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Abstract The widespread deployment of networked ap-
plications and adoption of the internet has fostered an
environment in which many distributed services are avail-
able. There is great demand to automate business processes
and workflows among organizations and individuals. So-
lutions to such problems require orchestration of con-
current and distributed services in the face of arbitrary
delays and failures of components and communication.

We propose a novel approach, called Orc for orches-
tration, that supports a structured model of concurrent
and distributed programming. This model assumes that
basic services, like sequential computation and data ma-
nipulation, are implemented by primitive sites. Orc pro-
vides constructs to orchestrate the concurrent invocation
of sites to achieve a goal – while managing time-outs, pri-
orities, and failure of sites or communication.

Keywords Wide-area Computing · Web Services ·
Computation Orchestration · Distributed Computing ·
Process Algebra · Thread-based Programming

1 Introduction

The computational pattern inherent in many wide-area
applications is this: acquire data from one or more re-
mote services, calculate with these data, and invoke yet
other remote services with the results. Additionally, it is
often required to invoke alternate services for the same
computation to guard against service failure. It should
be possible to repeatedly poll a service until it supplies
results which meet certain desired criteria, or to ask a
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service to notify the user when it acquires the appro-
priate data. And it should be possible to download an
application and invoke it locally, or have a service pro-
vide the results directly to another service on behalf of
the user.

We introduce site as a general term for a basic service,
such as sequential computation, data manipulation and
communication. A web service is a site. We sketch some
of the requirements for sites later in this section and in
greater detail in section 2.

We call the smooth integration of sites orchestration,
and Orc is our theory of orchestration of sites. Orchestra-
tion requires a better understanding of the kinds of com-
putations that can be performed efficiently over a wide-
area network, where the delays associated with commu-
nication, unreliability and unavailability of servers, and
competition for resources from multiple clients are dom-
inant concerns.

Consider a typical wide-area computing problem. A
client contacts two airlines simultaneously for price quotes.
He buys a ticket from either airline if its quoted price is
no more than $300, the cheapest ticket if both quotes
are above $300, and any ticket if the other airline does
not provide a timely quote. The client should receive an
indication if neither airline provides a timely quote. Such
problems are typically programmed using elaborate ma-
nipulations of low-level threads. We regard this as an
orchestration problem in which each airline is a site; we
can express such orchestrations very succinctly in Orc.

Our theory is built upon three composition opera-
tors: for parallel computation, sequencing and selective
pruning. We show a variety of examples from web ser-
vices and other domains to illustrate the power of these
composition operators. Our theory is applicable to dis-
tributed application design in general, with particular
emphasis on orchestration of web services.
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1.1 An Overview of the Orchestration Theory

1.1.1 Starting an orchestration

We propose a simple extension to a sequential program-
ming language to invoke an orchestration. Introduce an
assignment statement of the form

z :∈ E(L)

where z is a variable, E is the name of an orchestra-
tion expression (abbreviated to Orc expression, or, sim-
ply expression) and L is a list of actual parameters1.
Evaluation of E(L) may entail a wide-area computation
involving, possibly, multiple servers. The evaluation out-
puts zero or more results, the first one of which (if there
is one) is assigned to z, and further evaluation of E is
terminated. If the evaluation yields no result, the state-
ment execution does not terminate. The evaluation may
initiate computations which have effects on other servers,
and these effects may or may not be visible to the client.

Terminology A site publishes a value means that the site
returns that value in response to a call. Similarly, an
expression publishes a value means that its evaluation
causes output of that value. A site/expression is silent if
it never publishes.

Next, we give a brief introduction to the structure of
Orc expressions.

1.1.2 Site

The simplest Orc expression is a site name, possibly with
parameters. Evaluation of the expression calls the site
like a procedure. A site call elicits at most one response;
it is possible that a site never responds to a call.

Consider the expression CNN , where CNN is a news
service. A call may simply publish the latest newspage.
Calling CNN (d), where d is a date, may download the
newspage for the specified date. Let Email(a,m) send
message m to address a. Evaluating Email(a,m) causes
permanent change in the state of the recipient’s mailbox,
and returns a signal to the client to denote completion
of the operation. Let A be an airline flight-booking site.
Evaluating expression A returns the booking information
and causes a state change in the airline database.

A site could be a function (say, to convert an XML
file to a bit stream for transmission), a method of an ob-
ject (say, to gain access to a password-protected object;
in this case, the password, or an encrypted form of it,
would be a parameter of the call), a monitor[17] proce-
dure (such as read or write to a buffer, where the read
responds only when the buffer is non-empty), or a web

1 The notation :∈ is due to Hoare. It neatly expresses, in
analogy with the assignment operator :=, that the evaluation
of the right side may yield a set of values one of which is to
be assigned to z.

service (say, a stock quote service that delivers the latest
quotes on selected stocks).

An orchestration may involve humans as sites. A pro-
gram which coordinates the rescue efforts after an earth-
quake will have to accept inputs from the medical staff,
firemen and the police, and direct them by sending com-
mands and information to their hand-held devices. Hu-
mans communicate with the orchestration by sending
digital inputs (key presses) and receiving output suitable
for human consumption (print, display or audio).

A call to a site may not return a result if, for in-
stance, the server or the communication link is down.
This is treated as any other non-terminating computa-
tion. We show how time-outs can be used to alleviate
this problem.

1.1.3 Composition Operators

Orc has three composition operators to form expressions
out of constituent subexpressions. Symmetric parallel
composition of f and g, written as f | g, permits in-
dependent computations and publications (i.e., outputs)
from f and g. The remaining two composition operators
are inspired by the logical quantification operators: (1)
for all x published by f do g, and (2) for some x pub-
lished by f do g. We write the first expression as f >x> g
and the second as (g wherex :∈ f). We choose this syn-
tax to better emphasize the algebraic properties of the
operators (such as associativity of >x> ) which are not
evident in the quantified form.

Additionally, we structure an expression by allowing
expression definitions, and using names of expressions
in other expressions. Naming also allows recursive defin-
itions of expressions, which is essential in any substantive
application design.

Evaluation of an expression calls some number of sites
and publishes a (possibly empty) stream of values. Be-
low, we give a brief summary of the composition oper-
ators using a series of examples; a detailed description
appears in section 3.

– (CNN | BBC) calls the two sites, CNN and BBC, si-
multaneously. Each site publishes at most one value.
The output stream consists of the values published
(i.e., returned) by the sites in time-order. Thus, there
can be anywhere from zero to two values in the stream.

– Expression (CNN >m> Email(a,m)) first calls CNN .
The value returned is named m, and Email(a,m) is
then called. The value returned by Email(a,m) is
the value published by the expression. If CNN does
not respond, the expression evaluation does not ter-
minate. If CNN does respond but Email(a,m) does
not, then also the evaluation does not terminate. No
value is published in either case.
Particularly interesting is an expression like

(CNN | BBC ) >m> Email(a, m)
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Here, (CNN | BBC ) may publish multiple values,
and for each value v, we call Email(a,m) setting m
to v. Therefore, the evaluation can cause up to two
emails to be sent, one with the newspage from CNN
and the other from BBC .

– The operators À and | only initiate computations.
The where operator prunes computations selec-
tively. In (Email(a, m) where m :∈ (CNN | BBC )),
the expression sends at most one email, with the
first newspage received from either CNN or BBC .
To evaluate this expression start evaluation of both
Email(a,m) and (CNN | BBC ). Since m does not
have a value initially, the call Email(a,m) is not com-
pleted; it is deferred until m has a value. The evalua-
tion of (CNN | BBC ), as described above, may yield
more than one value; the first value is assigned to m
and further evaluation of that expression is then ter-
minated. At this point, Email(a,m) is called and its
response, if any, is the value of the whole expression.

Operator >x> allows results from one expression to
be used as input to another; for instance, we may con-
tact a discovery service and pipe its output —the name
of an application— to another service which downloads
the application and executes it on some given data. Op-
erator | allows us to receive data from mirror sites or
to compute a result by calling alternate services. And
where allows selective pruning of the computation.

1.1.4 Expression Definition

To structure an orchestration, we allow expression defi-
nitions. An expression is defined like a procedure, with
a name and possible parameters. Below, MailOnce(a)
emails the first newspage from CNN or BBC to address
a.

MailOnce(a) ∆
Email(a,m) where m :∈ (CNN | BBC )

An expression, such as MailOnce, may be called from
another expression, as in

MailOnce(a) >x> MailOnce(b)

to send two newspages, to addresses a and b in succes-
sion. Here, the value of x is not used.

An expression may call itself, as in

MailForever(a) ∆
MailOnce(a) >x> MailForever(a)

which keeps sending newspages to a. A more interesting
expression is Ticker which emails a newspage to a, re-
ceives a confirmation from Email, waits for t time units,
and then repeats these steps forever.

Ticker(a, t) ∆
MailOnce(a) >x> Rtimer(t) >y> Ticker(a, t)

Site call Rtimer(t) publishes a value after t time units
(the value itself is of no significance, only the time delay
is). We will see more sophisticated orchestration schemes
which allow time-outs, interruptions, eager evaluations
(such as calling Rtimer as soon as Email is called but
before it responds) in this paper.

1.2 Power of the Orc computation model

The proposed programming model is quite minimal. It
has no inherent computational power; it has to rely on
external sites for doing even arithmetic. However, this
apparent limitation permits us to study orchestration in
isolation and to combine sites of arbitrary complexity in
a computation, without making any assumptions about
their behavior. Our model includes no explicit constructs
for time-out or thread synchronization and communica-
tion, features which are common in thread-based lan-
guages. We show in section 5 how such constructs are eas-
ily implemented in Orc. As a special case, single-threaded
computations (as in sequential computing) are also easy
to code in Orc. We program arbitrary process-network-
style computations by having expressions correspond to
processes, and letting them communicate through sites
that implement channels.

1.2.1 Structure of the paper

The goal of this paper is to introduce the Orc program-
ming model and illustrate its application in diverse ar-
eas of programming. We discuss several issues related
to sites in section 2. In particular, we state some as-
sumptions we do not make about sites. We define a few
sites which are fundamental to effective programming in
Orc. We describe the syntax of Orc in section 3.1 and an
implementation-oriented semantics in section 3.2. A for-
mal semantics is given in Section 4. Most programming is
done by learning certain idioms. We develop a number of
idioms in section 5, which show programming strategies
for sequential computing, time-out, and communication
and synchronization among computations. Section 6 con-
tains a few laws, describing equivalences over Orc expres-
sions. We have also developed a denotational semantics
which offers alternative proofs of the algebraic laws [19].

We develop some longer examples in section 7. These
are motivated by the intended application domain of Orc,
web services orchestration.

2 Sites

2.1 Properties of sites

Each terminal element in an Orc expression is a site call.
A site call has the same form as a function call: the
name of a site followed by an optional list of parameters.
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Therefore, the simplest Orc expression is the name of a
site. A parameter is a constant or a variable. Variables
may denote any value, including another site.

In this paper, we do not specify exactly how a site
is to be called; the kinds of communication protocols to
be used and the servers on which the computations of a
site take place are not relevant to our theory. It is pos-
sible to designate a site as being downloadable —as is
the case with most Java applets— which causes a site
call to result in a download and execution of the appli-
cation on the client’s machine. More elaborate schemes
for migration and execution may be specified for certain
sites. In general, calling a site causes execution of the
corresponding procedure at the appropriate servers.

A site is different in several ways from a mathematical
function. First, a site call may have side-effects, changing
the state of some object. Second, a site call may elicit no
response, or publish different values with the same input
at different times. In particular, a site may publish no
result for one call and a result for an identical call (with
the same inputs) at a different time. This is because the
server or the communication link may have failed during
the former call. Third, the response delay of a site is
unpredictable.

2.2 Types of results published by sites

A site is called with values of certain types and it pub-
lishes typed values. The internet already supports a num-
ber of esoteric data types, such as newspages, download-
able files, images, animation and video, url strings, email
lists, order forms, etc. The result published by a discov-
ery service is of type site. We expect the variety of types
to proliferate in the coming years. Many of these types
will be XML document types[12]; see Cardelli [5] for an
interesting presentation on this and related topics. Even
though it is a fascinating area, we will not pursue the
question of how various types will be handled within a
traditional sequential programming language. We merely
assume that a result published by a site can be assigned
to a program variable.

We introduce a type, called signal, which has exactly
one value. Its typical purpose is to indicate the termina-
tion of some expression evaluation.

2.3 States changed by site calls

A site call can potentially affect the state of the exter-
nal world in addition to returning a value to the client.
The state changes could be one of the following: (1) no
(discernible) state change (2) a permanent state change.

A site which is a function (in the strict mathematical
sense) causes no state change. (Although its execution
consumes resources, such aspects are not relevant to our
work.) Similarly, a query on a database does not cause

visible state change, though it may have the benign side-
effect of caching the data for faster access in the future.

A call to an Email site causes a permanent state
change in the mailbox of the intended recipient. This
state change can not be rolled back. Any roll-back strat-
egy is application dependent, say, by sending a cancella-
tion message, which is interpreted by the recipient.

In this paper, we do not discuss tentative state changes,
which can arise if a transaction is invoked as part of an
Orc computation. Additional machinery is required to
make tentative state changes permanent, a topic we will
discuss in a forthcoming paper.

2.4 Some Fundamental Sites

We define a few sites in Table 1 that are fundamental
to effective programming in Orc. The sites let, Clock,
Signal and if respond immediately (or may not respond
at all, in the case of if ). The timer sites —Clock, Atimer
and Rtimer— are used for computations involving time.
Time is measured locally by the server on which the com-
putation is performed. Since the timer is a local site, the
client experiences no network delay in calling the timer
or receiving a response from it; this means that the signal
from the timer can be delivered at exactly the right mo-
ment. With t = 0, Rtimer responds immediately. Sites
Atimer and Rtimer differ only in having absolute and
relative values of time as their arguments, respectively.
They are related as follows, where the current clock value
is c.

Atimer(t) ≡ Rtimer(t− c), provided t ≥ c
Rtimer(u) ≡ Atimer(u + c), provided u ≥ 0

3 Syntax and Informal Semantics

We describe the syntax and informal semantics of Orc
in this section. The notation, which we have outlined in
section 1.1, is quite simple, and can be easily combined
with sequential host languages.

3.1 Syntax

The syntax of Orc appears in Table 2. Henceforth, we
abbreviate f >x> g to f À g if the result published by
x is not used in g.

Binding powers of the operators The operators in in-
creasing order of precedence (binding power) are:
∆ , where , :∈, | , >x> .

Operator >x> is right associative. So

M >x> (N(x) | R) >x> S(x) is
M >x> ((N(x) | R) >x> S(x)).
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Table 1 Fundamental Sites

let(x, y, · · · ) publishes a tuple consisting of the values of its arguments.
if (b) where b is boolean, publishes a signal if b is true, and

it remains silent (i.e., does not respond) if b is false.
Signal publishes a signal immediately. It is same as if (true).
Clock publishes the current time at the server of this site, as an integer.
Atimer(t) publishes a signal at time t, where t is integer and t ≥ the value returned by Clock
Rtimer(t) publishes a signal after exactly t time units, where t is integer and t ≥ 0.

Table 2 Syntax of Orc

E ∈ Expression Name
x, z ∈ Variable
M ∈ Site ⊂ Variable
c ∈ Constant

P ∈ p1, . . . , pn List of Actual Parameters
Q ∈ q1, . . . , qn List of Formal Parameters

Orc Statement ::= z :∈ E(P ) Evaluate E(P ) and assign to z
Expression Defn ::= E(Q) ∆ f Define expression E

f, g ∈ Expression ::= 0 Zero expression
|| M(P ) Site call
|| E(P ) Expression call
|| f | g Symmetric Parallel Composition
|| f >x> g Sequential Composition
|| f where x :∈ g Asymmetric Parallel Composition

p ∈ Actual Parameter ::= x Variable
|| c Constant

q ∈ Formal Parameter ::= x Variable

Well-formed expressions The free variables of an expres-
sion are defined as follows, where M is a site or an ex-
pression name and L is a list of its actual parameters.

free(0) = {}
free(M(L)) = {x| x ∈ L}
free(f | g) = free(f) ∪ free(g)
free(f >x> g) = free(f) ∪ (free(g)− {x})
free(f where x :∈ g) = (free(f)− {x}) ∪ free(g)

Variable x is bound in f if it is named in f and is
not free. In the host program, Orc statement y :∈ E(L)
is well-formed if the variable parameters in L are vari-
ables of the host language program. Expression definition
E(Q) ∆ f is well-formed if the free variables of f is a
subset of Q.

Values, Tuples and Sites Sites publish values. The value
could be of any type; in particular, it could be a tuple of
values. We overload the definition of let such that let(3)
and let(3, 5) publish 3 and tuple (3, 5), respectively. We
also allow tuples of variable names where a variable x
may appear; this binds each variable to the correspond-
ing component of the tuple.

Sites are also values. A site may be used as a para-
meter to another site or published by a site as a value.
Thus, in

Find >M> M(x) À N(M)
Find publishes a site M , which is called and then N is
called with M as a parameter.

In typical programming languages, sqrt(4) and 2 are
interchangeable in all contexts. That is not so in Orc.
Given that sqrt is a site, sqrt(4) is an Orc expression, but
2 is a value. Orc expressions that publish 2 are sqrt(4)
and let(2). Only constants and variables which have val-
ues may appear as actual parameters of site calls, not Orc
expressions. And, only Orc expressions may be combined
using the composition operators.

Notational conventions We write
(f where x :∈ g) where y :∈ h

also as
f where x :∈ g

y :∈ h

or, (f where x :∈ g, y :∈ h).

3.2 Informal semantics

In this section, we describe the semantics of Orc infor-
mally, though rigorously, in operational terms. This se-
mantics provides an abstract execution model which cor-
responds closely to our prototype implementation of Orc,
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and is useful as a model for programmers to understand
the execution of Orc expressions.

Imagine that a single client machine evaluates the
Orc expression. It sends messages to call (remote) sites.
On receiving response v to a call, it either publishes v
and/or calls other sites with v as a parameter. It may
start several computations simultaneously. Time-based
sites, Clock, Atimer and Rtimer, are implemented on
the client, so that they respond with exact values at exact
moments (as measured by the client’s clock).

The actual evaluation of an Orc expression may in-
volve a distributed network of computers. In fact, process
networks are easily represented as Orc expressions.

3.2.1 Overview of Expression Evaluation

We describe the operational semantics of expression eval-
uation in terms of threads. A thread defines a portion of
the computation during an evaluation. Threads are used
in this section only, as a convenient way of explaining
expression evaluation. The Orc language does not have
a notion of threads, and programming in Orc does not
entail reasoning about threads. Moreover, our implemen-
tation of Orc does not use operating system threads.

To evaluate an expression, we create and run a thread.
A thread may call sites, publish values and assign val-
ues to certain variables. Also, it may spawn sub-threads.
The set of threads form a tree where any sub-thread of
a thread is its child. The root of the tree is the thread
which evaluates the main expression.

Associated with each thread is a context, bindings
between variables and their values which are to be used
in running the thread. The initial context (at the root)
binds the values of the global variables to their values.
Variables may also be defined when a thread is created.
For example, in evaluating M >x> f , the thread to eval-
uate f starts with a given value of v of x. We write such
a thread as f(x,v). In evaluating (f where x :∈ g), the
thread that evaluates f starts with name x being de-
fined, though x has no value. We write such a thread as
f(x,⊥). Later, this context is modified when x is assigned
a value. If no new variable is defined when a thread is
created, its context is empty.

During evaluation of a well-formed expression, any
reference to variable x in a thread implies that x is de-
fined in the context of this or some ancestor thread; x
may not yet have a value. If (x, u) is in the context of
this thread and u 6= ⊥, then the value of x is u, and if
u = ⊥, then x has no value. If x is not defined in the
context of this thread, i.e., (x, u) is not in the context for
any u, then repeat the procedure starting at the parent
thread to determine the value of x. Henceforth, we say
that x has value v in a thread to mean that (x, v) is in
the closest context in which x is defined and v 6= ⊥.

Below, we describe the semantics of an expression
in terms of its structure. Each expression has an eval

part and publish part. The former specifies the threads

that are created to evaluate this expression. The context
of a created thread includes the context of the thread
from which it is created and any additional variable bind-
ings as given below. The publish part specifies what the
thread publishes as its values.

A value is published by an expression as soon as it is
published by a component thread.
1. M(x), where M is a site, M 6= 0:

eval: if x has value v, run a thread which calls M(v).
publish: value, if any, returned by site M .

2. E(x), where E is a defined expression:
eval:
substitute actual parameter names for formal para-

meters in the definition of E;
run a sub-thread to evaluate this definition.

publish: all publications from this sub-thread.

3. (f | g):
eval: run sub-threads for f and g.
publish: interleave all publications from both sub-
threads in time order.

4. (f >x> g):
eval:
run a sub-thread for f ;
for each publication v of f , run g(x,v) as a sub-

thread.
publish: interleave all publications of all g-threads in
time order.

5. (f where x :∈ g):
eval:
run sub-threads f(x,⊥) and g;
for the first publication v of g do:

modify context of f from (x,⊥) to (x, v);
terminate g-thread and all its descendants;

publish: all publications of f -thread.

The rule for site call ensures that the call is made
only if the actual parameter has a value. Otherwise, the
call is deferred until the parameter has a value. We have
considered site calls with just one parameter; for more
parameters, all actual parameters must have values. Ob-
serve that no action is taken for expression 0; no site is
called, nor is there any publication corresponding to this
expression.

For an expression call, the actual parameter names
are substituted for the formal ones, and then the expres-
sion is evaluated. Note that some of the actual parame-
ters may not have values, and the site calls may have to
be deferred.

The rule for f | g is straight-forward. No new context
is created for either thread in this case, and publication
of either thread is a publication for the whole expression.

The rule for f >x> g merely creates a g-thread for
each publication of f , with the appropriate context. For
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f À g, simply create a g-thread for each publication of
f , without additional context.

The first value published by g in (f where x :∈ g) is
relevant; subsequent values are ignored and the g-thread
and all its descendants are then terminated. Any re-
sponse received subsequently from a site in response to
an earlier call from g (or its descendants) is ignored. If
the first value is v, the value of x becomes v, and this is
recorded by modifying the context from (x,⊥) to (x, v)
in the f -thread.

Synchronous Semantics The proposed semantics has in-
ternal events (creations of threads, making site calls,
etc.) which it can process, and external events (responses
from sites) which are beyond its control. We require
that all internal events be processed as soon as possible,
though they may be processed in any order. Absence of
this requirement may delay processing internal events ar-
bitrarily, or process an external response while there are
outstanding internal events. Under synchronous seman-
tics, no response is processed if there is an outstanding
internal event. And, sub-threads created in f | g, for
instance, are run simultaneously.

Events involving fundamental sites let, if and Signal
are treated as internal events. Consequently, these sites
publish their values before any external event is processed.
For example, in M | Signal, the signal from Signal is
published before the response from M .

3.2.2 Site call

The simplest expression is a site name without parame-
ters. To evaluate the expression, call the site and the
value published by the site becomes the (only) value of
the expression.

A site call with parameters is strict ; that is, the site
is called only when all its parameters have values. The
parameters of a site call and the value published by the
site can be of any type (see section 2.2), including a site
name which can be called later during the evaluation.

3.2.3 Expression call

An expression call is syntactically similar to a site call,
with the name of an expression replacing a site name.
However, there are several semantic differences.

First, a site call publishes at most one value whereas
an expression may publish many.

Second, calling an expression starts evaluation of a
new instance of that expression; that is f À f refers to
two different instances of f . A site call, typically, will not
create new instances of the site, but will queue its callers
and serve them in some order.

Third, an expression call is non-strict; evaluation of
an expression begins when it is called, even if some of
its actual parameters are undefined. Site calls are strict
in that its actual parameters must be defined before the
site is called. See Section 3.2.7 for elaboration.

3.2.4 Sequential composition

Operator À and its more general form >x> allow
sequencing of site calls. We first take up the simpler case,
À . Expression M À N first calls M , and on receiving
the response from M calls N . The value of the expression
is the value published by N . Site N cannot reference the
value published by M . Operator À is associative.

Consider

Rtimer(1) À Email(address,message)

which sends an email after unit delay and publishes a sig-
nal (the value from Email). And Rtimer(1) À Rtimer(1)
has the same effect as Rtimer(2). Expression

Email(address1, message)
À Email(address2, message)
À Notify

sends two emails in sequence and then calls Notify .
The examples we have shown so far each publish at

most one value. In this case, À has the same meaning
as the sequencing operator in a conventional sequential
language (like “;” in Java). For expression f À g, where
f and g are general Orc expressions, f publishes a set
of values at specific times, and each value causes a fresh
evaluation of g at that time; this instance of g runs in
parallel with f and other instances of g. The values pub-
lished by all instances of g are the publications of f À g.

3.2.5 Value passing

In M À N , we have merely specified an order of site calls
without showing how N may reference the value pub-
lished by M . We write M >x> N(x) to assign name x
to the value published by M , which allows N to reference
this value. Operator >x> is right associative; so

M >x> (N(x) | R) >y> S(x, y) is
M >x> ((N(x) | R) >y> S(x, y)).

That is, the scope of x is as far to the right as possible
over a chain of À . We can show that >x> is associative,
i.e.,

(f >x> g) >y> h = f >x> (g >y> h)

if both sides of the identity are well-formed, i.e., if x is
not a free variable of h.

For general Orc expressions f and g, f >x> g assigns
name x to every value published by f . Each value is
referenced in a different instance of g as x. For example,
suppose f has published three values, 0, 1 and 2. There
will be three instances of g in which x set to 0, 1 and 2,
respectively, and evaluations of all three instances of g
and of f may be concurrent.
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3.2.6 Symmetric parallel composition

We introduce | to permit symmetric parallel computa-
tions. Evaluation of (M | N) calls both M and N , and
publishes the values published by M and N (in the same
order in which M and N publish). Given that CNN and
BBC are two sites that publish newspages, CNN | BBC
may potentially publish two newspages. It may publish
zero, one or two values depending on how many sites
respond.

In general, evaluation of f | g, where f and g are Orc
expressions, starts evaluations of f and g, which may, in
turn, start yet more evaluations. Each evaluation pub-
lishes a stream of values. The publications of f | g is the
merge of these two streams in time order. If both pub-
lish values simultaneously, their merge order is arbitrary.
Operator | is commutative and associative.

Consider the expression (M | N) >x> R. The evalu-
ation starts by calling M and N . Suppose M publishes
a value first. This value is called x and R is called. If
N publishes a value next, R is called again with a new
value of x. That is, each value from (M | N) starts a
new instance of R.

Expressions M | M and M are different; the former
makes two parallel calls to M , and the latter makes just
one. And M À (N | R) is different from M À N | M À R.
In the first case, exactly one call is made to M , and N
and R are called after M responds. In the second case,
two parallel calls are made to M , and N and R are called
only after the corresponding calls respond. The difference
is significant where M publishes different values on each
call, and N and R use those values. The two computa-
tions are depicted pictorially in figure 1.

M M

N R

M

N R

(a) (b)
Fig. 1 (a) M À (N | R) and (b) M À N | M À R

Earlier, we wrote

Email(address1,message)
À Email(address2,message)
À Notify

to send two emails and then call Notify . Below, we send
the emails in parallel and call Notify on receiving each
response.

( Email(address1,message)
| Email(address2,message))

À Notify

Here, Notify is potentially called twice, once for each
response from Email.

Alternative Semantics We discuss two alternative inter-
pretations of f | g, each of which publishes a single value.
One possibility is to let f | g publish the first value pub-
lished by either f or g and then terminate. This seman-
tics incorporates arbitration, which we model directly
in standard Orc in Section 5.3. Another possible inter-
pretation of f | g is that it publishes a tuple of first
values, one from f and the other from g, and then ter-
minates. That is, it implements fork-join parallelism in
which both threads, f and g, have to publish a value
for the computation to continue. We show how fork-join
can be encoded in standard Orc in Section 5.5. The stan-
dard semantics is preferable because its formal definition
is simpler, and we have been able to program a number
of distributed programming paradigms more succinctly.

3.2.7 Asymmetric parallel composition

An expression with a where clause (henceforth, called a
where expression), has the form (f where x :∈ g). Ex-
pression f may name x as a parameter in some of its site
calls. Evaluation of the where expression proceeds as fol-
lows. Evaluate f and g in parallel. When g publishes its
first value, assign it to x and terminate further evaluation
of g. Termination of g means: (1) any subsequent value
received in response to an earlier site call is ignored, and
(2) there are no further site calls or publications.

During evaluation of f , any site call which does not
name x as a parameter may proceed, but site calls in
which x is a parameter are deferred until x acquires a
value. The values published by f under this evaluation
strategy are the publications of (f where x :∈ g).

A useful application of where is in pruning the com-
putation selectively. Consider (M | N) >x> R(x) where
each value published by (M | N) creates an instance of
R(x). To create just one instance of R(x), corresponding
to the first value published by (M | N), use

(R(x) where x :∈ (M | N))
In section 3.2.6, expression

( Email(address1,message)
| Email(address2,message))

À Notify
causes Notify to be (potentially) called twice. Below,
Notify is called just once after both calls to Email re-
spond.

(let(u, v) À Notify
where

u :∈ Email(address1,message)
v :∈ Email(address2,message))

Expression calls are non-strict because the semantics
of where demand it. In (F (x) wherex :∈ g), where F is
the name of an expression, the semantics of where require
that we start the evaluation of F (x) and g simultane-
ously, i.e., before x has a value. An implementation has
to pass a reference to x (where the value of x will be
stored) to F .
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Alternative Semantics We discuss two alternative inter-
pretations of (g where x :∈ f), and why they were re-
jected. In the first semantics, start evaluation of f ; when
f publishes its first value, name it x, start evaluation of g
and terminate f . This computation can be expressed in
standard Orc as (let(x) À g wherex :∈ f). Additionally,
if f never publishes, (g where x :∈ f) and (f >x> g)
have the same computations under the alternative se-
mantics. We would like them to have different computa-
tions which is motivated by a formal analogy. These Orc
operators are inspired by the quantification operators of
predicate calculus: (1) (f >x> g) evaluates g for all x
published by f , and (2) (g where x :∈ f) evaluates g
for some (the first) x published by f . Non-publication
by f can be regarded as evaluating g over an empty
domain, similar to formulae (∀x : x ∈ {} : p(x)) and
(∃x : x ∈ {} : p(x)), where p is a predicate over variable
x. These two predicate calculus formulae have different
values.

A second possible interpretation of (g where x :∈ f)
is to evaluate f lazily, i.e., only when the value of x
is needed. Then, in (M À N(x) where x :∈ f) if M
does not respond, f is never evaluated. We can achieve
the same effect by using M À (N(x) where x :∈ f) in
standard Orc. Translation of general expressions is more
elaborate: call site eval.set to set a bit when x is needed
and evaluation of f begins only when eval.get returns a
signal denoting that the bit has been set.

3.2.8 Site 0

Site 0 never publishes.
Use (Email(address1,message) À 0 | Notify) to

send an email and call Notify simultaneously. The first
alternative never publishes a value. (A site like Email is
called an asynchronous procedure in polyphonic C# [2];
no response is needed from it to proceed with the main
computation.)

3.2.9 Expression Definition

Essential to program structuring is the ability to write
a long expression in terms of other expressions that are
defined separately. In Orc, an expression is defined by
its name, a list of formal parameters, and an expression
which serves as its body. As an example, consider the
definition

Asynch(address, message,N) ∆
Email(address, message) À 0 | N

which defines the name Asynch, specifies its formal pa-
rameters (in which N is a site) and its body. Another
expression may call it, for example, in

Asynch(a,m,Notify).

As another example, sites P and Q manage the cal-
endars of two different professors. Calling P (t), where t

is a time, publishes t if the corresponding professor can
attend a meeting at t, and it is silent (i.e., publishes no
value), otherwise; Q(t) has a similar meaning. Expres-
sion PmeetQ has two parameters, u and v, which are
two possible meeting times, and it publishes the times
(out of u and v) when both P and Q can meet. So, it
may publish 0, 1 or 2 values.

PmeetQ(u, v) ∆
P (u) À Q(u)

| P (v) À Q(v)

3.2.10 Recursive definitions of expressions

Naming expressions has the additional benefit that we
can use the name of an expression in its own defini-
tion, getting a recursive definition. Below is an expression
which emits a signal every time unit, starting immedi-
ately.

Metronome ∆ Signal | Rtimer(1) À Metronome

Parameters may appear in recursive calls in the usual
fashion. Define a bounded metronome to generate n sig-
nals at unit intervals, starting immediately. Below, n is
greater than 0 in the second definition.

BMetronome(0) ∆ 0
BMetronome(n) ∆
Signal | Rtimer(1) À BMetronome(n− 1)

Site Query publishes a value (different ones at differ-
ent times). Site Accept(x) publishes x if x is acceptable,
and is silent otherwise. It is required to publish all ac-
ceptable values by calling Query at unit intervals forever.

RepeatQuery ∆
Metronome À Query >x> Accept(x)

Or, publish all acceptable values by calling Query at unit
intervals n times.

RepeatQuery(n) ∆
BMetronome(n) À Query >x> Accept(x)

Using only the basic composition operators, an ex-
pression can publish only a bounded number of values.
As we see in Metronome, recursive definitions allow un-
bounded computations. Many more examples of the use
of recursion appear through out this paper.

3.2.11 Starting and ending a computation

A computation is started from a host language program
by executing an Orc statement

z :∈ E(L)
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where z is a variable of the host program, E is the name
of an expression and L is a list of actual parameters.
All variable parameters in L are variables of the host
language program, and they have values before E’s eval-
uation starts. (This is unlike calls to expressions made
during evaluation of an Orc expression. Then, the para-
meters may not have values when the expression evalua-
tion begins.) To execute this statement, start evaluation
of E with actual parameter values substituted for the
formal ones, assign the first value published to z, and
then terminate the evaluation. If evaluation of E pub-
lishes no value, the execution of the statement does not
terminate.

In many distributed programming applications, ex-
pression evaluation never publishes a value though it af-
fects the external world through site calls. Several such
examples appear in sections 5 and 7. In such a case,
the Orc statement should be placed within a thread of
the host language program with the expectation of non-
termination.

3.3 Angelic vs. Demonic Non-determinism

3.3.1 Angelic non-determinism

In evaluating (M | N) À R, it is tempting to accept the
first value computed for (M | N) and call R only with
this input, a form of demonic choice. But we reject this
strategy, because we would like to explore all possible
computation paths denoted by the expression. That is,
we employ angelic non-determinism. Therefore, we call
R with all values published by M and N . And R may
respond after, say, N has published its value, but fail to
respond after M . One pleasing outcome of this evalua-
tion strategy is that we have the identity (see section 6),

(M | N) À R = M À R | N À R,
and, more generally, the following distributivity law over
expressions f , g and h.

(Right Distributivity of À over | )
(f | g) À h = (f À h | g À h)

See section 5.10 for a solution to the eight queens
problem which exploits angelic non-determinism.

3.3.2 Demonic Nondeterminism

In a functional programming language like Haskell[16],
the where operator provides a convenient mechanism for
program structuring and efficient evaluations of expres-
sions. It is not a necessity because of referential trans-
parency: a variable defined by a where clause can be
eliminated from an expression by replacing its occurrence
by its definition.

In Orc, the where clause is essential to implement
demonic nondeterminism: to accept a single value of an
Orc expression and discard the remaining ones. There-
fore,

M(x) where x :∈ N | R

is not equivalent to

(N | R) >x> M

In the first case, M is called at most once. In the sec-
ond case, each value published by (N | R) forces a fresh
evaluation of M , thus possibly calling it twice. The sec-
ond form of programming (angelic) allows us to explore
all possible computation paths, and the first form (de-
monic) permits a more efficient evaluation strategy when
only some of the paths need to be explored.

3.4 Small Examples

We give a number of small examples to familiarize the
reader with the programming notation. Some fundamen-
tal programming idioms appear in the next section and
a few longer examples appear in section 7.

Multiple time-based computation Make four requests to
site M , in intervals of one time unit each.

M
| Rtimer(1) À M
| Rtimer(2) À M
| Rtimer(3) À M

Time-out If site M publishes value v before t time units,
publish v; if after t (or never), publish 0; if at t, publish
either value.

let(x) where x :∈ M | Rtimer(t) À let(0)

Selective time-based computation Receive N ’s response
as soon as possible, but no earlier than 1 unit from now.
Expression Rtimer(1) À N delays calling N for a time
unit and expression (N >x> Rtimer(1) À let(x)) de-
lays producing the response for a unit after it is received.
What we want is to call N immediately but delay receiv-
ing its response until a time unit has passed.

Delay(N) ∆ (Rtimer(1) À let(u)) where u :∈ N

We can use this expression to give priority to M over
N . Request M and N for values, but give priority to M
by publishing its response if it arrives within the first
time unit, even though after N ’s response.

let(x) where x :∈ M | Delay(N)
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Flow rate calculation Count the number of values pub-
lished by expression f in 10 time units. We use a lo-
cal site count which implements a counter. The initial
value of the counter is 0; calling count.inc increments
the counter and publishes a signal, and count.read pub-
lishes the counter value. In this solution, the value pub-
lished by count.inc is explicitly ignored, because we are
interested in producing a single value after 10 time units.

f À count.inc À 0 | Rtimer(10) À count.read

In the given expression f continues to compute and
call c.inc even after the expression publishes a value. Use

let(x) where x :∈
f À count.inc À 0 | Rtimer(10) À count.read

to terminate the computation of f after publication of a
value.

We may compare the rates at which two sources (say,
expressions f and g) are producing values and then choose
one source over another when both are producing the
same stream. Flow rate computation is important in
many applications. Cardelli and Davies [6] introduces a
basic language construct to compute flow rates for bit
streams.

Recursive definition with time-out Call a list of sites and
tally the number of responses received in a certain time
interval. Below, tally(L) implements this specification
where L is a list of sites, m is a (fixed) argument for
each site call, and the time interval is 10 units. This
example illustrates the use of recursion over a list. We
use the Haskell [16] notation for lists, denoting an empty
list by [ ], and a list with head x and tail xs by (x : xs).
Below, site call add(u, v) publishes the sum of u and v.

tally([ ]) ∆ let(0)
tally(x : xs) ∆

(add(u, v)
where

u :∈ x(m) À let(1) | Rtimer(10) À let(0)
v :∈ tally(xs))

4 Operational Semantics

We develop a formal semantics of Orc in this section.
The semantics is operational, and it is based on labeled
transition systems. First, in Section 4.1, we propose an
asynchronous semantics in which processing of internal
actions and external responses are interleaved in arbi-
trary order. Next, in Section 4.2, we obtain a synchro-
nous semantics by restricting the asynchronous seman-
tics as follows: external responses are processed only if
there are no internal actions which can be processed.

4.1 Asynchronous Semantics

As is common in small-step operational semantics, the
language must be extended to represent intermediate
states. We introduce ?u to denote an instance of a site
call that has not yet returned a value, where u is a unique
handle that identifies the call instance.

f, g ∈ Expr ::= 0 || M(p) || E(p) || f >x> g
|| f | g || g where x :∈ f || ?u

The variable x is bound in g for the expressions f >x> g
and (g where x :∈ f). Free variables and substitution
of c for variable x in e, written [c/x]e, are defined in the
standard way. We restrict the language to sites and de-
finitions with a single argument. In the future we will
extend the formal semantics to include multiple argu-
ments, tuples, and other data structures.

The transition relation f
l

↪→ f ′, defined in Figure 2,
states that expression f transitions with event l to ex-
pression f ′. There are four kinds of events:

l ∈ Event ::= M〈c, u〉 || u?c || !c || τ
A site call event, M〈c, u〉, represents a call to site

M with argument c and handle u, as explained below.
A response event, u?c, contains a site call handle u and
the result value c. A publish event, !c , specifies a re-
sult c from an expression. As is traditional, τ denotes an
internal event.

While the semantics is for the most part straightfor-
ward, the handling of site calls and the difference be-
tween sequential composition and asymmetric parallel
composition deserve discussion.

Site Calls Although the syntax of a site call resembles
a synchronous function call, it is given an asynchronous
interpretation by the semantics. In particular, a site call
involves three steps: invocation of the site, response from
the site, and publication of the result. These steps can
be arbitrarily interleaved with other site calls, or delayed
indefinitely. The three steps in a site call are defined by
the SiteCall, SiteRet, and Let rules.

Rule SiteCall specifies that a site call M(c), where
c is a constant, transitions to ?u with event M〈c, u〉. The
label u connects a site call to a site return – a fresh label
is created for each call to identify that call instance. The
resulting expression, ?u, represents an expression that
is blocked waiting for the return from the call. If the
site call is nested within an expression, then the event is
propagated to the top of the transition derivation, where
it is visible to the environment. A site call occurs only
when its parameters are constants; in M(x), where x is
a variable, the call is blocked until x is defined.

In SiteRet a pending site call ?u receives a result
c from the environment and transitions to a publish ex-
pression let(c). There is no assumption that all site calls
eventually return. If the environment never produces a
response event, then the call blocks indefinitely.
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u fresh

M(c)
M〈c,u〉

↪→ ?u

(SiteCall)

?u
u?c
↪→ let(c) (SiteRet)

let(c)
!c
↪→ 0 (Let)

f
l

↪→ f ′

f | g
l

↪→ f ′ | g
(Sym1)

g
l

↪→ g′

f | g
l

↪→ f | g′
(Sym2)

[[ E(q) ∆ f ]] ∈ D

F (p)
τ

↪→ [p/q]f
(Def)

f
l

↪→ f ′ l 6= !c

f >x> g
l

↪→ f ′ >x> g
(Seq1N)

f
!c
↪→ f ′

f >x> g
τ

↪→ (f ′ >x> g) | [c/x]g
(Seq1V)

f
l

↪→ f ′ l 6= !c

g where x :∈ f
l

↪→ g where x :∈ f ′
(Asym1N)

f
!c
↪→ f ′

g where x :∈ f
τ

↪→ [c/x]g
(Asym1V)

g
l

↪→ g′

g where x :∈ f
l

↪→ g′ where x :∈ f
(Asym2)

Fig. 2 Asynchronous Operational Semantics of Orc

The Let rule generates a publish event !c. If a vari-
able is to be published, as in let(x), the expression blocks
until x is defined.

Composition Rules Evaluation of sequential compo-
sition depends on whether or not the left side publishes a
value. If the left expression publishes !c, Seq1V creates a
new instance of the right side, [c/x]g, which is run in par-
allel with the main expression. If the left expression does
not publish a value, then sequential composition uses the
rule Seq1N. Sequential composition only publishes val-
ues from the right hand side; any values generated by
the left side are hidden. No transitions are allowed on
the right hand side until it is instantiated.

All of these expressions, the left-hand side and all the
instances of the right-hand side, are executed in parallel.
Because the semantics is asynchronous, there is no guar-
antee that the values published by the first instance will
precede the values of later instances. Instead, the values
produced by all instances of g are interleaved arbitrarily.

Asymmetric parallel composition uses rules Asym1N
and Asym2 to allow transitions on the left and right,
but only if the right expression does not publish a value.
When the right side publishes a value !c, Asym1V ter-
minates the right expression and the c is bound into the
left expression. One subtlety of these rules is that the left
expression may contain both active and blocked subex-
pressions – any subexpression that uses x is blocked until
the right side publishes a value.

Sym1 and Sym2 are the standard rules for paral-
lel composition. Expressions are evaluated using call-by-
name in the Def rule. This ensures the non-strict call se-
mantics required for expression calls. We assume a single
global set of definitions D.

The traditional classification of rules into introduc-
tion and elimination forms is useful in understanding the
distinction between Orc and its environment. The three
main events which are introduced (appear in the con-
clusions of the rules) are: SiteCall introduces M〈c, u〉,
SiteRet introduces u?c, and Let introduces !c . The
rules Seq1V and Asym1V eliminate !c . Unlike most
process calculi, some events do not have corresponding
elimination rules. For example, there are no elimination
rules for site calls M〈c, u〉 or site returns u?c. This is be-
cause these events are only handled (eliminated) by the
environment.

4.2 Synchronous Semantics

As is typical of most process algebras, the asynchro-
nous semantics of Orc given in Section 4.1 allows ar-
bitrary delays in processing events. It does not specify
when particular events take place, nor any specific or-
der in processing the events. For instance, in evaluating
M | Rtimer(1), the two sites, M and Rtimer, may be
called at vastly different times. Consequently, all we can
assert about the call to Rtimer is that the client will re-
ceive a signal sometime after unit delay. It is impossible
to program time-out or any other time-based computa-
tion based on such weak guarantee.

We develop a synchronous semantics in this section
whose essence is: process internal events, i.e., all events
other than external response, as soon as possible. There-
fore, initially, all sites which can be called will be called,
and the client becomes quiescent waiting for an exter-
nal response. Subsequently, on receiving an external re-
sponse, Rule SiteRet (from Figure 2) is applied, which
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Asynchronous ↪→ : Expr × Event × Expr {Defined in Figure 2}
Response ↪→R : QExpr × Response × Expr = {(q, r, e) | q r

↪→ e}
Action ↪→A : Expr × Action × Expr = {(f, a, f ′) | f a

↪→ f ′}
Synchronous ↪→S : Expr × Event × Expr = ↪→R ∪ ↪→A

Fig. 3 Synchronous Semantics

may make some internal events ready for processing.
These internal events have to be processed before any
other external response, until the client becomes quies-
cent again. Therefore, the evaluation proceeds in rounds,
where each round consists of processing internal events,
and each round, except the very first, is initiated by an
external response.

Consider the problem of publishing value 0 followed
by 1. Expression let(0) À let(1) is incorrect (it publishes
only 1) and let(0) | let(1) gives no guarantee on the or-
der of publication. However, let(0) | Rtimer(0) À let(1)
guarantees that let(0) will be processed in the first round
and let(1) in a subsequent round (after zero time delay);
therefore, the order of publication is guaranteed.

We treat let, which is a fundamental site in Table 1,
as an internal event by defining a transition rule, Rule
(Let), for it. We can treat other sites, such as if and
Signal, also as internal events. The rule for if is

if (true)
!signal

↪→ 0 (If)

which says that if (true) only publishes a signal; since
there is no rule for if (false), it simply blocks. Site Signal
in Table 1 is merely if (true); so it always publishes a sig-
nal. The sites let, if and Signal can immediately return
a result (or decide, in the case of if (false), that it will
never return a value). Therefore, it is possible to treat
them as internal events. In contrast, calls to Rtimer are
treated as external events because the response is, in
general, not immediate.

Formal Description of the synchronous semantics For
a formal description of the synchronous semantics, we
start with the asynchronous semantics of Figure 2. We
partition the set of events into actions, which are inter-
nal events, and responses, which are external. Actions
are initiated by an Orc expression, while responses are
initiated by the environment.

a ∈ Action ::= τ || !c || M〈c, u〉
r ∈ Response ::= u?c

A quiescent expression, q, is an expression that can-
not perform an action. It is defined by

q ∈ QExpr ::= 0 || M(x) || q >x> e || q | q
|| q where x :∈ q || ?u

Observe that no action can be applied to a quiescent
expression; so its evaluation has to wait for a response

from the environment. A site call involving a variable,
M(x), is quiescent because it is blocked until the variable
becomes defined. A site call with a constant argument,
M(c) is not quiescent.

In the asynchronous semantics of Figure 2, relation
↪→ maps an expression and event to an expression. For
synchronous semantics, we partition ↪→ into two sub-
relations: ↪→R for responses, and ↪→A for actions, as shown
formally in Figure 3. Now, ↪→R maps a quiescent expres-
sion and a response to an expression, not necessarily qui-
escent. And ↪→A maps an expression and an action to an
expression. Observe that an action has no effect on a qui-
escent expression. Therefore, ↪→A does not contain any
triples (q, a, e) where q is quiescent, a is an action, and
e is an expression. The synchronous evaluation relation
is the union of ↪→R and ↪→A.

An execution is a sequence of events. A new round is
started initially and after each response event. A round
may be infinite (does not terminate) because there may
be an unending sequence of actions to perform. Then
the expression never becomes quiescent and accepts no
further responses from the environment.

Although the synchronous semantics constrains the
order of operations during evaluation, it does not pro-
vide a formal model of absolute or relative time, which
is necessary to accurately model the behavior of Rtimer.
Developing a temporal semantics of Orc is left for future
work.

5 Programming Idioms

Lexical conventions Orc does not include any facility for
doing primitive operations on data, such as arithmetic
or predicate evaluation. We have to call specific sites to
carry out such operations. For example, to add x and
y we need to call add(x, y) which publishes the sum. In
our examples, we take the liberty of writing x + y as an
arithmetic expression; it is easily converted to an Orc
expression by a compiler. Similarly, we write expressions
over booleans, lists and other data types. And we use the
fundamental sites defined in Table 1 (page 5).

We use quantification in the following form:

( | i : 0 ≤ i ≤ 2 : Pi)

is an abbreviation for

(P0 | P1 | P2)

Similarly,
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(f where (∀i : 0 ≤ i ≤ 2 : xi :∈ gi))
is

(f where x0 :∈ g0, x1 :∈ g1, x2 :∈ g2)

We omit the range of i when it is clear from the context.

5.1 Sequential computing

Orc is not intended as a replacement for sequential pro-
gramming. Yet its constructs can be used to simulate
control structures of sequential programming languages,
as we show in this section.

Sequencing The sequential program fragment (S; T ) is
(S À T ) in Orc. If S is an assignment statement x :=
e, the Orc code is (E >x> T ) where Orc expression
E publishes the (single) value of e. This encoding also
supports reassignments of variables.

Conditional execution A typical if-then-else statement,

if b then S else T

is coded in Orc as

if (b) À S | if (¬b) À T

Note that of the two subcomputations initiated here,
only one can proceed to compute a value. As a specific
example, the following expression publishes the absolute
value of its numerical argument.

absolute(x) ∆
if (x ≥ 0) À let(x) | if (x < 0) À let(−x)

Iteration A typical loop in an imperative program has
the form

while B(x) do x := S(x) of

where x may be a list of variables. The iteration condi-
tion B and S(x) in the assignment statement may both
depend on x. The purpose of the loop is to iterate until
B(x) becomes false and then publish the value of x. We
simulate this code fragment in Orc by the following ex-
pression where B and S are written as Orc expressions
which return at most one value each.

loop(x) ∆
B(x) >b>

(if (b) À S(x) >y> loop(y) | if (¬b) À let(x))

Consider a typical program which starts with an ini-
tialization, followed by a loop and a terminating compu-
tation.

x := x0;
while b do x := S(x) od;
return T (x)

This is equivalent in Orc to (loop(x0) >x> T (x)).

5.2 Kleene Star and Primitive Recursion

In the theory of regular expressions, M∗ denotes the set
of strings formed by concatenating zero or more M sym-
bols. By analogy, we would like to define an expression,
Mstar(x), which publishes the set of values

x, M(x), M(x) >y> M(y),
M(x) >y> M(y) >z> M(z), . . .

Our definition of this expression is

Mstar(x) ∆ let(x) | M(x) >y> Mstar(y)

Note that the values are published in the proper order
because publications by let are treated as internal events,
which take precedence over publications from M .

Closely related Mstar(x) is Mplus(x) which publishes
the same set of values as Mstar(x) except its very first
value, i.e.,

M(x), M(x) >y> M(y),
M(x) >y> M(y) >z> M(z), . . .

Define

Mplus(x) ∆ M(x) >y> (let(y) | Mplus(y))

More general expressions which take M as parameter
are,

Star(M, x) ∆ let(x) | M(x) >y> Star(M, y)
Plus(M, x) ∆ M(x) >y> (let(y) | Plus(M, y))

Creating a stream of successive approximations Consider
a numerical analysis program which computes its final
value by successive approximations from an initial value.
It checks each published value for a convergence crite-
rion, and stops the computation once a convergent value
is found (i.e., one that meets the convergence criterion).

Site Refine(x) publishes a refined approximation of x;
and Converge?(x) publishes x if x is a convergent value,
it is silent otherwise. We define RefineStream(x) which
publishes a stream of successive approximations starting
from x, and RefineConverge(x) which publishes the sub-
stream of RefineStream(x) of convergent values.

RefineStream(x) ∆ Star(Refine, x)
RefineConverge(x) ∆
RefineStream(x) >y> Converge?(y)

Use (let(z) where z :∈ RefineConverge(x)) to stop
the computation after publishing the first convergent
value.

5.3 Arbitration

A fundamental problem in concurrent computing is ar-
bitration: to choose between two computations and let
only one proceed. Arbitration is the essence of mutual
exclusion. In process algebras like CCS and CSP, spe-
cific operators are included to allow arbitration; in very
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simple terms, α.P + β.Q is a process which behaves as
process P if action α happens and as Q if β happens.

In Orc terms, α and β correspond to sites Alpha and
Beta and P and Q are expressions. Below, flag records
which of Alpha and Beta responds first.

if (flag) À P | if (¬flag) À Q
where

flag :∈ Alpha À let(true) | Beta À let(false)

This expression is not quite identical to α.P +β.Q in
its effect because both Alpha and Beta may change their
states even though only one of the publications is used in
further computations. We can overcome this problem by
encoding Alpha and Beta such that they first respond
without changing their states, and then a second call
elicits the value to be actually used.

If P and Q use the values published by Alpha and
Beta, modify the program:

if (flag) À let(x) À P | if (¬flag) À let(x) À Q
where

(x ,flag) :∈
Alpha >y> let(y, true)

| Beta >y> let(y, false)

An important special case of arbitration involves time-
out: run P if Alpha responds within 1 time unit, other-
wise run Q. This amounts to encoding Beta as Rtimer(1).
A more detailed treatment of time-out appears next.

The Orc model permits more complex arbitration
protocols, such as, execute one of P , Q and R, depending
how many sites out of Alpha, Beta and Gamma respond
within 10 time units.

5.4 Time-out

Expression (let(z) where z :∈ f | Rtimer(t) À let(3))
either publishes the first publication of f , or times out
after t units and publishes 3. A typical programming
paradigm is to call site M and publish a pair (x, b) as
the value, where b is true if M publishes x before the
time-out, and false if there is a time-out. In the latter
case, x is irrelevant. Below, z is the pair (x, b).

let(z)
where

z :∈ M >x> let(x, true)
| Rtimer(t) >x> let(x, false)

As a more involved example, call Refine repeatedly
starting with some initial argument, and use a publi-
cation as the argument for the next call. Publish the
last value (the most refined) that is received before time
t. Below, BestRefine(t, x) implements this specification.
It publishes x if there is a time-out; else it publishes
BestRefine(t, y), where y is the value published by Refine
before the time-out.

BestRefine(t, x) ∆
if (b) À BestRefine(t, y) | if (¬b) À let(x)

where

(y, b) :∈
Refine(x) >y> let(y, true)

| Atimer(t) >y> let(y, false)

The parameter t of BestRefine is an absolute time.
To modify the argument to a relative time h, define
BestRefineRel(h, x) as follows.

BestRefineRel(h, x) ∆
Clock >y> BestRefine(y + h, x)

5.5 Fork-join Parallelism

In concurrent programming, we often need to spawn two
independent threads at a point in the computation, and
resume the computation after both threads complete.
Such an execution style is called fork-join parallelism.
There is no special construct for fork-join in Orc, but it
is easy to code such computations. The following code
fragment calls sites M and N in parallel and publishes
their values as a tuple after they both complete their
executions.

(let(u, v)
where u :∈ M

v :∈ N
)

As a simple application of fork-join, consider refresh-
ing a display device at unit time intervals. The display is
drawn by calling site Draw with a triple: a given screen
image, keyboard inputs and the mouse position. We use
Metronome (see section 3.2.10, page 9) to generate a
signal at every unit, then start computations to acquire
the image, keyboard inputs and the mouse position, and
on completion of all three computations, call Draw. We
code this as

Metronome
À (Draw(i, k, m)

where i :∈ Image
k :∈ Keyboard
m :∈ Mouse

)

We implicitly assume that i, k and m are evaluated faster
than the refresh rate of one time unit.

5.6 Synchronization

Synchronization of threads is fundamental in concurrent
computing. There is no special machinery for synchro-
nization in Orc; a where expression provides the neces-
sary ingredients for programming synchronizations. Con-
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sider M À f and N À g; we wish to execute them inde-
pendently, but synchronize f and g by starting them only
after both M and N have completed.

(let(u, v)
where u :∈ M

v :∈ N)
À (f | g)

If the values published by M and N have to be passed
on to f and g, respectively, we modify the expression to

(let(u, v)
where u :∈ M

v :∈ N)
>(u, v)>

(f | g)

Barrier synchronization The form of synchronization we
have shown is known in the literature as barrier synchro-
nization. In the general case, each independent thread
executes a sequence of phases. The (k + 1)th phase of a
thread is begun only if all threads have completed their
kth phases. A straight-forward generalization of the given
expression solves the barrier synchronization problem.

Barrier synchronization is common in scientific com-
puting. For example, Gauss-Siedel iteration proceeds in
phases where the (k + 1)th approximation for all vari-
ables are computed from their kth approximations. In
heat transfer computation over a grid, the temperature
at point (i, j) at moment k+1 is the average temperature
over its neighboring points at moment k. The computa-
tion proceeds until some convergence criterion is met (we
assume that the boundary points have constant temper-
ature). We give a sketch of heat transfer computation in
Orc.

Given the temperature matrix x for some moment,
where xij is the temperature at grid point (i, j), use
Refine(x) to publish matrix y, the temperature at the
next moment. Site Next computes the temperature at
a point p from the previous temperatures of p and its
neighbors. Typically, it would publish the average tem-
perature of neighboring points of (i, j) (if (i, j) is not a
boundary point), but it may implement more sophisti-
cated strategies. For a boundary point, the neighboring
temperatures are irrelevant and it publishes the previous
temperature.

Refine(x) ∆
(let(y)

where

(∀i, j :: yij :∈
Next(xij , x(i−1)j , x(i+1)j , xi(j−1), xi(j+1)))

)
As in section 5.2, we can get a convergent value by us-

ing RefineConverge. Using this strategy, the heat trans-
fer computation is run by

z :∈ RefineConverge(I)
where I is the initial temperature matrix.

5.7 Interrupt

Consider an Orc expression which orchestrates the va-
cation planning for a family. It makes airline and ho-
tel reservations by contacting several sites and choosing
the most suitable ones according to the criteria set by
the client. Suppose the client decides to cancel vacation
plans while the Orc program is still executing. There is
no mechanism for the client to interrupt the program be-
cause an Orc expression is evaluated like an arithmetic
expression, not as a process which waits to receive mes-
sages. In this section, we show how an expression evalu-
ation can be interrupted, and more importantly, how a
different computation (such as roll back) can be initiated
in case of interruption. This is important in many practi-
cal applications, such B2B transactions, where clients of
a company may interrupt its computations by specifying
new requirements, and vendors may wish to renegotiate
their promises about delivery. For the vacation planner,
an interruption by the client may require it to cancel any
reservations it may have made.

We have already seen a form of interrupt: time-out.
To allow for general interrupts, set up sites Interrupt .set
and Interrupt .get . An external agent calls Interrupt .set
to interrupt the evaluation of an expression. And, calling
Interrupt .get publishes a signal only if Interrupt .set has
been called earlier. Note the similarity of Interrupt to a
semaphore, where set and get are the V and P operations
on the semaphore.

If a call on site M can be interrupted, use
let(z) where z :∈ M | Interrupt.get

where z acquires a value from M or Interrupt.get. It is
easy to extend this solution to handle different types of
interrupts, by waiting to receive from many possible in-
terrupt sites, and publishing specific codes for each kind
of interrupt.

Often we wish to determine if there has been an inter-
rupt. Then we publish a tuple whose first component is
the value from M (if any) and the second component is a
boolean to indicate whether there has been an interrupt:

let(z, b)
where

(z, b) :∈
M >y> let(y, true)

| Interrupt.get >y> let(y, false)
An easy generalization is to interrupt a stream. Be-

low, expression callM calls M repeatedly until it is in-
terrupted. It publishes a stream of tuples: (x, true) for
value x received from M and (−, false) for interrupt. It
does not publish after receiving an interrupt.

callM ∆
let(x, b) | if (b) À callM

where

(x , b) :∈
M >y> let(y, true)

| Interrupt.get >y> let(y, false)
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Typically, occurrence of an interrupt is followed by
interrupt processing. An expression which processes the
values from M and the interrupt differently is shown
below.

callM
>(x, b)>

( if (b) À “Normal processing using x”
| if (¬b) À “Interrupt Processing” )

The value published by callM is a tuple whose first
component is either a value published by M or a signal.
Orc is a dynamically typed language which supports this
form of type discrimination; the value of the second com-
ponent determines the type of the first component.

5.8 Non-strict Evaluation; Parallel-or

A classic problem in non-strict evaluation is Parallel-or :
computation of x ∨ y over booleans x and y. The non-
strict evaluation of x∨ y publishes true if either variable
value is true; therefore, the evaluation may terminate
even when one of the variable values is unknown. In this
section, we state the problem in Orc terms, give a simple
solution, and show examples of its use in web services
orchestration.

Suppose sites M and N publish booleans. Compute
the parallel-or of the two booleans, i.e., (in a non-strict
fashion) publish true as soon as either site publishes true
and false only if both sites publish false. In the following
solution, site or(x, y) publishes x∨y. And ift(b) publishes
true if b is true and remains silent otherwise; ift(b) =
if (b) À let(true).

(ift(x) | ift(y) | or(x, y)
where

x :∈ M
y :∈ N)

This solution may publish up to three different values
depending on how many of x and y are true. To publish
just one value, use

(let(z)
where

z :∈ ift(x) | ift(y) | or(x, y)
x :∈ M
y :∈ N)

We can use the strategy of parallel-or to eagerly eval-
uate any function f of the form

f(x, y) =





p(x) if c(x)
q(y) if d(y)
r(x, y) otherwise

where x and y are received from different sites. Many
search problems over partitioned databases have this struc-
ture.

Airline Booking We show a typical orchestration exam-
ple in which parallel-or plays a prominent role in one of
the solutions.

There are two airlines A and B each of which pub-
lishes a quote, i.e., the price of a ticket to a certain desti-
nation. We show several variations in choosing a quote.

First, compute the cheapest quote. Below, Min is a
site which publishes the minimum of its arguments.

(Min(x, y) where x :∈ A, y :∈ B)

Our next solution publishes each quote that is be-
low some threshold value c, and there is no publication
if neither quote is below c. Assume that site threshold
publishes the value of its argument provided it is below
c, and it is silent otherwise.

(A | B) >y> threshold(y)

To obtain at most one such quote, we write

(let(z) where z :∈ (A | B) >y> threshold(y))

To publish any quote if it is below c as soon as it is
available, otherwise publish the minimum quote, we use
the strategy of parallel-or.

(threshold(x) | threshold(y) | Min(x, y)
where

x :∈ A
y :∈ B)

5.9 Communicating Processes

Orchestration is closely tied to distributed computing.
Traditional distributed computing is structured around
a network of processes, where the processes communi-
cate by participating in events, or reading and writing
into common channels. Processes are usually long-lived
entities. In many cases, we do not expect a distributed
computation to terminate. Programming constructs of
Orc, as we have seen, can implement essential distributed
computing paradigms, such as arbitration, synchroniza-
tion and interrupt. We argue that they are also well-
suited for encoding process-based computations.

5.9.1 Channel

We introduce channels for communication among processes.
It is not an Orc construct; each channel has to be imple-
mented by sites outside Orc. We assume in our examples
that channels are FIFO and unbounded, though other
kinds of channels (including rendezvous-based commu-
nications) can also be implemented as sites.

Channel c has two methods, c.get and c.put, which
are called as sites from an Orc expression. Calling c.put(m)
adds item m to the end of the channel and publishes a
signal. Calling c.get publishes the value at the head of
c and removes it from c if the channel is non-empty; if
the channel is empty, c.get suspends the caller until the
channel becomes non-empty.
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5.9.2 Fairness

We make no fairness assumption about the queuing dis-
cipline at a site such as c.get. Calls are handled in ar-
bitrary order and some caller may never receive a value
even though values are being constantly put in the chan-
nel. However, if c is non-empty, the channel sends a value
to some caller of c.get, and this value is eventually re-
ceived by the caller. Therefore, a call to c.get during an
expression evaluation completes eventually if c is non-
empty and this is the only caller.

5.9.3 Process

A process is an expression which, typically, names chan-
nels which are shared with other expressions. Shown be-
low is a simple process which reads items from its input
channel c, calls site Compute to do some computations
with the item and then writes the result on output chan-
nel e.

P (c, e) ∆
c.get >x> Compute(x) >y> e.put(y) À P (c, e)

This process publishes no value, though it writes on
channel e. To publish every value which is also written
on e, define

Q(c, e) ∆ c.get >x> Compute(x) >y>

(let(y) | e.put(y) À Q(c, e))

Define process N to read inputs from two input chan-
nels, c and d, independently, and write into e.

N ∆ P (c, e) | P (d, e)

We may regard N as a network of two processes, P (c, e)
and P (d, e).

The following small example illustrates a dialog with
a user. The process reads from channel c into which the
user writes a positive integer, checks if the integer is
prime and writes the result to channel d. It repeats these
steps as long as input is provided to it.

Dialog ∆
c.get >x>

Prime?(x) >b>

d.put(b) À
Dialog

5.9.4 Process Network

A process network is a parallel composition of processes.
There is no logical difference between a process and a
network. For example, N is defined to be P (c, e) | P (d, e)
above, and it may be regarded as a network which in-
cludes two processes.

Let us build a process which reads from a set of chan-
nels ci, where i ranges over some set of indices, and
publishes all the items read into channel e. That is, the

process creates a fair merge of the values in the input
channels. The definition is a generalization of N , shown
above, for multiple input channels, without the Compute
step.

Multiplexor i ∆
ci.get >y> e.put(y) À Multiplexor i

Multiplexor ∆
( | i :: Multiplexor i)

5.9.5 Mutual exclusion

Consider a set of processes, Qi, which share a resource,
and access to the resource has to be exclusive. This is a
mutual exclusion or arbitration problem.

Process Qi writes a site name to channel ci to request
the resource. We employ the Multiplexor , above, to read
the values from all ci and write them to channel e. The
arbiter reads a site name M from e and calls M to per-
mit the associated process to use the resource. After the
process finishes using the resource, site M publishes a
signal. Expression Mutex orchestrates mutual exclusion.

Arbiter ∆ e.get >M> M À Arbiter
Mutex ∆ Multiplexor | Arbiter

Note that the solution is starvation-free for each Qi, be-
cause its request will be read eventually from ci, put in
channel e, read again from e and granted. This assumes
that every process releases the resource eventually, i.e.,
the corresponding site publishes eventually. The solution
is easily modified to snatch the resource from an (un-
yielding) process after a time-out.

5.9.6 Synchronized Communications: Byzantine
Protocol

We can combine many of the earlier idioms to code more
involved process behavior. Consider, for example, the
Byzantine agreement protocol [23] which runs for a num-
ber of synchronized rounds. In each round, a process
sends its own estimate (of the consensus value) to all
processes, receives estimates from all processes (includ-
ing itself), and computes a revised estimate, which it
sends in the next round. The communications from process
i to j use channel cij . We show the orchestration of the
steps, though we omit (the crucial detail of) computing
a new estimate, which we delegate to a site.

The sending of estimate v by process i to all processes
is coded by

Sendi(v) ∆ ( | j :: cij .put(v) À 0)

Evaluation of Sendi(v) appends v to all outgoing chan-
nels of i. The responses from cij .put(v) are ignored (by
using À 0). There is no publication from Sendi(v).

Expression Readi encodes one round of message re-
ceipt by process i. Below, X is a vector of estimates and
Xj is its jth component.
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Readi ∆ let(X) where (∀j :: Xj :∈ cji.get)

Process i computes a new estimate from X by calling
Computei(X).

A round at process i consists of evaluating Sendi and
Readi in parallel, and then evaluating Computei . De-
fine Roundi(v, n) as n rounds of computation at process
i starting with v as the initial estimate. The result of
Roundi(v, n) is a single estimate.

Roundi(v, 0) ∆ let(v)
Roundi(v, n) ∆

(Sendi(v) | Readi) >X>

Computei(X) >u>

Roundi(u, n− 1)

Observe that process i can not begin Computei in a
round until all processes have completed their previous
round, because the Readi waits until it receives inputs
from all processes.

The entire algorithm is coded by Byz(V, n), where V
is the vector of initial estimates and n is the number of
rounds. Below, i ranges over process indices.

Byz(V, n) ∆ ( | i :: Roundi(Vi, n))

5.9.7 Dining Philosophers

The dining philosophers is a fundamental problem of
shared resource allocation. We give a solution in Orc
which resembles a process-based solution in Hoare [18].
In this example, processes communicate using bounded
buffers.

There are N processes, called Philosophers, where
the ith process is denoted by Pi . The philosophers are
seated around a table where the right neighbor of Pi is
Pi′ (henceforth, i′ is (i+1) mod N). Every pair of neigh-
bors share a fork. The fork to the left of Pi is Forki and
to its right is Forki′ . Philosopher i can eat only if it holds
both its left and right forks. Assume that a philosopher’s
life cycle consists of repeating the following steps: acquire
the two adjacent forks, eat, and release the forks. Because
of the seating arrangement, neighboring philosophers are
prevented from eating simultaneously.

Each Forki is a channel which is either empty (if some
philosopher holds the corresponding fork) or has one sig-
nal (if no philosopher holds the fork). We write Forki .put
to send a signal along the channel. Initially, each channel
holds a signal.

Philosopher i’s life is depicted by expression Pi . Be-
low, Eat publishes a signal on completion of eating.

Pi ∆
(let(x, y) À Eat À Forki .put À Forki′ .put

where x :∈ Forki .get
y :∈ Forki′ .get

)
À Pi

Represent the ensemble of philosophers by
DP ∆ ( | i : 0 ≤ i < N : Pi)

5.9.8 Deadlock

It is well known that the given solution for dining philoso-
phers has the potential for deadlock. To avoid deadlock,
philosophers pick up their forks in a specific order: all
except P0 pick up their left and then their right forks,
and P0 picks up its right and then its left fork.

P0 ∆
Fork1 .get À Fork0 .get À Eat À
Fork0 .put À Fork1 .put À P0

Pi , 1 ≤ i < N, ∆
Forki .get À Forki′ .get À Eat À
Forki .put À Forki′ .put À Pi

This example illustrates that the evaluation of an Orc
expression may lead to deadlock when it spawns compu-
tations which wait for each other. Since such computa-
tions communicate only through sites, deadlock can be
avoided if each site call is guaranteed to publish a re-
sult. Many distributed applications communicate with
web services, like a stock quote service, which have this
property; so deadlock avoidance is easily established in
these cases. For other site calls, like c.get on channel c,
there is no guarantee of receiving a result. But by ju-
diciously using time-outs as alternatives of site calls in
Orc expressions, we can ensure that a result is always
delivered, and deadlock avoided.

5.10 Backtrack Search

For problems which are traditionally implemented by
backtracking, we exploit angelic non-determinism of Orc
to express their solutions succinctly. The evaluation of
the Orc expression will initiate multiple computations
which may be implemented by backtracking. Among the
problems which can be coded in this style are parsing
problems in language theory and combinatorial search.
We show the solution to one well-known search problem
below.

A classical backtracking problem: Eight queens The eight
queens problem is to place 8 queens on a chess board so
that no queen can capture another. Many interesting so-
lutions appear in “Eight Queens In Many Programming
Languages” [29].

A placement of queens in the last i rows of the board,
0 ≤ i < 8, is called a configuration. A configuration is
represented by a list of integers in the range 0 through 7,
denoting the column in which the corresponding queen
is placed. Configuration (x : xs) is an extension of xs.
A configuration is valid if none of the queens in it can
capture any other. Site check(x : xs), where (x : xs) is
a non-empty configuration and xs is valid, publishes (x :
xs) provided it is valid; if (x : xs) is not valid, it remains
silent. We can implement check easily: determine if the
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queen at x can capture any of the queens represented by
xs.

Expression extend(x, n), where x is a valid configu-
ration, n is an integer, 1 ≤ n and |x|+ n ≤ 8, publishes
all valid extensions of x by placing n additional queens.
The original problem is solved by calling extend([ ], 8),
which yields all possible solutions.

We design extend(x, 1) to publish all valid extensions
of x by one-position. And, extend(x, n) is the n-fold ap-
plication of extend(x, 1).

extend(x, 1) ∆ (∀i : 0 ≤ i < 8 : check(i : x))
extend(x, n) ∆ extend(x, 1) >y> extend(y, n− 1)

6 Laws about Orc Expressions

We list a number of laws about Orc expressions. Many
of these laws are also valid for regular expressions of
language theory, which is a Kleene algebra [22]. Some
Orc expressions can be regarded as regular expressions.
An Orc term, a site or expression call, is a symbol of
the alphabet. Constant 0 corresponds to the empty set.
Operators | and À mimic alternation and concatena-
tion. There is no unit symbol in Orc, but Signal acts
as a left unit of À and let(x) as a right unit of >x> .
There is no operator in Orc corresponding to ∗ of regu-
lar expressions, which we simulate using recursion. Addi-
tionally, Orc includes the where operator which has no
correspondence in language theory.

Below, À is associative, but >x> , by definition,
is right associative. It is fully associative if both sides
in the following identity are well-formed, i.e., h does not
reference x.

(f >x> g) >y> h = f >x> (g >y> h)

All Orc expressions including where expressions obey
the laws given in this section. They can be proved using
bisimulation on the formal semantics of Orc in Section 4.

6.1 Kleene laws

Below f , g and h are Orc expressions.

(Zero and | ) f | 0 = f
(Commut. of | ) f | g = g | f
(Assoc. of | ) (f | g) | h = f | (g | h)
(Left zero of À ) 0 À f = 0
(Left unit of À ) Signal À f = f
(Right unit of À ) f >x> let(x) = f
(Assoc. of À ) (f À g) À h = f À (g À h)
(Distributivity) (f | g) À h = (f À h | g À h)

Some of the axioms of Kleene algebra do not hold in
Orc. First is the idempotence of | , f | f = f . Consider
M and M | M . These are different in Orc, because we
make two calls to M in M | M , and just one in M . Also,

M may publish two different results for the two calls
made in M | M .

In Kleene algebra, 0 is both a right and a left zero.
In Orc, it is only a left zero; that is, f À 0 = 0 does
not hold. Even though neither f À 0 nor 0 publishes a
value, evaluation of f À 0 may call sites and cause state
changes, but 0 has no such effect.

Another axiom of Kleene algebra, the left distribu-
tivity of À over | ,

f À (g | h) = (f À g) | (f À h)

does not hold in Orc. To see why, consider M À (N | R).
Here, M is called once; if it responds, both N and R are
called, and if it does not respond, neither is called. In
(M À N | M À R), evaluations of M À N and M À R
are treated independently, M being called once for each
subexpression. Therefore, it is possible that N is called
though R is never called. The left distributivity law holds
if f is a function; in this case, f does not change any
state, and it always publishes the same value.

6.2 Laws about where expressions

The following identities have no counterpart in Kleene
algebra. Below, expression f is x-free means that f has
no free occurrence of x, i.e., x 6∈ free(f) (see Section 3.1
for the definition of free).

(f À g where x :∈ h) = (f where x :∈ h) À g,
if g is x-free
(f | g where x :∈ h) = (f where x :∈ h) | g,
if g is x-free
((f where x :∈ g) where y :∈ h) =
((f where y :∈ h) where x :∈ g),

if g is y-free and h x-free
(f where x :∈ M) = f | M À 0, if f is x-free

7 Longer Examples

7.1 Workflow coordination

In this section, we consider a typical workflow applica-
tion, where a number of activities have to be coordinated
by having them occur in a designated sequence. The
problem, which appears in Choi et. al.[7], is to arrange a
visit of a speaker. An office assistant contacts the speaker,
proposing a set of possible dates for the visit. The speaker
responds by choosing one of the dates. The assistant then
contacts Hotel and Airline sites. He sends the hotel and
airline information to the speaker who sends an acknowl-
edgment. Only after receiving the acknowledgment, the
assistant confirms both the hotel and the airline reser-
vations. The assistant then reserves a room for the lec-
ture, announces the lecture (by posting it at an appro-
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priate web-site) and requests the audio-visual technician
to check the equipment in the room prior to the lecture.

In our solution, we employ the following sites.

GetDate(p, s): contact speaker p with a list of possible
dates s; the response is a single date from s.

Hotel(d): contact several hotels for a 2-night stay, leav-
ing on date d. The response is the name of the chosen
hotel, its location, price for the room and the confir-
mation number. This site implements the preferences
of the speaker and the organization.

Airline(d): similar to Hotel .
Ack(p, t): same as GetDate except tuple t is sent and

only an acknowledgment is expected as a response.
Confirm(t): confirm reservation t (for a hotel or airline).
Room(d): reserve a room for one hour on date d. The

response is the room number and the time of the day.
Announce(p, q): announce the lecture with speaker in-

formation (from p), and room and time (from q).
AV (q): contact the audio-visual technician with room

and time (in q).

We have structured the solution as a sequence: (1)
contact the speaker and acquire a date of visit, d, (2)
make both hotel (h) and airline (a) reservations (3) ac-
quire the acknowledgment from the speaker for h and a,
(4) confirm the hotel and the airline, (4) reserve a room
(q), and (5) announce the visit and contact the audio-
visual technician. The value published by the expression
is of no significance.

Visit(p, s) ∆
GetDate(p, s) >d>

(let(h, a) where h :∈ Hotel(d), a :∈ Airline(d))
>(h, a)>

Ack(p, (h, a)) À
(let(x, y) where x :∈ Confirm(h), y :∈ Confirm(a))

À
Room(d) >q>

(let(x, y) where x :∈ Announce(p, q), y :∈ AV (q))

The problem of arranging a visit is typically more
elaborate than what has been shown: the speaker needs
to be picked up at the airport and the hotel, lunches and
dinners have to be arranged, and meetings with the ap-
propriate individuals have to be scheduled. These addi-
tional tasks add no complexity, just bulk, to the solution.
They would be coded as separate sites and orchestrated
by the top-level solution. Also, we have not considered
failure in this solution, which would be handled through
time-outs and retries.

7.2 Orchestrating an auction

We consider an example of a typical web-based applica-
tion, running an auction for an item. First, the item is
advertised by calling site Adv, which posts its description
and a minimum bid price at a web site. Bidders put their

bids on specific channels, and we use the Multiplexor
from Section 5.9.4 to merge all bids into a single chan-
nel, c.

We consider three variations on the auction strategy,
Auctioni(v), 1 ≤ i ≤ 3. We start the auction by calling

Auctioni(V )

where 1 ≤ i ≤ 3 and V is the minimum acceptable bid.

7.2.1 A Non-terminating auction

Our first solution continually takes the next bid from
channel c which exceeds the current (highest) bid and
posts it at a web site by calling PostNext .

Below, nextBid(v) publishes the next bid from c ex-
ceeding v. (the site call if (x > v) publishes a signal if
x > v and remains silent otherwise.)

nextBid(v) ∆
c.get

>x>

( if (x > v) À let(x)
| if (x ≤ v) À nextBid(v)

)

Below, Bids(v) publishes a stream of bids from c
where the first bid exceeds v and successive bids are
strictly increasing.

Bids(v) ∆ nextBid(v) >y> (let(y) | Bids(y))

The following strategy starts the auction by advertis-
ing the item, and posts successively higher bids at a web
site. But the expression evaluation never terminates.

Auction1(v) ∆
Adv(v) À Bids(v) >y> PostNext(y) À 0

7.2.2 A terminating auction

We modify the previous program so that the auction
terminates if no higher bid arrives for h time units (say,
h is an hour). The winning bid is then posted by calling
PostFinal , and the value of the winning bid is published.

Expression Tbids(v), where v is a bid, publishes a
stream of pairs (x ,flag), where x is a bid value, x ≥ v,
and flag is boolean. If flag is true, then x exceeds its
previous bid, and if false then x equals its previous bid,
and no higher bid has been received in an hour.

Tbids(v) ∆
let(x ,flag) | if (flag) À Tbids(x)

where

(x ,flag) :∈
nextBid(v) >y> let(y, true)

| Rtimer(h) À let(v, false)

The full auction is given by
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Auction2(v) ∆
Adv(v)

À Tbids(v)
>(x ,flag)>

( if (flag) À PostNext(x) À 0
|if (¬flag) À PostFinal(x) À let(x)

)

7.2.3 Batch processing

Our previous solution posts every higher bid as it ap-
pears in channel c. It is reasonable to post higher bids
only once each hour. So, we collect the best bid over an
hour and post it. If this bid does not exceed the previous
posting, i.e., no better bid has arrived in an hour, we
close the auction, post the winning bid and publish its
value as the result.

Analogous to nextBid(v), define bestBid(t, v) where
t is an absolute time and v is a bid. And bestBid(t, v)
publishes x, x ≥ v, where x is the best bid received up
to t. If x = v then no better bid than v has been received
up to t.

Expression bestBid(t, v) (see BestRefine of section 5.4)
can be understood as follows. First call nextBid(v). If it
publishes y before t then y > v, and bestBid(t, y) is the
desired result. If nextBid(v) times out then publish v.

bestBid(t, v) ∆
if (b) À bestBid(t, y) | if (¬b) À let(v)

where

(y, b) :∈
nextBid(v) >y> let(y, true)

| Atimer(t) >y> let(y, false)

Analogous to Tbids(v), we define Hbids(v) to pub-
lish a stream of pairs (x ,flag), where x is the best bid
received so far and flag is true iff x is received in the last
hour. Expression Hbids calls bestBid every hour until it
receives no better bid. Below, the value of flag is simply
the boolean x = v.

Hbids(v) ∆
Clock >y> bestBid(y + h, v) >x>

(let(x, x 6= v) | if (x 6= v) À Hbids(x))

The code of Auction3 is identical to that of Auction2

except that Tbids in the latter is replaced by Hbids.

Auction3(v) ∆
Adv(v)

À Hbids(v)
>(x ,flag)>

( if (flag) À PostNext(x) À 0
|if (¬flag) À PostFinal(x) À let(x)

)

7.3 Arranging and Monitoring a meeting

We write a program to arrange and monitor a meeting
at (absolute) time T among a group of professors. First,
send a message to all professors requesting the meeting.
If N responses are received within 10 time units, then
proceed with the meeting arrangement, otherwise cancel
the meeting and inform all professors (not just those who
have responded). To proceed with the meeting arrange-
ment, reserve a room for time T . If room reservation
succeeds, announce the meeting time and room to all
professors . If room reservation fails, cancel the meeting
and inform all.

It is given that a room can be preempted (by the
department chairman) until one hour (h units) before
its scheduled time. No meeting is preempted more than
once. If the room is preempted (before T−h), attempt to
reserve another room. If it succeeds, inform all that the
meeting has been moved to another room. If room reser-
vation fails, inform all that the meeting is now cancelled.
The value of the entire computation is a boolean, false if
the meeting is cancelled, true otherwise. This value can
be computed only at T − h or shortly thereafter.

7.3.1 Messages

The computation sends several kinds of messages to the
professors, which we list below. A message includes cer-
tain parameters.

msg1(t): Please respond if you can attend a meeting at
time t.

msg2(t): The meeting planned for time t is cancelled
due to poor response.

msg3(t): The meeting planned for time t is cancelled
because no room is available then.

msg4(t, r): A meeting is scheduled at time t in room r.
msg5(t, r, s): The meeting scheduled at time t in room

r has been moved to room s.
msg6(t, r): The meeting scheduled at time t is cancelled

because it was preempted from room r and no room
is available at t.

Site Broadcasti(p), where 1 ≤ i ≤ 6 and p is a list of
parameters, sends the ith message with parameters p to
all professors, and publishes a signal.

7.3.2 Specifications of the main components

Main expressions are Arrange, Room and Monitor. Their
specifications are as follows.

Arrange(t): Send message msg1(t) to the professors
and count the number of responses received in 10
time units. If this number is at least N , publish true,
otherwise call Broadcast2(t) and publish false.
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Room(t): Reserve a room, r, for time t by calling the
site RoomReserve(t). If this fails (i.e., r = 0), call
Broadcast3(t). If room reservation succeeds (r 6= 0),
call Broadcast4(t, r). In all cases publish value r.

Monitor(t, r): Site RoomCancel(r).get publishes a sig-
nal if room r has been preempted. In case of preemp-
tion before time t−h, attempt to reserve a room, s. If
reservation succeeds (s 6= 0), call Broadcast5(t, r, s)
and publish true. If room reservation fails (s = 0),
call Broadcast6(t, r) and publish false.

7.3.3 The computation structure

The main computation orchestrates the evaluations of
Arrange(t), Room(t) and Monitor(t, r) by evaluating
the expression

let(z) where z :∈ MeetingMonitor(T )

Note that the computation is terminated after the first
publication of MeetingMonitor .

MeetingMonitor(t) ∆
Arrange(t)

>b> ( if (¬b) À let(false)
|if (b) À Room(t) >r>

( if (r = 0) À let(false)
|if (r 6= 0) À Monitor(t, r)

)
)

7.3.4 Codes of the main components

We give the Orc code of the main components, Arrange,
Room and Monitor .

The code for Arrange uses tally from section 3.4,
page 11. Message m in tally is msg1(t), and prof is a list
of sites, one site for each professor. Expression Arrange
sends a cancellation message if the number of responses,
n, is below N . It publishes the value of n ≥ N in all
cases. The codes of Room(t) and Monitor(t, r) follow
easily from their specifications.

Arrange(t) ∆
tally(prof )

>n> ( if (n ≥ N) À let(true)
|if (n < N) À Broadcast2(t) À let(false)

)

Room(t) ∆
RoomReserve(t)

>r> ( if (r = 0) À Broadcast3(t)
|if (r 6= 0) À Broadcast4(t, r)

)
À let(r)

Monitor(t, r) ∆
Atimer(t− h) À let(true)

| ( RoomCancel(r).get
À RoomReserve(t) >s>

( if (s 6= 0) À
Broadcast5(t, r, s) À let(true)

|if (s = 0) À
Broadcast6(t, r) À let(false)

)
)

8 Concluding Remarks

8.1 Programming Language Design

The notation proposed in this paper provides a minimal
language to express interesting multi-threaded computa-
tions. It is not intended as a serious programming lan-
guage yet, because many language-related issues, from
lexical to hierarchical structuring, have been ignored. We
consider some below.

A number of programming paradigms appear repeat-
edly in Orc programming. We have listed some of them
as idioms in section 5. Some coding patterns are so fre-
quent that special notation should be designed for them.
We consider a few such issues below.

8.1.1 Adding Code and data to expressions

The absence of any arithmetic facility in an Orc expres-
sion is a nuisance (though not a disaster) when writing
actual programs. To add x and y within an Orc expres-
sion we have to call the site add(x, y), where add imple-
ments the addition procedure. We have adopted the con-
vention of writing x+y, which a preprocessor can trans-
late to add(x, y). A number of sequential programming
features, including conditional statements and some form
of iteration, should be allowed within Orc. Also, the pro-
gramming language should allow most data type manip-
ulations, including array indexing, within Orc expres-
sions, which can then be converted to site calls. And
programmers may find it more pleasing to use longer
names for the cryptic symbols À and | .

8.1.2 Nested site calls

The current syntax requires that the parameters of site
calls be variables. We do not allow expressions as pa-
rameters, because they publish streams of values, not
just one. But M(N(x), R(y)), where M , N and R are
sites, makes sense. It is (M(u, v) where u :∈ N(x), v :∈
R(y)). There is no technical difficulty in allowing nested
site calls.

An expression like M(N(x), N(x)) poses semantic
ambiguity. It is not clear if N should be called twice
for the two arguments of M or just once, with the value
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being used for both arguments. These options can be
coded, respectively, as

(M(u, v) where u :∈ N(x), v :∈ N(x))
(M(u, u) where u :∈ N(x))

We have to study a large number of examples to decide
which of these should be picked as the default semantics.
The other semantics will have to be coded explicitly.

8.1.3 Fork-Join Parallelism

It is common to call two sites, M and N , in parallel,
name their values u and v, respectively, and continue
computation only after both publish their values. We
would code this as

( let(u, v)
where u :∈ M

v :∈ N
)

>(u, v)>

A convenient notational alternative is

(u← M || v← N)
À

Using this notation, the screen-refresh program of
section 5.5 (page 15) looks much cleaner.

Metronome
À (i← Image || k← Keyboard || m← Mouse)
À Draw(i, k, m)

We can also remove a variable name which is never
referenced. So

(M || v← N)
À

is a shorthand for

( let(u, v) À let(v)
where u :∈ M

v :∈ N
)

>v>

The workflow coordination example (section 7.1, page
20) now becomes much simpler.

Visit(p, s) ∆
d← GetDate(p, s)

À (h← Hotel(d) || a← Airline(d))
À Ack(p, (h, a))
À (Confirm(h) || Confirm(a))
À q← Room(d)
À (Announce(p, q) || AV (q))

8.1.4 Hierarchical definitions

The current definition of expressions treats all sites named
in it as external sites. In many cases, an expression calls
sites which are completely local to it, in that no other
expression can (or should) call those sites. For example,
consider the expressions

F ∆ f >y> c.put(y) À 0
G ∆ c.get >y> (let(y) | G)
E ∆ F | G

in which F is a producer that writes to channel c, G a
consumer from c, and E the process network consisting
of F and G. Here, channel c is local to E (so are the
names F and G).

The following proposal allows structuring both ex-
pressions and sites into hierarchies. An expression defin-
ition consists of: (1) its name and formal parameters, (2)
definitions of local sites (such as c.put and c.get, which
are written in the host language, not Orc), (3) defin-
itions of local expressions (such as F and G), (4) the
body of the expression. When an expression is instanti-
ated, its local sites are instantiated, and the local sites
are terminated (garbage-collected) when the expression
is terminated. Remote sites can still be called from an
expression; a remote site name is either hard-coded as a
constant or passed as a parameter to an expression.

Observe that having local expressions within an ex-
pression definition allows considerable information hid-
ing.

8.2 Related work

This work draws upon a number of areas of computer
science; we give a very brief outline of a few selected
pieces of the relevant literature.

Process calculi, including CSP [18], CCS [26] and π-
calculus [27,33], provide fundamental models of concur-
rency in which processes communicate over channels. Orc
has much in common with the philosophy of process al-
gebras. They all represent a multi-threaded computation
by an expression which has useful algebraic properties.
But unlike these process algebras, Orc permits integra-
tion of arbitrary components (sites) in a computation.
This introduces a distinction between the Orc expression
and the environment in which it runs. We do not assume
that the environment is modeled in Orc. Process calculi
have evolved to be more and more focused on channels
as fundamental communication mechanisms. Orc takes
a different approach, in that it describes the structure of
a distributed computation using primitives that define
common communication patterns. We believe that Orc
may be a viable alternative to process calculi.

Although process calculi are not intended to be pro-
gramming languages, practical programming languages
have been designed or influenced by process calculi. The
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language Pict [31] is based on π-calculus [27]. A recent
work of considerable importance is Benton, Cardelli and
Fournet[2]. It extends the C # programming language
with new asynchronous concurrency abstractions based
on the join calculus[14]. The language is applicable both
to multi-threaded applications running on a single ma-
chine and to the orchestration of asynchronous, event-
based applications communicating over a wide area net-
work. Channels are used in concurrent ML [32] and con-
current Haskell [21].

Orc differs in a major way from process algebras in its
basic operators and the evaluation procedure. We permit
arbitrary sequential compositions of expressions, f À g,
which is not supported in CCS or CSP. Some recent
work [8] suggests that Orc operators can be represented
in a slightly extended version of Pi-calculus [27]. Galen
Menzel [25] has developed a compact implementation of
Orc in Concurrent Haskell that uses the same approach.

Simon Peyton-Jones has pointed out a connection be-
tween Orc constructs and the List monad, as used in
functional programming languages, including Haskell [16].
The list monad is often used to express non-deterministic
computations: the list represents a set of possible results
to a computation, and the subsequent steps of the pro-
gram may create new possible results or eliminate results
that are no longer valid. The sequential composition op-
erator, >x> , is analogous to the bind operator >>=
in Haskell. The where operator can also be modeled as
taking the first item from a lazy list. The standard list
monad always produces values in a specific order, while
the publication order in Orc is non-deterministic.

Orc has some similarity with synchronous languages
[4,3]. Sites calls and returns are similar to output and in-
put signals. Harel and his co-workers [15] have developed
a very attractive visual notation, Statecharts, to encode
computations of interacting processes. Their approach
has met with considerable practical success. They have
also developed a rigorous semantics of the visual nota-
tion.

Orc shares many of the goals of business process or-
chestration languages, like BPEL[20]. Both BPEL and
Orc make an explicit distinction between a process and
the services it orchestrates. The invoke tag in BEPL
is similar to calling a site in Orc. The response tag is
similar to binding a variable to the name of a site call.
Both languages provide mechanism for parallel execu-
tion and sequencing. BPEL defines a graph structure to
specify how results are combined, rather than using com-
position of expressions. Since BPEL is based on XML it
is easily read by machines. BPEL also does not have a
formal semantics, although it has does have a detailed
informal specification.

One important area where Orc may be applied is
in the development of workflow systems. There is no
commonly-accepted theory of workflow; instead there are
models based on communication and speech act theo-
ries [13,24], extensions of Petri nets [10,11], and UML [9].

A π-Calculus model of an electronic marketplace is de-
veloped in Padget and Bradford [30]. More recently Aalst
has developed a catalog of 19 workflow patterns [1]. This
report shows that commercial workflow products have
difficulty expressing many of the patterns. The exam-
ples of given in this paper cover many of the workflow
patterns. A full evaluation of the ability of Orc, or other
process calculi, to model workflow patterns is a subject
for future work.

A preliminary version of the current paper was pre-
sented at Marktoberdorf in 2004 [28].
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