary operators, and figured out a way
to hide the complexity of error checking and mutable memory. This complexity
has been hidden in two new operators, return and bind >>=. The type of the
bind operators is also interesting:

Checked: >>=C :: Checked Value -> (Value -> Checked Value) -> Checked Value
Stateful: >>=S :: Stateful Value -> (Value -> Stateful Value) -> Stateful Value

It should be clear that an consistent pattern has emerged. This is a very abstract
pattern, which has to do with the structure of the underlying computation: is it
a checked computation or a stateful computation? Other forms of computation
are also possible.

6.3.3 Monads Defined

monad A monad m is a computational structure that involves three parts:

• A generic data type m
• A return function returnm :: t→ m t
• A bind function >>=m :: m t→ (t→ m s)→ m s

The symbol m gives the name of the monad and also defines the shape of the
computation. A program that uses the monad m is called an m-computation.
Examples of m in the previous section are Checked and Stateful. The instanti-
ation of the generic type m t at a particular type t represents an m-computation
that produces a value of type t. For example, the type Checked Int represents
an error-checked computation that produces an Int. Saying that it is a “checked
computation” implies that it might produce an error rather than an integer. As
another example, the type Stateful String represents a stateful computation
that produces a value of type String. The fact that it is a “stateful computation”
implies that there is a memory which is required as input to the computation,
and that it produces an updated memory in addition to the string result.

return The returnm function specifies how values are converted into
m-computations.
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The returnm function has type t→ m t for any type t. What this means is that
it converts a value of type t into an m-computation that just returns the value.
It is important that the computation just returns the value, so, for example, it is
not legal for the stateful return function to modify memory. Examples of return
were given in the previous section.

>>= The bind function >>=m specifies how m-computations are combined to-
gether.

In general the behavior of A >>=m F is to perform them-computation A and then
pass the value it produces to the function F to create a second m-computation,
which is returned as the result of the bind operation. Note that the A may not
produce a value, in which case F is not called. This happens, for example, in
the Checked monad, if A produces an error. At a high level, bind combines the
computation A with the (parameterized) computation F to form a composite
computation, which performs the effect of both A and F.

The type of bind given here is slightly more general than the type of bind used
in the previous examples. In the previous examples, the type was m t→ (t→
m t)→ m t. However, it is possible for the return types of the two computations
to differ. As long as the output of the first computation A can be passed to F,
there is no problem.

TODO: mention the monad laws.

6.4 Monads in Haskell

The concept of a monad allows pervasive computational features, e.g. error
checking and mutable state, to be defined in using a high-level interface that
allows hides the plumbing involved in managing errors or state. Unfortunately,
the resulting programs are still somewhat cumbersome to work with. Haskell
provides special support for working with monads that makes them easy to use.

6.4.1 The Monad Type Class

Haskell allow monads to be defined very cleanly using type classes.

type class A type class is a Haskell mechanism for overloading functios based
on their type.

The Monad class has the following definition:

115



class Monad m where
(>>=) :: m t -> (t -> m s) -> m s
return :: t -> m t

It say that for a generic type m to be a monad, it must have two functions, bind
(>>=) and return, with the appropriate types.

The type Checked is an instance of the Monad class:

instance Applicative Checked where
pure val = Good val
(<*>) = ap

instance Monad Checked where
return = pure
a >>= f =

case a of
Error msg -> Error msg
Good v -> f v

It turns out to be a little more complex to define the stateful monad instance,
so this topic is delayed until the end of this section.

6.4.2 Haskell do Notation

Haskell also supports special syntax for writing programs that use monads, which
simplifies the use of the bind operator. The problem with the monadic version
of the program is apparent in the code for evaluation of binary expressions. The
code given above is ugly because of the nested use of lambda functions. Here an
attempt to make the Checked case more readable:

evaluate (Binary op a b) env =
(evaluate a env) >>=C (λav.
(evaluate b env) >>=C (λbv.
checked_binary op av bv))

The effect here is for av to be bound to the value produced by the
evaluate a env, and for bv to be bound to the result of evaluate b env.
Unfortunately, the variables come to the right of the expression that produces
the value, which is not the way we naturally think about binding. Also, the
nested lambdas and parenthesis are distracting.

Haskell has a special notation, the do notation, for the bind operator that allows
the variables to be written in the right order. Using do the program above can
be written as follows:
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evaluate (Binary op a b) env = do
av <- evaluate a env
bv <- evaluate b env
checked_binary op av bv

Here is the basic pattern for do notation:

do
x <- e1
e2

This is equivalent to this form, using bind:

e1 >>= (λ x . e2)

The expressions e1 and e2 must be expressions that produce values in the same
monad m. To be precise, if e1 has type m t1 where m is a data type declared as
an instance of Monad, then the variable x will be assigned a value of type t1.
Then e2 must have type m t2 for some type t2. Note that the <- symbol must be
understood differently from =. What it means is that x is bound to the simple
value produced by the computation e1. The <- is there to remind you that x is
not bound directly to the monadic computation produced by e1, but is bound
to the value that the computation generates.

For a concrete example, if m is Checked then e1 must have type Checked t1 for
some type t1. The value of expression e1, which is a Checked t1, could be a
good value or an error. If e1 produces an error then the computation stops, x is
never bound to any value, and e2 is not called. But if e1 produces a good value
v, then x will be bound to v (which is the value that was labeled Good) and the
computation will proceed with e2.

One benefit of the do notation is that the bind operator is implicit. Haskell type
inference and the type class system arrange for the right bind operator to be
selected automatically.

TODO: mention let in do, and the case where no variable is used.

6.5 Using Haskell Monads

The messy evaluators for error checking and mutable state can be rewritten much
more cleanly using monads. In the format of the previous chapter’s comparison
of Checked and Stateful computations, here they are using monads:

Checked Stateful
av <- evaluate a env av <- evaluate a env
bv <- evaluate b env bv <- evaluate b env
checked_binary op av bv return (binary op av bv)
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Look closely, and they are nearly identical!

6.5.1 Monadic Error Checking

Here is a version of error checking using the Checked monad defined above: The
code for error checking using monads is given in the Checked Monad zip file.

evaluate :: Exp -> Env -> Checked Value
evaluate (Literal v) env = return v
evaluate (Unary op a) env = do

av <- evaluate a env
checked_unary op av

evaluate (Binary op a b) env = do
av <- evaluate a env
bv <- evaluate b env
checked_binary op av bv

evaluate (If a b c) env = do
av <- evaluate a env
case av of

BoolV cond -> evaluate (if cond then b else c) env
_ -> Error ("Expected boolean but found " ++ show av)

-- variables and declarations
evaluate (Variable x) env =

case lookup x env of
Nothing -> Error ("Variable " ++ x ++ " undefined")
Just v -> return v

evaluate (Declare x e body) env = do -- non-recursive case
ev <- evaluate e env
let newEnv = (x, ev) : env
evaluate body newEnv

-- function definitions and function calls
evaluate (Function x body) env =

return (ClosureV x body env)

evaluate (Call fun arg) env = do
funv <- evaluate fun env
case funv of

ClosureV x body closeEnv -> do
argv <- evaluate arg env
let newEnv = (x, argv) : closeEnv
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evaluate body newEnv
_ -> Error ("Expected function but found " ++ show funv)

Note that code involving errors only occurs where an error is actually raised.
Other parts of the code, for example the case for Binary and Declare do not
explicitly mention errors. This is very different from the code given in the Section
on Error Checking.

6.5.2 Monadic Mutable State

The full code for the stateful evaluator using monads is given in the Stateful
Monad zip file.
The main complexity in defining a stateful monad is that monads in Haskell can
only be defined for data types, which have explicit constructor labels. It is not
possible to define a monad instance for the stateful type given in the Section on
Stateful Computations, since it is a pure function type:

type Stateful t = Memory -> (t, Memory)

To define a monad, Haskell requires a data type that labels the function with a
constructor. In this case, the constructor is named ST:

data Stateful t = ST (Memory -> (t, Memory))

The data type is isomorphic to the function type, because it is just a type with
a label.
The Stateful monad is an instance of Monad. It is fairly complex, mostly
because of the need to deal with the type tag.
It defines return to return a value without changing memory. It does this by
returning a ST with a function that takes a memory and returns the value with
the memory unchanged.

instance Applicative Stateful where
pure val = ST (\m -> (val, m))
(<*>) = ap

instance Monad Stateful where
return = pure
(ST c) >>= f =

ST (\m ->
let (val, m’) = c m in

let ST f’ = f val in
f’ m’

)
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It defines the bind operator >>= to take a stateful value c and a function f.
It returns a new Stateful value that accepts a memory m, it then passes this
memory to c and captures the result as a val and a new memory m’. It then
applies the function f to the value val and captures the resulting Stateful
value. This function f’ is applied to the new memory m’ to create the Stateful
result.

Here is a version of evaluator using the Stateful monad defined above:

evaluate :: Exp -> Env -> Stateful Value
-- basic operations
evaluate (Literal v) env = return v

evaluate (Unary op a) env = do
av <- evaluate a env
return (unary op av)

evaluate (Binary op a b) env = do
av <- evaluate a env
bv <- evaluate b env
return (binary op av bv)

evaluate (If a b c) env = do
cond <- evaluate a env
case cond of

BoolV t -> evaluate (if t then b else c) env

-- variables and declarations
evaluate (Declare x e body) env = do -- non-recursive case

ev <- evaluate e env
let newEnv = (x, ev) : env
evaluate body newEnv

evaluate (Variable x) env =
return (fromJust (lookup x env))

-- first-class functions
evaluate (Function x body) env =

return (ClosureV x body env)

evaluate (Call fun arg) env = do
closure <- evaluate fun env
case closure of

ClosureV x body closeEnv -> do
argv <- evaluate arg env
let newEnv = (x, argv) : closeEnv
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evaluate body newEnv

-- mutation operations
evaluate (Seq a b) env = do

evaluate a env
evaluate b env

evaluate (Mutable e) env = do
ev <- evaluate e env
newMemory ev

evaluate (Access a) env = do
addr <- evaluate a env
case addr of

AddressV i -> readMemory i

evaluate (Assign a e) env = do
addr <- evaluate a env
ev <- evaluate e env
case addr of

AddressV i -> updateMemory ev i

Note that the expression forms that don’t involve memory, including unary
and binary operations, function calls and function definitions, don’t explicitly
mention any memory operations, as they did in the code given in the Section on
Mutable State. The evaluate function depends on three helper functions that
provide basic stateful computations to create memory cells, read memory, and
udpate memory.

newMemory val = ST (\mem -> (AddressV (length mem), mem ++ [val]))

readMemory i = ST (\mem -> (access i mem, mem))

updateMemory val i = ST (\mem -> (val, update i val mem))

Assignment 3: Defining a Monad for State and
Error handling

Combine the monads and interpreters for Error Checking and Mutable State
into a single monad that performs both error checking and mutable state. You
must also combine the evaluation functions.
The type of your monad must combine Checked and Stateful. There are several
ways to do this, but then one needed for this assignment is:
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data CheckedStateful t = CST (Memory -> (Checked t, Memory))
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Chapter 7

Abstract Interpretation and
Types

So far we have been focused on writing interpreters for small languages. An
interpreter is a meta-program that evaluates a program in a written in the
interpreted language. When evaluating an expression such as:

evaluate (3+5) ==> 8

we cannot be more precise about the result of this particular program: the
expression 3+5 evaluates only to the (concrete) number 8. The evaluate function
implements what is called a concrete interpreter. However it is possible to
write interpreters that return abstract values. Those interpreters, called abstract
interpreters, return some abstraction of the result of executing a program.

abstract value An abstract value is a value that represents a collection of
concrete values.

concrete interpreter A concrete interpreter is a normal interpreter that eval-
uates with normal values.

abstract interpreter A abstract interpreter is an interpreter that operates
over abstact values using abstract operations.

validity An abstract interpreter is valid if the concrete value result is a member
of the set of values of the abstract value evaluation result, for all evaluations.

The most common and familiar example of abstract interpretation is type-
checking or type-inference. A type-checker analyses a program in a language,
checks whether the types of all sub-expressions are compatible and returns the
corresponding type of the program. For example:
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typeCheck (3+5) ==> Int

A type-checker works in a similar way to a concrete interpreter. The difference
is that instead of returning a (concrete) value, it returns a type. A type is an
abstraction of values. When the type of an expression is Int, it is not known
exactly which concrete number that expression evaluate to. However it is known
that that expression will evaluate to an integer value and not to a boolean value.

Type-checking is not the only example of abstract interpretation. In fact abstract
interpretation is a huge area of research in programming languages because
various forms of abstract interpretation are useful to prove certain properties
about programs.[TODO: more references]

7.1 Languages with a Single Type of Values

In a language with a single type of data type-checking is trivial. For example,
in the language of arithmetic, which only allows integer values, type-checking
would be defined as follows:

data Type = TInt

check :: Exp -> Type
check e = TInt

In other words, all expressions have type TInt and type-checking cannot fail,
since there are no type-errors. Therefore, type-checking only really makes sense
in a language with at least two types of data.

7.2 A Language with Integers and Booleans

In this tutorial we are going to write a type-checker for a language with Integers
and Booleans. The language with integer and booleans that we are going to use
is the same one from the Section on More Kinds of Data:

data BinaryOp = Add | Sub | Mul | Div | And | Or
| GT | LT | LE | GE | EQ

data UnaryOp = Neg | Not

data Exp = Literal Value
| Unary UnaryOp Exp
| Binary BinaryOp Exp Exp
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| If Exp Exp Exp
| Variable String
| Declare String Exp Exp

(NOTE: The language in the tutorial files includes an additional constructor
Call. For this question you can ignore that constructor and there is no need to
have a case for Call in the type-checker function.)
For this language types are represented as:

data Type = TInt | TBool
deriving (Eq, Show)

This data type accounts for the two possible types in the language.
Type-checking can fail when the types of subexpressions are incompatible. For
example, the expression:

3 + true

should fail to type-check because addition (+) is an operation that expects two
integer values. However in this case, the second argument is not an integer, but
a boolean.
In a language with variables a type-checker needs to track the types of variables.
To do this we can use what is called a type environment.

Type environments A type environment is a mapping from variable names
to types.

type TEnv = [(String, Type)]

A type environment plays a similar role to the environment in a regular interpreter:
it is used to track the types of variables during the type-checking process of an
expression.

7.2.1 Type of the type-checker

We are going to use the following type for the type-checker:

typeCheck :: Exp -> TEnv -> Type

Note how similar this type is to the type of an environment-based interpreter
except for one difference:

1) Where in the concrete interpreter we used Value, we now use Type.

If we look at typeCheck as an abstract interpreter, then types play the role of
abstract values.
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7.2.2 Typing rules for expressions

Most expressions in the language it are fairly obvious to type-check. For example,
to type-check an expression of the form:

e1 + e2

we proceed as follows:

1) check whether the type of e1 is TInt
2) check whether the type of e2 is TInt
3) If both types are TInt, return TInt as the result type (Just TInt); other-

wise fail to type-check (Nothing)

7.2.2.1 Typing Declare Expressions

To type a declare expression of the form

var x = e; body

we proceed as follows:

1) type-check the expression e
2) if e has a valid type then type-check the body expression with an type-

environment extended with x --> typeof e; otherwise fail with a type-
error.

For expressions with unbound variables: for example:

var x = y; x

you should throw an error. In other words the type-checker works only for valid
programs.

7.2.2.2 Typing If Expressions

The only slightly tricky expression to type-check is an if expression. The
type-checking rule for an if expressions of the form:

if (e1) e2 else e3

is
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1) check whether the type of e1 is TBool
2) compute the type of e2
3) compute the type of e3
4) check whether the types of e2 and e3 are the same. If they are the same

return that type; otherwise fail.

The code for the typeCheck function is as follows:

typeCheck :: Exp -> TypeEnv -> Type
typeCheck (Literal (IntV _)) env = IntT
typeCheck (Literal (BoolV _)) env = BoolT
typeCheck (Unary op a) env =

checkUnary op (typeCheck a env)

typeCheck (Binary op a b) env =
checkBinary op (typeCheck a env) (typeCheck b env)

typeCheck (If a b c) env =
if BoolT /= typeCheck a env then

error ("Conditional must return a boolean: " ++ show a)
else if typeCheck b env /= typeCheck c env then

error ("Result types are not the same in "
++ show b ++ ", " ++ show c)

else
typeCheck b env

typeCheck (Variable x) env = fromJust (lookup x env)

typeCheck (Declare x exp body) env = typeCheck body newEnv
where newEnv = (x, typeCheck exp env) : env

Here are the two helper functions, which are the abstract versions of binary and
unary:

checkUnary Not BoolT = BoolT
checkUnary Neg IntT = IntT
checkUnary op a = error ("Mismatched argument for " ++

show op ++ " " ++ show a)

checkBinary Add IntT IntT = IntT
checkBinary Sub IntT IntT = IntT
checkBinary Mul IntT IntT = IntT
checkBinary Div IntT IntT = IntT
checkBinary And BoolT BoolT = BoolT
checkBinary Or BoolT BoolT = BoolT
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checkBinary LT IntT IntT = BoolT
checkBinary LE IntT IntT = BoolT
checkBinary GE IntT IntT = BoolT
checkBinary GT IntT IntT = BoolT
checkBinary EQ a b | a == b = BoolT
checkBinary op a b =

error ("Mismatched binary types for " ++
show a ++ " " ++ show op ++ " " ++ show b)

Note that if type-checking any subexpressions fails with a type-error then the
type-checking of the if expression will also fail.

7.3 Type-Checking First-class Functions

In order to support type-checking we need to modify some of the datatypes with
additional type-annotations:

data Exp = Literal Value
| Unary UnaryOp Exp
| Binary BinaryOp Exp Exp
| If Exp Exp Exp
| Variable String
| Declare String Exp Exp
| Function (String, Type) Exp -- changed
| Call Exp Exp

deriving (Eq, Show)

In expressions functions need to have parameters annotated with types. Similarly
in closures, the parameters need a type annotation. These are marked in bold
above.
Types and type-environments are defined as follows:

data Type = IntT
| BoolT
| FunT Type Type -- new

deriving (Eq, Show)

type TypeEnv = [(String, Type)]

The interesting thing is that we now have a type for functions denoted by
the constructor TFun. These types are similar to Haskell function types like
Int -> Int or Bool -> (Int -> Bool). Function types are useful to have
function arguments. For example:
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function(f : Int -> Int) {
function(x : Int) {

f(f(x))
}

}

is a function that given a function f and an integer x, applies f twice to x.

Type checking a function definition is straightforward, given the argument type
as part of the definition. It type checks the body of the function in a type
environment extended with a declaration of the argument.

typeCheck (Function (x, t) body) env =
FunT t (typeCheck body newEnv) -- new

where newEnv = (x, t) : env

Type checking a function call is also straightforward: it matches the actual
argument type with the declared function argument type.

typeCheck (Call fun arg) env =
case typeCheck fun env of

FunT a b -> if a /= typeCheck arg env
then error "Invalid argument type"
else b

_ -> error "Expected function"

The file FirstClassFunctionsTyping.hs adds a function typeCheck for doing
type-checking.

typeCheck :: Exp -> TypeEnv -> Type

You can also optionally modify the Happy file to extend parsing so that we can
deal with type-annotations in the language.

Here is a package of Haskell files for Typing.
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Chapter 8

Data

So far we have focused on how to define and use static-scoped binding and
higher-order functions, how to use monads to define pervasive computational
strategies, like error checking and mutable state, and static type-checking. While
these are important topics, they are certainly not all that you need to know
in order to understand programming languages. This chapter delves into the
possibility for defining and refining data in many different ways.
While we have defined primitive data types, including int and bool, and closures
and addresses for functions and mutable state, we haven’t examined the nature
of data itself. The most complex data we have encountered is the use of data
in Haskell to define the structure of abstract syntax Exp and values Value, and
function types mentioned in this paragraph. We have not addressed how to
define data within the languages that we have been studying.
The main topic of the chapter is how to define and implement data abstraction.
By data we mean the information that appears in a program. Data is a complex
topic, encompassing primitive data, data structures, algebraic data, abstract data
types, objects in object-oriented programming, and databases. Abstraction is a
concept that has appeared in several important places in this book already. It was
used to describe function abstraction, or the definition of reusable transformations
from inputs to outputs. It was used in the chapter on typing in the concept of
abstract interpretation, where all values are abstracted to combine similar values
together to operate on categories of values.
Abstraction applied to data means that data is constructed, manipulated, and
observed without being tied to a particular representation. Thus there is an
abstract view of data, which is used by clients of the data. And there is a concrete
representation of data, which is created and managed by an implementor.
There are several benefits to having an abstract view of data. The first benefit
is that only the essential properties of the data are visible to the programmer –
all non-essential details are hidden. This allows a programmer to focus on what
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is important, and ignore implementation details. A second benefit is that the
implementation of the data can be changed, for example to be more reliable,
smaller, or more efficient, without having to change a program that uses the
data. This works as long as the abstract view of the data doesn’t change, only
the hidden implementation details change. It is also possible to choose different
representations for data structures, for example, to change a program from
small-scale data to managing large data. If these forms of data are sufficiently
abstract, changing representation does not require the client program using the
data to change.

Some of the key questions to be addressed here are 1) How can users define data
types that look the same as primitives? 2) What are objects? 3) What are data
structures? 4) Why do most popular languages, like Python and Java, have
both primitive types and objects? 5) Is it possible to have a practical language
without primitive data?

8.1 Data in Programming Languages

Primitive data types were introduced in the very first programming languages.
They include integers, floating point numbers, booleans, and strings. Languages
like Algol, FORTRAN, COBOL, and Lisp were defined with these primitives.
Primitives sometimes included date/times, fixed-point numbers, and complex
numbers. Early languages also had built in data structures, like records, arrays,
unions, hash tables, and lists. These languages supported user-defined data types
that were constructed using these primitive data structuring mechanisms.

However, the fact that primitives were different from user-defined data types
began to be an issue. For example, if your language didn’t support complex
numbers, or date/time values, it was impossible for the user to define these types
and have them work the same as primitive types. It was a challenge to figure
out how to allow user-defined data types that look like primitive types.

This challenge was eventually solved by the discovery of Abstract Data Types
(ADT). The key idea is in understanding primitive types. They work by having
a type name together with operations on values of that type. Since they are
primitive types they could be created by literals in the language, like -32 and
99.75. An Abstract Data Type is a user-defined type that has its representation
hidden from the client. It includes operations for construction, manipulation, and
observation of values. For example, an abstract data type for complex numbers
might look like this:

type complex

val fromPolar : real, real -> complex
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val + : complex, complex -> complex
val - : complex, complex -> complex
val * : complex, complex -> complex
val / : complex, complex -> complex

val magnitude : complex -> real
val phase : complex -> real
val toString : complex -> string

There are two primary forms of data abstraction: Abstract Data Types (ADTs)
and Objects (OO). Primitive data is usually a form of abstract data type. Most
object languages

For example, primitive types are abstract: a programmer using them doesn’t
really know how they are implemented or represented. This applies to booleans,
integers, floating point values, strings and dates. For example, integers could be
implemented as 32 or 64 bit representations, or they could be implemented as
arbitrary-precision arithmetic, which would require variable amounts of storage
and more complex operations.

All the programmer needs to know is that there is a way to create primitive values,
operations that manipulate them, and ways to view some textual representation
of the data. In a statically typed language, there will also be a name associated
with each type of primitive data.
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