
1

A Meditation on

AppleScript, Latency,

Databases, Web Services,

etc.

William R. Cook

University of Texas at Austin

2

Server

Client

Communication
is really slow

A Design Problem

3

Latency Lags Bandwidth

David Patterson

CACM

October 2004

4

Communication
has high latency

Refined Design Problem

Server

Client

5

Pure Object-Oriented Solution

• Design

– Objects, methods, inheritance, interfaces, etc…

– Automatic remote proxies, marshalling, etc…

• Pluses

– Familiar, elegant solution

– Lots of trained developers

• Negatives

– Doesn’t work in practice

“Abstraction is great… unless
the properties being abstracted are
the essence of the problem you are
try to solve” – Steve Cook

6

If HTTP were designed on CORBA?

• Similar to FileSystem interfaces, etc

interface File {

int Length();

String Text();

String Type();

String Encoding();

long Modified();

}

interface Container {
Container Sub(String n)
throws FileNotFound;

File Get();
File Invoke(HashMap p);

}

7

Lots of Round-Trips

• CORBA-HTTP Client

Container c;

c = root.Sub(“papers").Sub("index.htm");

String s = c.Get().Text();

• Automatic proxies for each intermediate object

– Round-trip for each “.”

– Work-arounds are possible, but complex

• Web would have failed?

Can’t take something that works
locally and make it remote. But taking
something that works remotely and
using it locally is ok. – Don Box

8

Abstraction Trap

• Pesky “Non-functional” requirements

– …like performance

• Simple elegant solutions don’t always scale up

– Can’t profile and optimize…

– Inefficiency is spread throughout architecture

• The question is…

– Can approaches that do scale up
be made simple and elegant?

9

Solution Directions

Service

Client

Send the work Get all needed data

10

Service Service

Client
Mobile code

complexity with
multiple

applications

Mobile Code

11

Which Data?

• How does the client
communicate what data it
needs?

• How does it know what it
needs?

• “Value Object” Pattern

– not enough

Server

Client

12

AppleScript (1991)

• MacOS allowed 60 process switches a second

– Client = Script

– Server = Application

• Send the work

tell application “Word”

set the color of every character

of document 1 whose font is “Courier” to Red

end tell

•How it works

•Applications publish terminology

•Programs contain object references that use terminology

13

Communication Model

• Application Terminology

– Virtual object model: properties and elements

· properties are single-valued: “font”, “color”

· elements are multi-valued: “document”, “character”

– Verbs

· generic: set, copy, delete

· also define specific ones

• Object Specifiers

– Standard message format for object references

• Apple Events

– Tagged tree-structured generic storage

– Pretty much the same as XML

14

Application Application

AppleScript

AppleScript as Glue

• AppleScript ���� application Apple Events

• Applications ���� AppleScript Open Scripting

Application

15

More on Object References

• First-class

set x to a reference to
every character of document 1

whose font is “Courier”

set color of x to Red

• Multiple applications

set name of document 1 to application “Word”

to name of document 1 to application “Excel”

– Get the data from one, send work to the other

16

AppleScript Observations

• Interesting “faux object” approach

– Applications are like object-oriented databases

– No Proxies

• Other features…

– Pioneered script management API (before WSH)

– Recording

– Attaching scripts to application objects

– prototype-based object model

– etc.

17

AppleScript Limitations

• Apple Events

– Can’t send multiple actions as one event

– Hard for developers to create applications

– Does not have a good model for retrieving
objects

· (more on this in a minute)

18

Databases

19

print name/manager of employees

whose

department name matches a prefix

&

salary is greater than limit

20

PL Viewpoint

• Orthogonal Persistence

– Automatically load objects as needed

· “object faulting”

– Approximations

· Java Data Objects (JDO), EJB, Hibernate…

• Optimization needed

– Even without latency issues

Linear
search

foreach (Employee emp in DB.Employees())
if (emp.Department.Name.startsWith(prefix)

&& emp.Salary >= limit)
print(emp.Name + emp.Manager.Name);

21

DB viewpoint

• This is crazy!

• Databases already do this well…

– Choose algorithm (plan) based on

· Structure of the query

· Statistical properties of data

– Orders of magnitude improvement

· Program the way you want, let the system optimize

“Whatever the database programming model, it
must allow complex, data-intensive operations to
be picked out of programs for execution by the
storage manager, rather than forcing a record-
at-a-time interface.” – David Maier 1987

22

A Pragmatic Solution?

• Complex dependencies between strings/API

– PL viewpoint: this is crazy!

• Criteria in strings w/parameters (JDO style)

Command q = new Query(Employee.class);

String paramDecl = “String prefix, int base”;

String filter =
“emp.Department.Name.startsWith(prefix)”

+ “ && emp.Salary >= base”;

q.declareParameters(paramDecl);

q.setFilter(filter);

for (Employee emp : q.execute(prefix, base))

print(emp.Name + emp.Manager.Name);

23

DLINQ

var empsAndMgrs =

from emp in Employee

join dept in Department

on emp.DeptartmentID equals dept.ID

where (dept.Name.StartsWith(prefix)

&& emp.Salary >= limit).

join mgr in Employee

on emp.ManagerID equals mgr.ID

select new { emp.Name, MgrName = mgr.Name };

foreach (var result in empsAndMgrs)

print(result.Name + result.MgrName);

emp.Department.Name

Artificial
objects

24

Safe Queries (ICSE 2005)

for (Employee emp : db.query<Employee>(

new Predicate<Employee> () {

public boolean match(Employee emp) {

return (emp.Department.Name.startsWith(prefix)

&& (emp.Salary >= limit); }}))

{

print(emp.Name + emp.Manager.Name);

}

– Implemented by db4o for Java and C#

· C# version uses delegates

Object
Faulting

Function
Boilerplate

25

Key Idea

Typical Database Operation has Two Aspects

1. Find objects of interest

– Good: “Send the Work”

– Query criteria shipped to database

2. Do something with results (and related objects)

– Depends on what client does

– DLINQ has “select” clause

· Create result objects

· Contain data that is needed by rest of the program

– Safe Queries relies on dynamic object loading

– Hibernate has prefetch capability

26

Hibernate Example

String q = “from Employee emp

where e.overtime > 100”;

for (Employee emp : runQuery(q))

print(emp.getName()

+ emp.getManager().getName()
);

The rest of the

program defines

what is “needed”

Should prefetch managers

27

Manual Prefetch

String q = “from Employee emp

left outer join fetch emp.Manager

where e.overtime > 100”;

for (Employee emp : runQuery(q))

print(emp.getName()

+ emp.getManager().getName());

Subtle

dependency…

… must be

maintained if

code changes

28

AutoFetch (ECOOP 2006)

• Prefetches objects based on past client behavior

– Classify queries as similar based on call stack

– Collect statistics on way query results are used

– Add prefetch specifications to similar queries

• Prototype

– Extension of Hibernate

– Could also be defined for DLINQ?

29

AutoFetch Torpedo Benchmark

Measures # of queries

Web auction application

17 use cases

AutoFetch is a fast as hand
optimized

…with simpler code

First Run Third Run
0

5
10

15

20

25

30

35

40

45
50

55

60

65

70

75

80
85

90

95

Unopt im iz
ed

M anua lly
opt im ized

Aut om at ic
a lly
opt im ized

N
o

.
o

f
S

Q
L

q
u

e
ri

e
s

30

AutoFetch OO7 Benchmark

• Measures:

traversals, queries, and

updates

– Based on CAD

applications

• AutoFetch reduces

queries by

factor of 100

First
Run

Second
Run

Third
Run

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

Un op t im ize d

Au t oFe t ch

I t erat ion

N
u

m
b

e
r

o
f

S
Q

L
 q

u
e

ri
e

s

38 queries
T1 Traversal

31

AutoFetch Discussion

• Disadvantages:

– Does not optimize initial query executions

· Related work: PrefetchGuide (cf Phil Bernstein)

• Advantages:

– Best performance:

· AutoFetch: 1 query

· PrefetchGuide: at least 2 queries

– Can prefetch arbitrary object graphs

– More data for prediction

32

Web Services

33

Web Services

Container c;

c = root.Sub(“papers").Sub("index.htm");

String s = c.Get().Text();

Service

Client

Service

Client

34

Code Becomes Data

• Use Lazy Batched Futures (ICWS 2006)

Request request = new Request();

File file1 = request.Sub(“papers").Sub("index.htm") .Get();

File file2 = request.Sub(“papers").Sub(“picture.gif") .Get();

request.invoke(); // calls service, fills in file1 and file2

String s = file1.Text();

• Web Service call includes both file requests

<invokeRequest>

<doc><name>papers</name>

<item><name>index.htm</name><ID>1</ID></item>

<item><name>picture.gif</name><ID>2</ID></item>

</doc>

</invokeRequest>

Results must not
be needed before
invoke

35

Web Services

• Programming model for Web Services

– Server publishes an “object model”

– Client uses objects without per-method overhead

– Similar to AppleScript

• Better understanding of Document-Oriented style

– Document = description of work to be done

· not just “data”

– Server interprets the request

– Request may also specify prefetch

Service

Client

36

Work in Progress

37

I Still Want It All

• Write in object-oriented style

– No joins, funky query syntax, etc

• Full optimization

– query optimization & prefetch

foreach (Employee emp in DB.Employees())

if (emp.Department.Name.startsWith(prefix)

&& emp.Salary >= limit)

print(emp.Name + emp.Manager.Name);

“The Holy Grail”
– Erik Meijer

38

Query Extraction

1. Path analysis by abstract interpretation

1. Basic paths

2. Conditional paths

3. Control vs. data dependence

2. Query creation

– Condition promotion

3. Program simplification

– Remove tests implied by query

39

Basic Path Analysis

• Abstract values by paths

– ι is an iteration variable

• Concretization = query execution

ιιιιemp

Salary

root

Employees

Name Manager

Name

foreach (emp in db.Employees)

if (emp.Salary > 65000)

print(emp.Name

+ emp.Manager.Name)

40

Conditional Path Analysis

ιιιιemp

Salary

root

Employees

Name Manager

Name

[C] [C]

C = Employees.ιιιιemp.Salary > 65000

* means path only used for control

*

foreach (emp in db.Employees)

if (emp.Salary > 65000)

print(emp.Name

+ emp.Manager.Name)

41

Condition Promotion

foreach (emp in db.Employees)

if (emp.Salary > 65000)

print(emp.Name

+ emp.Manager.Name)
ιιιιemp

Salary

root

Employees

Name Manager

Name

[C]

C = Employees.ιιιιemp.Salary > 65000
* means path only used for control

*

42

Creating OQL Query

select struct (

Name = emp.Name,

Salary = emp.Salary,

Manager = struct (

Name = emp.Manager.Name))

from Employee as emp

where emp.Salary > 65000

ιιιιemp

Salary

root

Employees

Name Manager

Name

[C]

*

C = Employees.ιιιιemp.Salary > 65000

* means path only used for control flow

43

Assemble and Simplify Program

foreach (emp in db.Employees)

if (emp.Salary > 65000)

print(emp.Name

+ emp.Manager.Name)

query =

“select struct (

Name = emp.Name,

Salary = emp.Salary,

Manager = Struct (

Name = emp.Manager.Name))

from Employee as emp

where emp.Salary > 65000”;

List result = session.createQuery(query);

for (Employee e : result.list())

if (emp.Salary > 65000)

print(e.Name +

e.Manager.Name);

44

Issues with Query Extraction

• Identifying where to extract queries

– May require sub-queries

• Not yet handled

– Aggregation

– Updates

• Will it work in practice?

– Benchmarks are not good

45

Thoughts

• AppleScript

– Action = Verb + Objects (as in English, not OO)

– Sends works to server for execution

• Distributed Objects versus Web Services

– PL challenge: batch operations into a single request

– Not “what is possible” but “what is natural”

– Latency is issue

• AutoFetch

– Return all the data that is “needed”

– By dynamic profiling of previous client behavior

– Combined with DLINQ? Needs O/R mapping

• Query Extraction

– Partition a program into a query and a residual program

46

AppleScript

AutoFetch

Web Services

LatencyDLINQ

Safe Queries

Explicit
Batched Futures

Query
Extraction

Optimization

Service

Client

