
F-Bounded Polymorphism

for Object-Oriented Programming

Peter Canning, William Cook, Walter Hill, Walter Olthoff
Hewlett-Packard Laboratories

P.O. Box 10490, Palo Alto, CA 94303-0971

John C. Mitchell
Department of Computer Science

Stanford University, Stanford, CA 94309

Abstract

Bounded quantification was introduced by Cardelli and
Wegner as a means of typing functions that operate uni-
formly over all subtypes of a given type. They defined
a simple “object” model and used bounded quantifica-
tion to type-check functions that make sense on all ob-
jects having a specified set of “attributes.” A more re-
alistic presentation of object-oriented languages would
allow objects that are elements of recursively-defined
types. In this context, bounded quantification no longer
serves its intended purpose. It is easy to find func-
tions that makes sense on all objects having a speci-
fied set of methods, but which cannot be typed in the
Cardelli-Wegner system. To provide a basis for typed
polymorphic functions in object-oriented languages, we
introduce F-bounded quantification. Some applications
of F-bounded quantification are presented and seman-
tic issues are discussed. Although our original moti-
vation was to type polymorphic functions over objects,
F-bounded quantification is a general form of polymor-
phism that seems useful whenever recursive type defin-
itions and subtyping are used.

1 Introduction

Although object-oriented programming has attracted
increasing interest in recent years, the development
of polymorphic type systems for object-oriented lan-
guages has progressed slowly. One reason is that object-
oriented languages are often described using terminol-
ogy that sets them apart from functional languages. In
addition, there has been a lack of formal models for
object-oriented languages. As a result, it has been
difficult to see how practical polymorphic type sys-
tems should be adapted for typing object-oriented con-
structs. In Cardelli’s seminal paper [8], record subtyp-

ing was identified as an important form of polymor-
phism in object-oriented programs. This lead to the
development of “bounded quantification” in [7]. If we
view objects as elements of non-recursive record types,
then bounded quantification provides a useful form of
polymorphism over objects. However, a more sophis-
ticated presentation of object-oriented constructs (as
in [5, 11, 10]) would allow objects that are elements
of recursively-defined types. With recursive types, the
Cardelli-Wegner form of bounded quantification is not
sufficiently expressive to meet its original goal.

F-bounded quantification is a natural extension of
bounded quantification that seems particularly useful
in connection with recursive types. The essential idea
may be illustrated by comparison with Cardelli-Wegner
bounded quantification. Using “⊆” for the subtype re-
lation, a simple example of a bounded-quantified type
is the type ∀t ⊆ τ . t → t. This is the type of func-
tions which map t to t, for every subtype t of τ . In
a setting where all structurally similar objects belong
to subtypes of a given type, many useful polymorphic
functions will have bounded quantified types. For ex-
ample, if we type an object by listing its methods and
their types, an object with a print method may have
type {. . . , print: void → string, . . .}, indicating that the
method print produces a print representation of the
object. In the view of subtyping presented in [8],
every type of this form will be a subtype of the type
{print: void → string} of objects having only a print
method. For example,

{A: int → void, print: void → string}
⊆ {print: void → string}.

A function taking a list of printable objects, a string and
returning an object whose print representation matches
the given string will have the bounded-quantified type
∀t ⊆ {print: string}. list[t] → string → t.

1

The flexibility of bounded quantification is dramati-
cally reduced when objects belong to recursively-defined
types. For example, consider the type

PartialOrder = { lesseq: PartialOrder → Bool }.

Each object of this type has a method lesseq which may
be applied to another object of the same type. We in-
tend the result of x.lesseq(y) to be true if x does not
exceed y in some ordering, and false otherwise. Using
lesseq, it should be possible to sort lists of PartialOrder
elements, for example. We may easily write a sort-
ing function with type ∀t ⊆ PartialOrder. list[t] → list[t].
However, as we shall see later in the paper, object-
oriented versions of the usual partially-ordered types
such as integers are not subtypes of PartialOrder. There-
fore, our generic sorting function cannot be used in the
way we might expect. To solve this problem and related
difficulties with other forms of recursive types we intro-
duce a generalization of bounded quantification which
we call F-bounded quantification, for want of better ter-
minology. For the example at hand, consider the func-
tion F from types to types given by

F[t] = { lesseq: t → bool }.

We may write a polymorphic sorting function of type
∀t ⊆ F[t].list[t] → list[t], where this function is defined on
any type t such that t ⊆ F[t]. Since integer ⊆ F[integer],
as explained in Section 3.3, we may apply such a sorting
function to lists of integers or lists of any other type of
objects having lesseq methods.

One practical application of F-bounded quantification
is for understanding some problems in the type system
of the Eiffel programming language [18]. Eiffel intro-
duces a special type expression, like Current, to represent
recursion at the type level. Like Current always repre-
sents the ‘current class’: in a class P it simply stands
for P , but when this class is inherited by a subclass C,
like Current in an inherited attribute is reinterpreted to
stand for the subclass C. The subclasses of such a class
are usefully understood as having interfaces that sat-
isfy an F-bound. However, as mentioned above, there
is no necessary subtype relation among types satisfying
an F-bound. This analysis explains some insecurities in
the Eiffel type-system, which always allows subclasses
to act as if they are subtypes of their parents. Further
details are given in [12], along with some suggestions for
correcting Eiffel’s problems using the results in this pa-
per. The error in the Eiffel type system illustrates the
subtlety involved in designing flexible and sound type
systems for object-oriented languages.

Another type system with a generalized form of
bounded quantification is presented by Curtis [13]. In
this system, arbitrary collections of subtype constraints

may be imposed on the quantified type variable. Thus
Curtis’ system subsumes our more modest proposal.
However, we believe that our form of quantification is
both sufficient to type-check practically useful object-
oriented programs, and more tractable. Some evidence
for the naturality of F-bounded quantification is the
intriguing connection with F-coalgebras, the dual of a
standard construction in the category-theoretic charac-
terization of type recursion [22].

The next section surveys relevant background on
strongly-typed object-oriented programming. Section 3
illustrates in detail problems with previous techniques
for dealing with recursive object types. Section 4 intro-
duces F-bounded quantification and demonstrates that
it solves the typing problems presented in the previous
section. some speculative observations on the semantic
aspects of F-bounded quantification. Section 6 summa-
rizes our contribution and indicates directions for future
research.

2 Background

2.1 Objects, Records and Recursive
Types

A fundamental premise underlying most models of
object-oriented programming is that objects may be re-
garded as record whose components are functions rep-
resenting methods [8, 7, 25, 11, 5]. In this model, “mes-
sage sending” is implemented by simple component se-
lection.

Record types are used to describe the protocols [14]
or interfaces of objects. A record type is a map-
ping of labels to types. A record consisting of labels
l1, . . . , lj with associated values in types σ1, . . . , σj has
type {l1: σ1, . . . , lj :σj}. The fields of the record type
describe messages together with the types of their ar-
guments and return values. This view is adopted in the
programming languages Amber [6], Modula-3 [10], and
TS [17].

Even the very simplest “textbook” examples
from object-oriented programming produce recursively-
defined record types [21, 1, 6, 16, 10]. For example,
the type of a planar point with four methods is defined
recursively as follows.

Point = {
x : void → Real,
y : void → Real,
move : Real × Real → Point,
equal : Point → Boolean
}

The body of the recursive type is a record type indi-
cated by braces {. . .}. The use of Point in the return

2

type of move indicates that the move method returns
an object that has the same type as the original point.
Its use as the argument type of equal indicates that the
equal method takes an argument with the same type.
In other words, equal is a ‘binary’ operation on points,
viz. for two points p and q, the expression p.equal(q) is
meaningful.

A useful notation for recursively defined types is the
form Rec t.A . Intuitively, the type Rec t.A is the type
t defined by t = A, where A generally contains the type
variable t. Using this notation, we may define Point as
follows.

Point = Rec pnt. {
x : void → Real,
y : void → Real,
move : Real × Real → pnt,
equal : pnt → Boolean
}

Since the type variable pnt is bound by Rec, we may
rename pnt without changing the meaning of this dec-
laration.

2.2 Record Subtyping

Cardelli [8] identified record subtyping as an important
form of polymorphism in object-oriented programming.
One basic axiom of record subtyping may be written in
the form

{x1: σ1, . . . , xk: σk, . . . , x`:σ`} ⊆ {x1:σ1, . . . , xk:σk}
The main idea is that if a record r has fields
x1:σ1, . . . , xk:σk and also xk+1: σk+1, . . . , x`: σ`, then
in particular r has fields x1: σ1, . . . , xk:σk. Therefore,
any operation that makes sense on records of type
{x1:σ1, . . . , xk:σk} also makes sense on records of type
{x1:σ1, . . . , xk:σk, . . . , x`: σ`}. A generalization of this
axiom is the inference rule

σ1 ⊆ ρ1, . . . , σk ⊆ ρk,
{x1: σ1, . . . , xk: σk, . . . , x`:σ`} ⊆ {x1: ρ1, . . . , xk: ρk}

which takes into account subtyping within the fields.
A standard rule is the function subtyping rule [19, 9]:

σ′ ⊆ σ τ ⊆ τ ′

σ → τ ⊆ σ′ → τ ′

Noting that the hypothesis σ′ ⊆ σ is opposite to the
others, one says that the arrow constructor is con-
travariant in its first argument. One subtype rule for
recursive types is the following [6]:

Γ, s ⊆ t ` σ ⊆ τ
Γ ` Rec s. σ ⊆ Rec t. τ

s free only in σ.
t free only in τ .

This means, informally, that if assuming s is a sub-
type of t allows one to prove that σ is a subtype of τ ,
then the recursive type Rec s. σ is a subtype of Rec t. τ .
For example, the following type is a supertype of Point:

Movable = Rec mv. { move : Real × Real → mv }
because the body of Point is a subtype of the body of
Movable, given the assumption pnt ⊆ mv:

pnt ⊆ mv ` {move:Real×Real → pnt, . . .}
⊆ {move: Real×Real → mv}

Rec pnt.{move: Real×Real → pnt, . . .}
⊆ Rec mv.{move: Real×Real → mv}

2.3 Bounded Quantification

Cardelli and Wegner’s language fun [7] uses bounded
quantification to type polymorphic functions over sim-
ple “objects” represented by records. Extensions to the
language removed its reliance upon record field assign-
ment, so that record operations may be expressed func-
tionally [24, 15, 20]. The use of bounded quantification
may be illustrated with a simple type of cartesian point
objects:

SimplePoint = { x: int, y: int }
Note that simple points do not have any methods which
take simple points as arguments or return simple points
as results. Consequently, the type SimplePoint does not
require a recursive type declaration.

A function that ‘moves’ simple points may be defined
using bounded quantification. Move is a function of type
∀t ⊆ SimplePoint. t → Real × Real → t and is
defined by the expression following the equals sign.

move : ∀t ⊆ SimplePoint. t → Real × Real → t

= Fun[t ⊆ SimplePoint] fun(p:t) fun(dx,dy:Real)
p with { x = p.x + dx, y = p.y + dy }

The notation Fun[t ⊆ SimplePoint] indicates that the
first argument of move is required to be a subtype of
SimplePoint. The second argument must be a value in
this subtype. Its third argument is a pair of numbers
representing the distance to be moved. The result of
the function is computed by building a new record hav-
ing the fields in the original subtype value, but with
updated x and y components. This new record has the
same type as the original argument to move.

Every subtype of SimplePoint is a legal argument to
move. For example, values of type SimpleColoredPoint,

SimpleColoredPoint = { x: int, y: int, color: int }
are valid arguments to move, and the result of the ap-
plication is also a SimpleColoredPoint.

3

3 Recursive Types and Bounded
Quantification

3.1 Introduction

In this section we investigate the use of bounded quanti-
fication in polymorphic functions over objects with re-
cursive types. We show that bounded quantification
does not provide the same degree of flexibility in the
presence of recursion as it does for non-recursive types.

Two kinds of problems are identified, depending upon
the location of the recursion variable within the recur-
sive type. In describing the two possibilities, it is useful
to adopt the standard notion of “polarity” from logic.
In a type expression σ → τ , the subexpression τ oc-
curs positively and the subexpression σ negatively. If σ′

occurs with positive or negative polarity in σ, then this
occurrence will have the opposite polarity in σ → τ .
A subexpression of τ will have the same polarity in
σ → τ . For example, t is positive in (t → σ) → τ
but negative in t → (ρ → τ). Polarity is preserved
in record type expressions, so that t is positive and s is
negative in {put: t → void, get: void → s}.

3.2 Subtyping and Positive Recursion

When the recursion variable of a recursive type appears
positively, subtyping does not ensure the intuitively ex-
pected typing behavior. Consider the recursive type
Movable introduced above. The recursion variable mv
in Movable only occurs positively.

Movable = Rec mv. { move: Real × Real → mv }
It is reasonable to define a function, translate, that
moves a movable value one unit in both directions:

translate = fun(x:Movable) x.move(1.0, 1.0)

Although this function works for any value whose type
is a subtype of Movable, the result of the function appli-
cation is always of type Movable, according to the typing
rules of [7]. It would be preferable to have a polymor-
phic translate which, for any subtype of t of Movable,
takes argument of type t and return a value of the same
type. However, an easy semantic argument shows that
translate as defined above does not have the type

translate : ∀r ⊆ Movable. r → r

To see this, consider the type

R = { move: Real × Real → Movable, other: A }
It is easy to see that R is a proper subtype of Movable.
However, if we apply translate to an object of type R,
we obtain an object of type Movable, not R. Thus the
best we can say with bounded quantification is

translate : ∀r ⊆ Movable. r → Movable

which is no more general than the ordinary function
type Movable → Movable.

The careful reader may notice that translate can in
fact be typed without using bounded quantification, giv-
ing

translate : ∀t. { move: Real × Real → t } → t

However, this should not be regarded as a defect in our
presentation; this works only because translate is an un-
usually simple example. An essential aspect of translate
is that the parameter x only occurs once in the body of
the function, where we access the move field. In a more
complicated function like

choose = fun(b:bool) fun(x:Movable)
if b then x.move(1.0, 1.0) else x

in which the method is called and the object returned,
the simple typing without bounded quantification is not
possible.

3.3 Subtyping and Negative Recursion

For a recursive type with a negative recursion-variable,
the intuitive concept of ‘adding fields’ to produce sub-
types does not work: the resulting types are not sub-
types of the original recursive type. Consequently,
bounded quantification cannot be used to quantify over
these types. To illustrate, assume we want to define a
polymorphic minimum function on a PartialOrder type
that describes values with a comparison method:

PartialOrder = Rec po. { lesseq: po → bool }

minimum : ∀t ⊆ PartialOrder. t → t → t

The minimum function should return the lesser of its two
arguments, determined by asking the first argument to
compare itself with the second. Intuitively, values of
type Number or String should be admissible arguments
for the polymorphic minimum, since they both have a
lesseq operation as required. The type Number, in our
view of object-oriented languages, is a recursively de-
fined record type:

Number = Rec num. { . . . , lesseq: num → bool, . . . }
However, the polymorphic application minimum

[Number] is type-incorrect, because Number is not a sub-
type of PartialOrder. If we try to derive Number ⊆
PartialOrder by unrolling the two types we obtain

{ . . . , lesseq: Number → bool,. . . }
⊆ { lesseq: PartialOrder → bool }

4

which requires PartialOrder ⊆ Number. This is con-
trary to what we wanted to show, indicating that Num-
ber ⊆ PartialOrder is not derivable unless Number =
PartialOrder.

One type that is a subtype of PartialOrder is

Rec t. { . . . , lesseq: PartialOrder → bool, . . . }

An object of this type could be compared (using lesseq)
with any other value of type PartialOrder, but since Par-
tialOrder does not provide any fields on which to base
this comparison, objects of this type have little practi-
cal value. In situations where more fields are present
such types may be useful, but the problem remains that
subtyping cannot capture the intuitive polymorphism
desired for minimum.

4 F-bounded Quantification

4.1 Introduction

F-bounded quantification allows the practical examples
given above to be type-checked with intuitively desirable
types. We say that a universally quantified type is F-
bounded if it has the form

∀t ⊆ F [t].σ

where F [t] is an expression, generally containing the
type variable t. The semantics of F-bounded quantifi-
cation are discussed briefly in Section 5.

F-bounded polymorphic types differ from ordinary
bounded types by binding the type variable in both
the result-type σ and the type bound F [t]. If F [t] is
a type of the form F [t] = {ai:σi[t]}, then the con-
dition A ⊆ F [A] says, in effect, that A must have
the methods ai and these methods must have ar-
guments as specified by σi[A], which are defined in
terms of A. Thus A will often be a recursive type,
suggesting that F-bounded quantification is closely
related to type recursion. But bounded quantifi-
cation ∀t ⊆ (Rec r.F [r]).σ(t) over a recursive type
is very different from the F-bounded quantification
∀t ⊆ F [t].σ(t) over the type-function F that defines
the recursive type, as shown in the following sections.

4.2 Positive Recursion

As we saw in Section 3.2, the polymorphic application
translate[Point] produces a function of type Point →
Movable, rather than Point → Point as desired. A
simple type derivation will both motivate the definition
of F-bounded quantification, and show how it can be
used to achieve the desired typing of translate.

In the this example we ‘work backwards’ to derive the
F-bounded constraint from the typing problem posed by
translate. The problem is to derive a condition on a type
t so that for any variable x of type t, x.move(1.0, 1.0) has
type t. In the following discussion we use the subtype
rules of [9] or [19]. We are looking for the minimal
condition on t such that the following typing can be
derived:

x : t ` x.move(1.0, 1.0) : t

By the application (APP) and selection (SEL) rules,
this reduces to

x : t ` x : { move : Real × Real → t }

Using the subtyping rule we then derive

τ ⊆ {move: Real× Real → t}
x: t ` x: τ

Since the type τ does not occur in any other assumption,
we may simplify to the requirement

t ⊆ { move : Real × Real → t },

which cannot be proved without additional assump-
tions. Expressing this condition as t ⊆ F-Movable[t],
where

F-Movable[t] = { move : Real × Real → t }

it is clear that this condition fits the format of F-
bounded quantification. Motivated by the preceding
discussion, we define the F-bounded polymorphic func-
tion:

translate = Fun[t ⊆ F-Movable[t]]
fun(x:t) x.move(1.0, 1.0)

with F-bounded polymorphic type

translate : ∀t ⊆ F-Movable[t] . t → t

Since Point ⊆ F-Movable[Point], the application trans-
late[Point] is type-correct, and has result of type Point
→ Point. Of course translate will also work for other

types that satisfy the constraint t ⊆ F-Movable[t],
such as ColoredPoint, defined as follows.

ColoredPoint = Rec pnt. {
x : void → Real,
y : void → Real,
c : void → Color,
move : Real × Real → pnt,
}

5

It is interesting to note that the type function F-
Movable is related to the recursive type

Movable = Rec mv. { move: Real × Real → mv }

that failed to provide the desired typing in Section 3.3.
F-Movable is constructed syntactically by regarding the
body of the recursive type expression as a type function.

4.3 Negative Recursion

In Section 3.3, we saw that Number is not a subtype of
PartialOrder. Nevertheless, the types Number and String,
as well as the type PartialOrder all have binary opera-
tions lesseq. As a consequence, the expression x.lesseq(y)
is well-typed if x and y both have one of these types, but
not if x and y have different types. However, using ordi-
nary bounded quantification, it does not seem possible
to define a polymorphic minimum function that works
correctly for the types PartialOrder, Number or String.
In this section, we will see that F-bounded quantifica-
tion allows us to define such a polymorphic minimum
function. This is an important advance, since current
typed object-oriented languages are notoriously restric-
tive when it comes to binary operations.

The common structure among PartialOrder, Number
and String may be described using a type function de-
rived from the recursive definition of PartialOrder:

F-PartialOrder[t] = { lesseq: t → bool }.

Applying F-PartialOrder to Number we see that

F-PartialOrder[Number] = { lesseq: Number → bool }

and hence

Number ⊆ F-PartialOrder[Number]

Although Number is not a subtype of PartialOrder, it is a
subtype of F-PartialOrder[Number], which is all we need
to compute minimum. Forming the F-bounded polymor-
phic function

minimum = Fun[t ⊆ F-PartialOrder[t]]
fun(x:t) fun(y:t) if x.lesseq(y) then x else y

with type

minimum : ∀t ⊆ F-PartialOrder[t] . t → t → t

we capture a form of polymorphism which does not seem
possible with ordinary bounded quantification.

Although we have discussed negative and positive re-
cursion separately, F-bounded quantification also works
when both occur in the same recursive type. While the

following statement is technically imprecise, it seems in-
tuitively helpful to say that F-bounded quantification
characterizes the types that have “recursive structure”
similar to the type Rec t. F [t]. Intuitively, a type F [A]
describes a set of meaningful operations, possibly ac-
cepting values of type A as arguments or returning such
values as results. Elements of type A have these oper-
ations if we may view each element of A as an element
of F [A], i.e., A ⊆ F [A].

One type that always satisfies A ⊆ F [A] is the re-
cursive type A = Rec t. F [t]. More generally, if G[t] is
a type expression and G[t] ⊆ F [t] for all t, then the
recursive type A = Rec t. G[t] also satisfies A ⊆ F [A].
This follows from the observation that if G[t] ⊆ F [t]
for all t, then A = G[A] ⊆ F [A]. However, it is worth
noting that (depending on F) there may be other types
satisfying t ⊆ F [t] which do not have this form.

5 Semantics

There several ways of developing semantics for F-
bounded quantification. We have not explored any of
these in detail. Here we will simply sketch some ap-
proaches to semantics and an intriguing connection to
F-algebras.

For a direct semantics, it is useful to have a way to
denote the family of all types that satisfy the bound
t ⊆ F [t] for each F . This collection of types would
constitute a kind, in the sense of [4, 3], analogous to the
POWER kind of [9]. This may be achieved by defining
a kind constructor FBOUND : (TYPE → TYPE)
→ KIND with intuitive interpretation

FBOUND[F] = {t | t ⊆ F [t]}

Given this constructor, the type ∀t ⊆ F [t].σ
may be interpreted using kinded quantification as
∀t: FBOUND[F].σ. We see no problem in incorporat-
ing this into the model definition of [3]. Another view
may be derived from constrained quantification of Cur-
tis [13], since F-bounded quantification is subsumed by
his system.

An alternative approach is to use the semantics-
by-translation of Breazu-Tannen et.al. [2]. In their
semantics, bounded type-derivations in the language
with bounded quantification are translated into type-
derivations in a simpler calculus with explicit coer-
cions. In particular, the type ∀t ⊆ τ . σ is translated
to ∀t. (t → τ) → σ, in which t → τ is the explicit
coercion. Since τ is in the scope of the universal quanti-
fication of t, there is no problem with allowing τ to have
the form F [t] in the translated language. One techni-
cal point in [2] is a coherence condition requiring, intu-
itively, that any two type-derivations for an F-bounded

6

term must translate into provably equivalent terms in
the calculus with explicit coercions. Coherence is a dif-
ficult technical property, and we have not verified it for
our calculus.

Regardless of how we interpret a subtyping assertion
A ⊆ B, it is clear that this assertion implies some kind
of map from A to B. This simple observation leads
us to some interesting connections between F-bounded
quantification and the standard category-theoretic ma-
chinery associated with recursive type definitions [22].
To begin with, in most semantics of recursive types,
it is possible to extend type functions defined by type
expressions to functors (maps on types and functions)
over some category (perhaps with a more limited choice
of functions than we actually define in programming).
If we have a functor F and wish to find a type t sat-
isfying t = F [t], where = means isomorphism, then it
suffices to find an initial F-algebra, where an F-algebra
is a pair 〈t, f〉 with f : F [t] → t. It is an easy exercise to
prove that if 〈t, f〉 is an initial F-algebra, then f has a
two-sided inverse f−1. The dual of an F-algebra is an
F-coalgebra, which is a pair 〈t, f〉 with f : t → F [t]. The
argument showing that an initial F-algebra is a solution
to t = F [t] also shows that the final F-coalgebra satisfies
t = F [t].

In F-bounded polymorphism, we quantify over all
types t with t ⊆ F [t]. Taking into account that t ⊆ F [t]
implies some kind of map from t to F [t], this means
we are essentially quantifying over pairs 〈t, f〉 with
f : t → F [t], or some family of F-coalgebras. (The
quantification over some family of maps t → F [t] is
made explicit in the translation in [2].) Since the recur-
sive type Rec t. F [t] may be regarded as a particular F-
coalgebra, this suggests that F-bounded polymorphism
involves quantification over a category whose objects are
properly regarded as “generalizations” of the recursive
type Rec t. F [t].

One way of seeing why this provides useful poly-
morphism in object-oriented languages is to consider
the typing rules associated with recursive types. If
t = Rec t. F [t], then we have an “introduction” rule
saying that if an expression e: F [t] then e: t. The “elimi-
nation” rule gives the converse: if e: t then e:F [t]. These
rules are based on the two directions of the isomor-
phism t = F [t]. If A satisfies the F-bounded condition
A ⊆ F [A], then A is a type which has the “elimination”
typing rule associated with Rec t. F [t], but not neces-
sarily the associated “introduction” rule. This is a pre-
cise way of saying that at type A satisfying A ⊆ F [A]
shares “structural similarity” with the recursive type
Rec t. F [t]. In general, for recursive types of the form

Rec t.{method1: σ1, . . . , methodk:σk}
it seems that only the “elimination” is needed to make

meaningful use of object with this type. Hence F-
bounded quantification seems to be “exactly what we
need” in order to type polymorphic functions over ob-
jects with recursive types.

6 Conclusion

We have identified a generalization of bounded quanti-
fication, called F-bounded quantification, in which the
bound type variable may occur within the bound. We
argue that F-bounded quantification is useful for typing
programs involving recursive types: it allows quantifi-
cation over types that are “structurally similar” to the
recursive type Rec t. F [t].

As directions for future work, we note that F-bounded
quantification is closely related to inclusion for single-
sorted algebraic signatures. F-bounded quantification
captures the notion of adding more operations to a re-
cursive type while preserving the recursive structure of
the type.

F-bounded quantification also has an impact on the
relation between inheritance and subtyping in object-
oriented programs. As noted in Section 4.3, two types
t1 and t2 may satisfy an F-bound (t1 ⊆ F [t1] and
t2 ⊆ F [t2]) but not be in a subtype relation (neither
t1 ⊆ t2 or t2 ⊆ t1). This means that a F-bounded
function may be applied to (or “inherited” by) objects
with incomparable types, demonstrating that the inher-
itance hierarchy is distinct from the subtype hierarchy
[23]. In the Abel project at HP Labs, we are explor-
ing the consequences of this separation on programming
language design.

References

[1] Alan H. Borning and D. H. H. Ingalls. Multiple
inheritance in smalltalk-80. pages 234–237, 1982.

[2] Val Breazu-Tannen, Thierry Coquand, Carl A.
Gunter, and Andre Scedrov. Inheritance as implicit
coercion. Inf. Comput., 93(1):172–221, 1991.

[3] K. B. Bruce, A. R. Meyer, and J. C. Michell. The
semantics of second-order lambda calculus. Infor-
mation and Control, 1986.

[4] Kim B. Bruce and Giuseppe Longo. A mod-
est model of records, inheritance, and unbounded
quantification. Inf. Comput., 87(1-2):196–240,
1990.

[5] Peter Canning, William Cook, Walt Hill, John
Mitchell, and Walter Olthoff. F-bounded polymor-
phism for object-oriented programming. In Proc. of

7

Conf. on Functional Programming Languages and
Computer Architecture, pages 273–280, 1989.

[6] L. Cardelli. Amber. In Combinators and Func-
tional Programming Languages, volume 242 of Lec-
ture Notes in Computer Science, 1986.

[7] L. Cardelli and P. Wegner. On understanding
types, data abstraction, and polymorphism. Com-
puting Surveys, 17(4):471–522, 1986.

[8] Luca Cardelli. A semantics of multiple inheritance.
In Semantics of Data Types, volume 173 of Lecture
Notes in Computer Science, pages 51–68. Springer-
Verlag, 1984.

[9] Luca Cardelli. Structural subtyping and the no-
tion of power type. In Proc. of the ACM Symp. on
Principles of Programming Languages, pages 70–
79. ACM, 1988.

[10] Luca Cardelli, James Donahue, Lucille Glass-
man, Mick Jordan, Bill Kalsow, and Greg Nelson.
Modula-3 report (revised). Technical Report 52,
Digital Equipment Corporation Systems Research
Center, December 1989.

[11] William Cook. A Denotational Semantics of Inher-
itance. PhD thesis, Brown University, 1989.

[12] William Cook. A proposal for making Eiffel type-
safe. In Proc. European Conf. on Object-Oriented
Programming, pages 57–70. British Computing So-
ciety Workshop Series, 1989. Also in The Computer
Journal, 32(4):305–311, 1989.

[13] Pavel Curtis. Constrained qualification in polymor-
phic type analysis. PhD thesis, Ithaca, NY, USA,
1990.

[14] A. Goldberg and D. Robson. Smalltalk-80: the
Language and Its Implementation. Addison-
Wesley, 1983.

[15] L. Jategaonkar and John C. Mitchell. ML with ex-
tended pattern matching and subtypes. In Proc. of
the ACM Conf. on Lisp and Functional Program-
ming, 1988.

[16] Ralph Johnson and Justin Graver. A user’s guide
to Typed Smalltalk. Technical Report UIUCDCS-
R-88-1457, University of Illinois, 1988.

[17] Ralph Johnson, Justin Graver, and L. Zurawski.
TS: An optimizing compiler for Smalltalk. In Proc.
of ACM Conf. on Object-Oriented Programming,
Systems, Languages and Applications, 1988.

[18] Bertrand Meyer. Object-oriented Software Con-
struction. International Series in Computer Sci-
ence. Prentice Hall, 1988.

[19] John C. Mitchell. Type inference and type contain-
ment. In Semantics of Data Types, volume 173 of
Lecture Notes in Computer Science, pages 257–278.
Springer-Verlag, 1984.

[20] Dedier Rémy. Typechecking records and variants
in a natural extension of ML. In Proc. of the ACM
Symp. on Principles of Programming Languages,
pages 77–88, 1989.

[21] J. C. Reynolds. User-defined types and procedural
data structures as complementary approaches to
data abstraction. In New Advances in Algorith-
mic Languages, pages 157–168. Inst. de Recherche
d’Informatique et d’Automatique, 1975.

[22] Michael B. Smyth and Gordon D. Plotkin. The
category-theoretic solution of recursive domain
equations. SIAM J. Comput., 11(4):761–783, 1982.

[23] A. Snyder. CommonObjects: An overview. SIG-
Plan Notices, 21(10):19–28, 1986.

[24] Mitchell Wand. Complete type inference for simple
objects. In Proc. IEEE Symposium on Logic in
Computer Science, pages 37–44, 1987.

[25] Mitchell Wand. Type inference for record concate-
nation and multiple inheritance. In Proc. IEEE
Symposium on Logic in Computer Science, pages
92–97, 1989.

8

