
Mixin-based Inheritance

Gilad Bracha∗

Department of Computer Science
University of Utah

Salt Lake City, UT 84112

William Cook
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94303-0969

Abstract

The diverse inheritance mechanisms provided by
Smalltalk, Beta, and CLOS are interpreted as differ-
ent uses of a single underlying construct. Smalltalk and
Beta differ primarily in the direction of class hierarchy
growth. These inheritance mechanisms are subsumed in
a new inheritance model based on composition of mix-
ins, or abstract subclasses. This form of inheritance
can also encode a CLOS multiple-inheritance hierarchy,
although changes to the encoded hierarchy that would
violate encapsulation are difficult. Practical application
of mixin-based inheritance is illustrated in a sketch of
an extension to Modula-3.

1 Introduction

A variety of inheritance mechanisms have been devel-
oped for object-oriented programming languages. These
systems range from classical Smalltalk single inheri-
tance [8], through the safer prefixing of Beta [12, 10],
to the complex and powerful multiple inheritance com-
binations of CLOS [6, 9]. These languages have similar
object models, and also share the view that inheritance
is a mechanism for incremental programming. However,
they differ widely in the kind of incremental changes
supported.

In Smalltalk, subclasses can add additional methods
or replace existing methods in the parent class. As a
result, there is no necessary relationship between the
behavior of instances of a class and the instances of its
subclasses. The subclass methods can invoke any of the
original superclass methods via super.

In Beta, a subpattern (subclass) definition is viewed as
an extension of a previously defined prefix pattern. As
in Smalltalk, new methods may be defined. However,
prefix methods cannot be replaced; instead, the prefix
may use the command inner to invoke the extended
method code supplied by the subpattern. Given that the
code in a prefix is executed in any of its extensions, Beta

∗Supported by grant CCR-8704778 from the National Science
Foundation.

enforces a degree of behavioral consistency between a
pattern and its subpatterns.

The underlying mechanism of inheritance is the same
for Beta and Smalltalk [3]. The difference between them
lies in whether the extensions to an existing definition
have precedence over and may refer to previous defini-
tions (Smalltalk), or the inherited definition has prece-
dence over and may refer to the extensions (Beta). This
model shows that Beta and Smalltalk have inverted in-
heritance hierarchies: a Smalltalk subclass refers to its
parent using super just as a Beta prefix refers to its
subpatterns using inner.

In the Common Lisp Object System (CLOS) and its
predecessor, Flavors [13], multiple parent classes may
be merged during inheritance. A class’s ancestor graph
is linearized so that each ancestor occurs only once [7].
With standard method combination for primary meth-
ods, the function call-next-method is used to invoke the
next method in the inheritance chain.

CLOS supports mixins as a useful technique for build-
ing systems out of mixable attributes. A mixin is an
abstract subclass; i.e. a subclass definition that may
be applied to different superclasses to create a related
family of modified classes. For example, a mixin might
be defined that adds a border to a window class; this
mixin could be applied to any kind of window to cre-
ate a bordered-window class. Semantically, mixins are
closely related to Beta prefixes.

Linearization has been criticized for violating encap-
sulation, because it may change the parent-child re-
lationships among classes in the inheritance hierarchy
[16, 17]. But the mixin technique in CLOS depends
directly upon linearization and modification of parent-
child relationships. Rather than avoid mixins because
they violate encapsulation, we argue that linearization
is an implementation technique for mixins that obscures
their true nature as abstractions.

By modest generalization of the inheritance models
in Smalltalk and Beta, a form of inheritance based on
composition of mixins is derived. Mixin-based inheri-
tance supports both the flexibility of Smalltalk and the
security of Beta. It also supports the direct encoding
of CLOS multiple inheritance hierarchies without du-

1



plication of subclass definitions. However, since the hi-
erarchy is encoded as an explicit collection of linearized
inheritance chains rather than as a single inheritance
graph, some changes to the hierarchy (especially if they
might violate Snyder’s notion of encapsulation) cannot
easily be made.

Section 2 discusses the single-inheritance languages
Smalltalk and Beta and shows that they support very
different uses of a single underlying construct. Sec-
tion 3 analyzes multiple inheritance and linearization
in CLOS, with special focus on support for mixins.
Section 4 presents a generalized inheritance mechanism
that supports the style of inheritance in Beta, Smalltalk,
and CLOS, with explicit support for mixins. In Sec-
tion 5 we sketch an extension to Modula-3 that illus-
trates the use of generalized inheritance. Finally, Sec-
tion 6 summarizes our conclusions.

2 Single Inheritance Languages

2.1 Smalltalk Inheritance

Inheritance in Smalltalk is a mechanism for incremental
derivation of classes. Smalltalk inheritance was adapted
from Simula [5, 14], and serves as the prototypical inher-
itance mechanism. The primary subtlety in the process
of inheritance is the interpretation of the special vari-
ables self and super. Self represents recursion, or self-
reference, within the object instance being defined. The
interpretation of self has been addressed in previous
work [3, 4, 15]; in this paper we focus on the interpreta-
tion of super. Consider the following pair of Smalltalk
classes.

class Person
instance variables: name

method: display

name display

class Graduate
superclass: Person

instance variables: degree

method: display

super display. degree display

The class Person defines a name field and a method for
displaying the name. The subclass Graduate extends the
display method to include the person’s academic degree.
For example, a graduate with name “A. Smith” and
degree “Ph.D.” would respond to the display method
by invoking the Graduate display method, which invokes
the Person display method using super display to display
the name, and then displays the degree. The net effect
would be to print “A. Smith Ph.D.”. It would also be

possible to prefix the name, as in the case of titles like
“Dr.”, by printing the title before calling super.

The subclass Graduate specifies only how Graduates
differ from Persons [19]. This difference may be indi-
cated explicitly as a delta, or set of changes. In this case
the set of changes is simply the new display method.
The original definition is also just a display method.
When combined, the new display method replaces the
original.

To formalize this process, objects are represented as
records whose fields contain methods [1, 15, 18, 3]. The
expression {a1 7→ v1, · · · , an 7→ vn} represents a record
with fields a1, . . . , an and associated values v1, . . . , vn.
The expression r.a represents selection of field a from
a record r. Record combination is a binary operator,
⊕, that forms a new record with the fields from its two
arguments, where the value is from the left argument
in case the same field is present in both records. For
example, {a 7→ 3, b 7→ ‘x’} ⊕ {a 7→ true, c 7→ 8} replaces
the right value of a to produce {a 7→ 3, b 7→ ‘x’, c 7→ 8}.

To interpret super, it is necessary for the delta, or
modifications, to access the original method inherited
from Person. This is achieved by supplying the parent
class methods as a parameter to the delta. The resulting
inheritance mechanism is an asymmetric combination of
a parametric delta ∆ and a parent specification P :

C = ∆(P )⊕ P.

This definition is a form of single inheritance: P refers
to the inherited parent while ∆ is an explicit set of
changes. The two occurrences of P do not indicate that
it is instantiated twice, but that its information is used
in two contexts: for the interpretation of super and to
provide methods for the subclass. Suppressing the in-
terpretation of hidden instance variables, the example
above has the following form.

P = {display 7→ name.display}
∆(s) = {display 7→ s.display, degree.display}
∆(P ) = {display 7→ name.display, degree.display}

Although deltas were introduced to make specifica-
tion of the inheritance mechanism more clear, deltas
are not independent elements of a Smalltalk program;
they cannot stand on their own and are always part of
a subclass definition, which has an explicit parent class.

In Smalltalk a subclass of Person may completely re-
place the display method with, for example, a routine
that displays the time of day. In Smalltalk inheritance,
the subclass is in control: there is no way to define
Person so that it forces subclasses to invoke its display
method as part of their display operation.

2



2.2 Beta Inheritance

Inheritance in Beta is designed to provide security from
replacement of a method by a completely different
method. Inheritance is supported in Beta by prefixing of
definitions. Beta employs a single definitional construct,
the pattern, to express types, classes and methods. As
this generality can be confusing, we use a simpler syn-
tax that distinguishes among the different roles1. The
example given above is easily recoded in Beta:

Person: class
(# name : string;

display: virtual proc
(# do name.display; inner #);

#);

Graduate: class Person
(# degree: string;

display: extended proc
(# do degree.display; inner #);

#);

The definition of Graduate is said to be prefixed by
Person. Person is the superpattern of Graduate, which,
correspondingly, is a subpattern of Person. Display is
declared to be virtual, which means that it may be
extended in a subpattern. This does not mean that it
may be arbitrarily redefined, as in most object-oriented
languages.

The behavior of the display method of a Person is to
display the name and then perform the inner state-
ment. For a plain Person instance, which has no inner
behavior, the inner statement is a null operation (i.e.
skip or no-op). When a subpattern of Person is defined,
the inner statement will execute the corresponding dis-
play method in the subpattern.

The subpattern Graduate extends the behavior of the
Person display method by supplying inner behavior. For
a Graduate instance G, the initial effect of G.display is
the same as for a Person: the original method from Per-
son is executed. After the name is displayed, the inner
procedure supplied by Graduate is executed to display
the graduate’s degree. The use of inner within Gradu-
ate is again interpreted as a no-op. It only has an effect
if the display method is extended by a subpattern of
Graduate. It is impossible to arrange for printing a title,
like “Dr.”, before the name by inheriting Person; this
is because the choice to invoke inner after the name
has been built into the Person display method. In Beta
prefixing, the prefix controls the behavior of the result.

The interpretation of the Person pattern is as a para-
metric definition of attributes, P ′. The parameter rep-

1This syntax is used by the implementors of Beta for tutorial
purposes [11].

resents any inner definitions supplied by subpatterns.
For an instance of Person, the inner part of P ′ is bound
to the record of null methods: P ′(∅).

A subpattern specifies additional attributes which
may also refer to any further inner behavior in later
subpatterns. If the attributes defined in the subpattern
are specified by ∆′, then the result of prefixing by P ′ is
the following composition:

C ′(inner) = P ′(∆′(inner)⊕ inner)⊕∆′(inner)

This means that the interpretation C ′ of the subpat-
tern, when supplied an inner parameter, is the re-
sult of combining the superpattern P ′ specification
with the changes specified by ∆′. By applying P ′ to
∆′(inner)⊕inner, the inner specification of P ′ is bound
to the fields of the subpattern combined with any fur-
ther fields supplied by later subpatterns. The prefix
methods take precedence over the suffix. In the exam-
ple above, the equation for C ′ is greatly simplified by
examining the actual uses of inner:

P ′(i) = {display 7→ name.display, i.display}
∆′(i) = {display 7→ degree.display, i.display}
C ′(i) = {display 7→ name.display,

degree.display,
i.display }

This formulation does not directly encode the restric-
tion that inner within a method m can refer only to the
suffix method named m. In this sense inner is less gen-
eral than Smalltalk’s super construct, but the restric-
tion is justified by the desire for security. An alterna-
tive formalization that captures this restriction involves
representing each method as a function of its inner be-
havior [3]. Prefixing is then defined as combination of
records such that duplicated fields are composed. Before
calling a method if must be applied to a null command
so that inner will have no effect. The resulting for-
malism is equivalent to the one given above, under the
condition that the fields of P ′ and ∆′ only access corre-
sponding fields of inner.

2.3 Comparing Smalltalk and Beta

The inheritance mechanisms of Smalltalk and Beta
are different orientations of a common underlying
mechanism. The underlying mechanism is a non-
associative binary operator, ¤, that performs applica-
tion of super/inner and combination of attributes.

∆ ¤ P = ∆(P )⊕ P

The relationship between Beta and Smalltalk is demon-
strated by comparing the interpretations of inheritance

3



Smalltalk

$

& %
6

®


©
ªself

Child®


©
ªsuper

6

$

?

®


©
ªself

Parent

6

User

Beta

%

' $

?

®


©
ªvar

Prefix

®


©
ªinner

?

%

6

®


©
ªvar

Suffix

?

User

Figure 1: Inverse hierarchies in Smalltalk and Beta.

in the two languages. The behavior of a subclass in-
stance can be compared concisely in this framework.

C = ∆ ¤ P Smalltalk

C ′(∅) = P ′ ¤ ∆′(∅) Beta

In these equations, ∆ represents the new explicit in-
formation supplied by the subclass/subpattern, while
P represents the original attributes contributed by the
superclass/superpattern. The combination operator ¤

favors values from its left argument in case of a duplicate
attribute.

It is clear that the mechanism of inheritance is the
same; only the direction of growth is different. In
Smalltalk the new attributes are favored and may re-
place inherited ones; in Beta the original attributes are
favored. Beta inheritance works in the opposite di-
rection from inheritance in most object oriented lan-
guages, due to this role reversal between superpat-
terns/subpatterns and subclasses/superclasses. Fig-
ure 1 show this inversion by illustrating the semantic
relationships in Smalltalk and Beta when a superclass
is placed above one of its subclasses. The figure includes
the interpretation of self-reference, which is implicit in
Beta variable (var) references [3]. Neither direction of
inheritance is able to express the other, and each has its
advantages and disadvantages.

3 Multiple Inheritance and
Mixins

3.1 CLOS Inheritance

CLOS supports a rich mechanism for multiple inheri-
tance. Although there are several significant aspects of
CLOS inheritance, we focus only on standard method
combination and primary methods. Here is the example
given above, recoded in CLOS.

(defclass Person () (name))

(defmethod display ((self Person))
(display (slot-value self ’name)))

(defclass Graduate (Person) (degree))

(defmethod display ((self Graduate))
(call-next-method)
(display (slot-value self ’degree)))

The defclass construct includes the name of the new
class, a list of its superclasses, and a list of its instance
variables. The argument list of the defmethod form de-
fines the class on which the method is defined. Simple
but effective method combination is supported by call-
next-method, which plays the role of super in Smalltalk.
But like inner in Beta, call-next-method provides access
only to the next method in the inheritance chain with
the same message selector.

A CLOS class may inherit from more than one parent.
As a result, a given ancestor may be inherited more than
once. For example, the following classes result in Person
being inherited twice by Research-Doctor.

(defclass Doctor (Person) ())

(defmethod display ((self Doctor))
(display “Dr. ”)
(call-next-method))

(defclass Research-Doctor (Doctor Graduate) ())

If care is not taken, the display method of Person will
be executed twice, and a Research-Doctor will display
as “Dr. A. SmithA. Smith Ph.D.”. To remedy this sit-
uation, CLOS linearizes the ancestor graph of a class
to produce an inheritance list in which each ancestor
occurs only once. The graph of ancestors of Research-
Doctor is linearized to Research-Doctor, Doctor, Grad-
uate, Person. This also solves the problem of method
invocation order, because ancestor classes are placed in
a linear order.

Each collection of method definitions may invoke
methods later in the linearized sequence via call-next-
method. If the specification of parents P1, . . . , Pn is

4



given by ∆1, . . . , ∆n, then the interpretation C of the
subclass is defined by iteration of the inheritance oper-
ator over the list.

C = ∆1 ¤ (∆2 ¤ (· · ·¤ (∆n ¤ ∅)))
Each specification in the list is applied to the result
of the previous specification and combined with it.
The more complex method combination mechanisms of
CLOS can also be modeled in this framework. For ex-
ample, if before and after methods were distinguished
then the base class, whose methods would be called af-
ter all other methods, could arrange for the last before
method to call the primary method, and the last pri-
mary method to call the after method.

The process of linearization has been criticized for vi-
olating encapsulation [17]. One argument is that the re-
lationship between a class and its declared parents may
be modified during linearization. This is demonstrated
by the example above, where in the linearization the
class Graduate is placed between Doctor and Person, in
contradiction of the explicit declaration of Doctor that
it inherits directly from Person. Only by being aware
of the entire class hierarchy can the programmer foresee
this.

Using linearization, a CLOS multiple inheritance hi-
erarchy is reduced to a collection of inheritance chains,
each of which can be interpreted using single inheri-
tance. However, a slight change to the original CLOS
hierarchy may result in a very different collection of in-
heritance chains. This is especially true if the changes
violate Snyder’s notion of encapsulation, as when a base
class is factored into two classes, because one of the new
factors may interact with other classes during lineariza-
tion. A less severe problem is that a given class may oc-
cur in many chains, so if the collection was implemented
in a single-inheritance language, subclasses would have
to be duplicated. In order to eliminate this duplication,
the single-inheritance model must be generalized to al-
low explicit naming and reuse of the deltas defined by
subclasses.

3.2 Mixin Programming

In this section we discuss a common programming tech-
nique used in CLOS, called mixins. A mixin is an ab-
stract subclass that may be used to specialize the be-
havior of a variety of parent classes. It often does this
by defining new methods that perform some actions and
then call the corresponding parent methods. Mixins are
very similar to the deltas introduced informally in Sec-
tion 2.1. For example, the notion of a graduate degree
as part of a name can be written as an independent
mixin.

(defclass Graduate-mixin () (degree))

(defmethod display ((self Graduate-mixin))

(call-next-method)

(display (slot-value self ’degree)))

This example illustrates a characteristic of mixins:
they invoke call-next-method even though they do not
appear to have any parents. This would obviously lead
to an error if an instance of a mixin were created. Lin-
earization places the mixin into an inheritance chain be-
fore other classes that support the method. This occurs
in the new definition of Graduate: because Graduate-
mixin is listed before Person, the Person display method
will be invoked by Graduate-mixin display.

(defclass Graduate (Graduate-mixin Person) ())

In CLOS, mixins are simply a coding convention and
have no formal status. Although locally unbound uses
of call-next-method are a clear indication that a class is
a mixin, the concept has no formal definition, and any
class could be used as a mixin if it contributes partial
behavior.

Using Graduate-mixin it is now possible to define dif-
ferent kinds of classes that have “graduated” behavior.
In this example, the guard dog might have an obedience
school degree.

(defclass Guard-Dog (Graduate-mixin Dog) ())

Neither Smalltalk nor Beta fully support mixins. In
Smalltalk, the effect of a mixin can be achieved by
explicitly creating subclasses and copying the mixin
code into the subclass, preventing code-sharing and
abstraction. In Beta, an individual class closely re-
sembles a mixin. However, it cannot be attached to
independently-defined classes. Instead, the client class
must be built with the mixin as a prefix. If a fam-
ily of mixed versions of a given class is needed, then
the entire class must be copied for each prefixed mixin.
Thus, in Smalltalk the mixin must be copied, while in
Beta the base class must be copied. This is consistent
with our analysis of the direction of growth in Beta and
Smalltalk.

Mixin programming takes advantage of multiple in-
heritance in a subtle and unintuitive way: mixins de-
pend upon linearization to place them in an appropri-
ate location in the inheritance chain and to insert other
classes between the mixin and its parents. When mix-
ins are viewed as abstract subclasses, or class defini-
tions parameterized by their parents, it is clear that
linearization plays the role of application, by binding
the mixin’s formal parent parameter to a specific class.
This process of abstraction and application can be made
more explicit by generalizing the inheritance mechanism
common to Smalltalk and Beta.

5



4 Inheritance as Composition of
Mixins

Mixins are the basis for a compositional inheritance
mechanism that generalizes Smalltalk and Beta, while
supporting the encoding of an encapsulated version of
a CLOS multiple inheritance hierarchy. The basic idea
of the generalization is to take mixins as the primary
definitional construct. Inheritance is then formulated
as composition of mixins. New attributes may be com-
posed in either the Smalltalk or Beta style (either over-
writing or extending). Since mixins and composition
are explicit, there is no need for implicit linearization:
a programmer would explicitly select the order of all
mixin components. If a component is composed more
than once it will appear as multiple copies in the re-
sult; duplication is avoided by explicitly applying two
components to a shared parent.

The mixin composition operator, ?, is the Beta inher-
itance operator, but is used in a slightly more general
form. Mixin composition takes two mixins as parame-
ters, and returns a new mixin as a result.

M1 ? M2 = fun(i) M1(M2(i)⊕ i)⊕M2(i)

In case of conflict, ? gives priority to the first para-
meter. In M1, super/inner is bound during the inher-
itance operation to M2. In M2, super/inner is bound
to the formal parameter i of the result. Assuming the
basic attribute combination operator ⊕ is associative, ?
is associative. In addition, if ⊕ were commutative, then
? would be commutative.

Ordinary classes are viewed as degenerate mixins that
do not make use of their inner/super parameter. Mix-
ins thereby generalize Smalltalk classes, Beta patterns
and CLOS style mixins. Abstract classes are viewed as
mixins that refer to fields not defined in self. A mixin is
complete if it does not refer to its parent parameter, and
defines all fields that it refers to in itself. Otherwise, it
is partial. Only complete mixins may be instantiated
meaningfully.

5 Application to an Existing
Language

5.1 Choice of Language

We have chosen Modula-3 [2] as a basis for an extension
incorporating mixin-based inheritance. Modula-3 is well
suited for such an extension, because it supports single
inheritance and is strongly typed. Single inheritance
naturally generalizes to mixin-based inheritance. Strong
typing provides a framework in which mixins can be
used safely and efficiently.

5.2 Modula-3 Inheritance

Modula-3 supports inheritance via object types. Object
types are roughly analogous to classes in most object-
oriented languages. An example of object types in
Modula-3 is

type Person =
object name: string 2

methods display() := displayPerson
end;

type Graduate = Person
object degree: string
methods display := displayGraduate
end;

procedure displayPerson(self: Person) =
begin
self.name.display();
end displayPerson;

procedure displayGraduate(self: Graduate) =
begin
Person.display(self);
self.degree.display()
end displayGraduate;

In the example, Person defines an instance variable
name and a method display. The method is defined by
providing a name, followed by a signature, or formal
parameter list. In this case, the signature is empty. The
method is then assigned a value, which is a separately
defined procedure, displayPerson. If o is an object of type
Person, o.display() is interpreted as displayPerson(o).

The definition of Graduate has two parts: A preex-
isting definition, Person, and a modification given by
the object . . . methods . . . end clause. Graduate is a
subtype of Person, which is its supertype. Graduate in-
herits from Person, but includes a method override for
display. The method override names the method being
overridden , and then assigns a new value to it, namely
displayGraduate. A signature is not given, since it will
always be identical to the signature of the correspond-
ing method in the supertype. The overridden methods
of Person may be referred to by Graduate through the
syntax Person.methodname. This is similar to super in
Smalltalk, but more general.

An object . . .methods . . . end clause corresponds
to the notion of delta discussed above. As in Smalltalk,
deltas may not be defined independently of a parent.
The following section presents an extension, whereby
such deltas become independent constructs.

2Modula-3 uses TEXT for character
strings. However, we will assume that string has been defined.

6



5.3 Extending Modula-3

We extend Modula-3 by generalizing object types to
mixins. A mixin may be an explicit modification, of
the form object . . .methods . . . end. Alternately, a
mixin may be the result of combining two previously
defined mixins.

Mixin = object . . . methods . . . end |
Mixin1 ? Mixin2

The concrete syntax used in the examples below, dif-
fers from the notation used until now in three respects.
First, the order of the operands of the mixin operator
is reversed, so that priority is given to the right hand
operand. Second, the mixin operation is not written ex-
plicitly, but is implicit between each pair of mixins in
a mixin definition. Finally, an optional super clause is
added to modifications. The first two changes reflect ex-
isting Modula-3 syntax, where a modification is written
to the right of a base definition, with no composition op-
erator in between. Adopting these changes helps make
the extension upwardly compatible. The third change
is for typechecking purposes, as explained below. The
resulting syntax is

Mixin′ = object . . . methods . . . end |
object . . . methods . . . super . . . end |
Mixin′2 Mixin′1.

The following is equivalent to the CLOS mixin exam-
ple given above.

type GraduateMixin =
object degree: string
methods display := displayGraduateMixin
super display() := No Op
end;

mixin procedure
displayGraduateMixin(self: GraduateMixin) =

begin
super.display()
self.degree.display();
end displayGraduateMixin;

procedure No Op(self: root) = begin end No Op;

type Graduate = Person GraduateMixin;

Since GraduateMixin is defined independently of any
parent, the signature of display cannot be inferred, and
must be given in a special super clause. Similarly, dis-
play’s overridden value is not known, but may be as-
signed a default. In this case, the default value is No Op,

a procedure that will work on any type, since it is de-
fined on root, the root of the type hierarchy. Display-
GraduateMixin refers to the overridden display method
through the pseudo-variable super, using the syntax su-
per.methodname. Procedures that reference super are
distinguished, using the keyword mixin procedure.

In the code above, GraduateMixin plays a role similar
to a subclass in Smalltalk. Reversing GraduateMixin’s
position in the definition of Graduate reverses its role
to that of a Beta subpattern. This is illustrated below,
where PersonMixin functions as superpattern.

type PersonMixin =
object name: string
methods display := displayPersonMixin
super display() := No Op
end;

type Graduate = GraduateMixin PersonMixin;

mixin procedure
displayPersonMixin(self: PersonMixin) =

begin
self.name.display();
super.display()
end displayPersonMixin;

PersonMixin is in control, when combined with Gradu-
ateMixin. Graduate.display() invokes displayPersonMixin,
where super.display() calls displayGraduateMixin. In
displayGraduateMixin super.display will use the default
value, No Op, corresponding to an empty inner clause
in Beta.

The examples above have an important advantage
over their Smalltalk and Beta counterparts; all parts
of the definition can be reused, without being textually
copied.

As a final example, we recode our earlier CLOS mul-
tiple inheritance example:

type Doctor =
object
methods display := displayDoctor
super display() := No Op
end;

type ResearchDoctor =
PersonMixin GraduateMixin Doctor;

mixin procedure displayDoctor(self:Doctor) =
begin
display(“Dr. ”);
super.display()
end displayDoctor;

7



Note how the linear sequence of definitions is given
explicitly, without reliance on linearization.

5.3.1 Typing

This section presents the typing rules for mixins in the
Modula-3 extension. The typing of mixins has not been
addressed in prior work, since mixins have not been in-
troduced into a strongly typed language before.

Type identity is defined as in Modula-3. Two types
are identical iff their expanded definitions are identical.
The subtyping relation on mixins, T ¿ S (read T is a
subtype of S, or S is a supertype of T ) is defined as
follows:

1. object . . . end ¿ root. All mixins are subtypes
of root.

2. If T1 = T2 T3 then T1 ¿ T2 and T1 ¿ T3, where
the = sign denotes type identity.

3. ¿ is reflexive and transitive.

For example ResearchDoctor ¿ Doctor, as well as Re-
searchDoctor ¿ GraduateMixin, ResearchDoctor ¿ Per-
sonMixin. What is less obvious is that if

PGMixin = PersonMixin GraduateMixin;

then ResearchDoctor ¿ PGMixin. This follows from
the fact that ResearchDoctor = PGMixin Doctor by the
definition of type identity. Recall that the mixin com-
bination operator, ?, is associative. This is reflected in
the subtyping rules.

Additional rules for mixin composition include :

• A method should be mentioned in the super clause
of a type, if it has been overridden. In practice, a
method override may be omitted from the super
clause, if its signature can be inferred from context.
An example might be the definition of Graduate in
section 5.2. This exception is made for compatibil-
ity with existing Modula-3 code.

• The pseudo-variable super may only be used in
procedures declared as mixin procedures. The pro-
cedure’s first parameter must be of a type that in-
cludes a method override for every method refer-
enced through super.

• A mixin procedure can be invoked only as a
method. This guarantees that there is no way for
the overridden methods of a mixin instance to be
accessed from outside the instance.

All rules given in this section can be statically en-
forced. This is a necessary condition for safety, and
for an efficient implementation. These rules are spe-
cific to Modula-3, and an extension of another language

would certainly differ in many details. However, the ba-
sic strategy of generalizing object types (or classes, in
other languages) to mixins is fundamental to any such
extension.

6 Conclusion

The inheritance mechanisms in the languages Beta,
Smalltalk, and CLOS are representative of three differ-
ent design choices for inheritance. Although the mech-
anisms are, on the surface, very dissimilar, we identify
a common underlying structure. This underlying mech-
anism combines two sets of attributes such that dupli-
cate attribute definitions are given a value from one set,
where the value that is used may refer to the value being
eliminated.

Beta and Smalltalk both support single inheritance,
in which a single existing definition may be extended
with new attributes. In Smalltalk the new attributes
may replace existing attributes, which can be accessed
directly via super. In contrast, Beta prohibits the ex-
tensions from replacing existing attributes; a new defin-
ition for an existing attribute has an effect only by being
invoked when the original attribute executes the inner
command. These two mechanisms have inverse rela-
tionships between inherited definition and extensions:
the Smalltalk subclass/superclass relationship is anal-
ogous to the superpattern/subpattern relationship in
Beta, where super is analogous to inner.

CLOS supports multiple inheritance, in which several
existing definitions may be combined together. To avoid
duplication of components, CLOS linearizes the set of
primitive components in the inherited definitions. This
linear list of components is then combined together by
the same mechanism underlying Smalltalk and Beta: at-
tribute values appearing earlier in the list replace (and
may refer to) those appearing later. One disadvantage
of linearization is that the relationships between prim-
itive components may be changed. However, we show
that linearization is the basis for the useful technique of
mixin programming.

We propose that the underlying inheritance mecha-
nism, which appears in two different restricted forms
in Beta and Smalltalk, and is hidden behind lineariza-
tion in CLOS, be used as the foundation for a general
inheritance construct. In this formulation, mixins be-
come the basic definitional construct, and inheritance
is interpreted as mixin composition. Since the compo-
sition of mixins is explicit, the problem of linearization
violating encapsulation does not arise.

It does not appear difficult to extend Beta and
Smalltalk to support mixins and generalized inheri-
tance. This work could be applied to CLOS, which al-
ready supports mixins, to make them more explicit and

8



less susceptible to encapsulation problems. A sketch of
an extension to Modula-3 illustrates a possible design
for mixins and generalized inheritance.

References

[1] Cardelli, L. A semantics of multiple inheritance.
In Semantics of Data Types (1984), vol. 173 of Lec-
ture Notes in Computer Science, Springer-Verlag,
pp. 51–68.

[2] Cardelli, L., Donahue, J., Glassman, L.,
Jordan, M., Kalsow, B., and Nelson, G.
Modula-3 report (revised). Tech. Rep. 52, Digital
Equipment Corporation Systems Research Center,
Dec. 1989.

[3] Cook, W. A Denotational Semantics of Inheri-
tance. PhD thesis, Brown University, 1989.

[4] Cook, W., and Palsberg, J. A denota-
tional semantics of inheritance and its correctness.
In Proc. of ACM Conf. on Object-Oriented Pro-
gramming, Systems, Languages and Applications
(1989), pp. 433–444.

[5] Dahl, O.-J., Myhrhaug, B., and Nygaard,
K. The SIMULA 67 common base language. Tech.
rep., Norwegian Computing Center, Oslo, Norway,
1970. Publication S-22.

[6] DeMichiel, L., and Gabriel, R. The Com-
mon Lisp Object System: An overview. In Euro-
pean Conference on Object-Oriented Programming
(June 1987), pp. 151–170.

[7] Ducournau, R., and Habib, M. On some algo-
rithms for multiple inheritance in object-oriented
programming. In European Conference on Object-
Oriented Programming (1987), pp. 243–252.

[8] Goldberg, A., and Robson, D. Smalltalk-80:
the Language and Its Implementation. Addison-
Wesley, 1983.

[9] Keene, S. E. Object-Oriented Programming in
Common Lisp. Addison-Wesley, 1989.

[10] Kristensen, B. B., Madsen, O. L., Moller-
Pedersen, B., and Nygaard, K. The Beta
programming language. In Research Directions in
Object-Oriented Programming. MIT Press, 1987,
pp. 7–48.

[11] Kristensen, B. B., Madsen, O. L., Moller-
Pederson, B., and Nygaard, K. The Beta
programming language – a Scandinavian approach
to object-oriented programming, Oct. 1989. OOP-
SLA’89 Tutorial Notes.

[12] Kristensen, B. B., Madsen, O. L., Moller-
Pendersen, B., and Nygaard, K. Abstraction
mechanisms in the Beta programming language.
Information and Control (1983).

[13] Moon, D. A. Object-oriented programming with
Flavors. In Proc. of ACM Conf. on Object-Oriented
Programming, Systems, Languages and Applica-
tions (1986), pp. 1–8.

[14] Papazoglou, M. P., Georgiadis, P. I., and
Maritsas, D. G. An outline of the programming
language Simula. Computer Language 9, 2 (1984),
107–131.

[15] Reddy, U. S. Objects as closures: Abstract se-
mantics of object-oriented languages. In Proc. of
the ACM Conf. on Lisp and Functional Program-
ming (1988), pp. 289–297.

[16] Snyder, A. Encapsulation and inheritance
in object-oriented programming languages. In
Proc. of ACM Conf. on Object-Oriented Pro-
gramming, Systems, Languages and Applications
(1986), pp. 38–45.

[17] Snyder, A. Inheritance and the development of
encapsulated software systems. In Research Direc-
tions in Object-Oriented Programming. MIT Press,
1987, pp. 165–188.

[18] Wand, M. Type inference for record concatenation
and multiple inheritance. In Proc. IEEE Sympo-
sium on Logic in Computer Science (1989), pp. 92–
97.

[19] Wegner, P., and Zdonik, S. B. Inheritance as a
mechanism for incremental modification. In Euro-
pean Conference on Object-Oriented Programming
(1988), pp. 55–77.

9


