
1

1

Writing
with Style

William Cook
based on

Style: Toward Clarity and Grace
by Joseph Williams

2

Encode
a complex web
of ideas…

3

…as a linear
stream of text

4

paper
organization

≠
research
process

5

Critically evaluate and support
your claims with proofs, an
implementation, examples, or
experiments.

Correctness

Extend the frontier of
knowledge. Explicitly relate
your research to previous work.

Novelty

Organize the paper well and
write clearly. Make sure you
support your claims.

Clarity

Motivate why the research is
important or useful. Explain
what problem it addresses.

Significance

6

Clarity

2

7

•Subject of sentence
names a character

•Verbs name action
involving characters

8

Missing Subjects

“Termination occurred
after 23 iterations”

9

Missing Subjects

“The program
terminated after 23

iterations”

character

action

10

Missing Subjects

“Determination of
policy occurs at the
presidential level”

11

Subject = Actor

“The President
determines policy”

12

Weak Verbs

“The algorithm
supports effective

garbage collection in
distributed systems”

3

13

Stronger

“The algorithm
collects garbage
effectively in

distributed systems”

14

NOM:
Nominalization

Noun instead of
verb/adjective

15

Verb NOM

collaborationcollaborate

movementmove
discoverydiscover

NominalizationVerb

16

Adjective NOM

differencedifferent
applicabilityapplicable
difficultydifficult

NominalizationAdjective

17

empty verb + NOM

“The police conducted
an investigation of

the matter”

18

Verb = Action

“The police
investigated
the matter”

4

19

“there is” + NOM

“There is a need for
further study of this

program”

20

Name the Actor

“The engineering staff
must study this
program futher”

21

NOM + empty verb

“The intention of the
IRS is to audit our

records”

weak

22

Verb = action

“The IRS intends to
audit our records”

23

NOM + NOM

“There was a review of
the evolution of the

technique”

24

Find Actor

“She reviewed the
evolution of the

technique”

5

25

Using “how”

“She reviewed how the
technique evolved”

26

NOM + verb + NOM

“Extensive rust damage
to the hull prevented
repairs to the ship”

27

Actors, Actions

“Because rust had
damaged the hull, we
could not repair the

ship”

28

Useful
Nominalizations

29

Reference to
previous sentence

“these arguments all
depend upon…”

“This decision has…”
30

Name a verb’s object

“I do not understand
her meaning or
his intention”

(what she means
what he intends)

6

31

Common concepts

“Taxation without
representation was

not the central cause
of the revolution”

32

Be careful

compilation

dependency

inheritance

implementation

33

Cohesion

Managing
the flow of
information

34

Sentences

•new ideas

•action

•ideas already
mentioned

•familiar ideas

object

verb

subject

35

Topics form a logical
sequence of ideas

newold newold newold old
36

Technique

Underline subjects

Do they flow?

7

37

Emphasis

Put important things
at the end

last para.section
last sent.paragraph
final wordssentence

38

Coherence

39

The Point

DiscussionIntro

The point
(best)

…or here
(ok)

40

Paper

Section

Paragraph

Sentence

Containers

•Large-scale
Structure

•Sequence of
items

Specific rules

41

DiscussionIntro

DI DI DI DiscIntro

paper

paragraphs sections

DiscIntro

DI DI DI

paragraphs

DI DI DI

paragraphs

DI DI

sentences

sentences

42

Themes

Strings of related
words

Woven into the text

8

43

Active
Passive

44

Active

the agreement

broke

The partners

object

verb

subject

45

Passive

by the partners

was broken

The agreement

prepositional
phrase

be + past
participle

subject

46

Passive
is fine,

if it is more
coherent

47

Active

“Our partners were
old friends… but they
let us down. The
partners broke the
agreement.”

48

Passive

“We thought we had a
good agreement. Then
we found out who
killed it. The
agreement was broken
by the partners.”

9

49

Miscellaneous
Rules

50

Section Title Rule

First sentence
of every section:
Must include the
section title

(except intro/conclusion)

51

Little Piggy Rule

Avoid “we” as subject,
unless it is

something you, the
author, actually did

52

“Our” Rule

Avoid “our”, as in
“our technique”

Give everything
a name instead

53

“This” Rule

Avoid “this”
as a subject.

Or qualify it:
“this technique”..

54

Misc.

No parentheses (ever)

“fleshed” not “flushed”

10

55

Comma for clauses

We went to the store
and bought some food.

We ate it,
and it was good.

56

Summary

57

DiscussionIntro

DI DI DI DiscIntro

paper

paragraphs sections

DiscIntro

DI DI DI

paragraphs

DI DI DI

paragraphs

DI DIsentences

sentences

58

Variable

Fixed

New/UnknownOld/Known
StressTopic

Variable

Fixed

(Point)Point
DiscussionIssue

-

Complement

Variable

Fixed

ActionCharacter

VerbSubject

59

Exercises

60

This paper formalizes the notion of virtual classes, in the form of the
language vc, an extension of Featherweight Java. We present its dynamic
semantics and static type rules, and show that the type system is sound.
Let us introduce virtual classes by analogy. Mainstream object-oriented
languages invariably enable (virtual) methods to mean different things in
context of objects of different type, at the syntactic level by means of
overriding definitions of methods in subclasses, and in the dynamic
semantics by means of late binding in method invocations.
Virtual classes are class valued attributes of objects, and they can also be
refined (to subclasses) in context of a subclass; at the syntactic level
there are introductory and further-binding declarations, and at the
dynamic level there is late binding. As a result, the actual, dynamic
value of a virtual class is not known exactly at compile time, but it is
known to be a particular class which is accessible as a specific attribute
of a given object, and it is statically known to be a subclass of some
compile-time constant class. Virtual classes give rise to covariance,
which requires a strict treatment in order to be type safe, such as that of
Caesar or gbeta. Other examples of a strict and safe treatment of
covariance are the formalization of variant parametric types in [32], and
the inclusion of wildcards into the J2SE 5 version of the Java platform.
Note, however, that virtual classes is a different and in several respects
more powerful mechanism than variant parametric types and wildcards.

A1

11

61

Virtual classes are class-valued attributes of objects. They
are analogous to virtual methods in traditional object-
oriented languages: they follow similar rules of definition,
overriding and reference. In particular, virtual classes are
defined within an object's class. They can be overridden
and extended in subclasses, and they are accessed relative
to an object instance, using late binding. This last
characteristic is the key to virtual classes: it introduces a
dependence between static types and dynamic instances,
because dynamic instances contain classes that act as
types. As a result, the actual, dynamic value of a virtual
class is not known at compile time, but it is known to be a
particular class which is accessible as a specific attribute
of a given object, and some of its features may be
statically known, whereas others are not.

A2

62

Proof. By induction on the structure of c. Rule A-
Assign computes a safe approximation of the store by
joining stores. Rule A-If computes a safe approximation
of the program behavior by combining the results of the
statement's two branches. …

Analyzing Traversal Conditions

The precision of the analysis can be significantly
increased by analyzing the conditions under which a
program traverses its paths. For example, the analysis in
the previous section conservatively estimates that the
program in Fig. 3 needs the name field for every
employee even though the program traverses the name
field only if the employee's salary is greater than
$65,000. We extend our analysis to identify and include
such conditions, so that they may be expressed in a
database query. B1

63

The analysis in this section is quite imprecise and can
therefore lead to an excessive over-approximation of
the database values a program requires. For example,
the analysis conservatively estimates that the program
in Fig.3 needs the name field for every employee even
though the program traverses the name field only if the
employee's salary is greater than $65,000.

Analyzing Traversal Conditions

The precision of the analysis can be significantly
increased by considering the conditions under which a
program traverses data paths. If a program condition
can be expressed in a query language, then the analysis
can incorporate that condition in the traversal
summary.
… B2 64

An understanding of inheritance as a general concept at the same
level as recursion or iteration provides a basis for interpreting
inheritance systems provided by particular programming languages.
Just as iteration and recursion have many different forms, so does
inheritance, and it is impossible to state exactly what inheritance is.
One may merely identify when a form of inheritance is supported.
Most of the confusion about inheritance stems not from the actual
mechanism is provides but from the expectations of those who wish
to use it. The first task of this paper is to extricate inheritance from
the grip of these expectations.
We first examine the connection between inheritance and the
subtype relation. We imagine a situation in which two classes
implement the same type, but are not related by inheritance
(subtypes without inheritance), and conversely a situation in which
one class inherits from another but is not a subtype (inheritance
without subtypes). Both situations are common enough in object-
oriented programming so we reject the position that inheritance is
necessarily equated with subtyping. We view inheritance as
providing an implementation hierarchy, although type-checking
does play a role in determining the correctness of inheritance. C1

65

Inheritance is one of the central concepts in object-oriented
programming. Despite its importance, there seems to be a lack of
consensus on the proper way to describe inheritance. This is
evident from the following review of various formalizations of
inheritance that have been proposed.
The concept of prefixing in Simula (Dahl and Nygaard, 1970),
which evolved into the modern concept of inheritance, was
defined in terms of textual concatenation of program blocks.
However, this definition was informal, and only partially
accounted for more sophisticated aspects of prefixing like the
pseudo-variable this and virtual operations.
The most precise and widely used definition of inheritance is
given by the operational semantics of object-oriented languages.
The canonical operational semantics is the “method lookup”
algorithm of Smalltalk: (omitted)
Unfortunately, such operational definitions do not necessarily
foster intuitive understanding. As a result, insight into the proper
use and purpose of inheritance is often gained only through an
“Aha!” experience (Borning and O’Shea, 1987). C2 66

Direct instruction communication--in which instructions in a
block send their operands directly to consumer instructions
within the same block in a dataflow fashion--permits distributed
execution by eliminating the need for any intervening shared,
centralized structures such as an issue window or a register file
between the producer and consumer.

As shown in Figure 5, the TRIPS ISA supports direct instruction
communication by encoding the consumers of an instruction as
targets within the producing instruction, allowing the
microarchitecture to determine where the consumer resides and
forward a produced operand directly to its target instruction(s).
The nine-bit target fields (T0 and T1) shown in the encoding
each specify the operand type (left, right, predicate) with two
bits and the target instruction with the remaining seven. A
microarchitecture supporting this ISA will determine where each
of a block's 128 instructions is mapped, thereby determining the
distributed flow of operands along the dataflow graph within
each block. An instruction's number is implicitly determined by
its position in the chunks shown in Figure 6. D1

12

67

With direct instruction communication, instructions in a block
send their results directly to intra-block, dependent consumers in a
dataflow fashion. This model supports distributed execution by
eliminating the need for any intervening shared, centralized
structures (e.g. an issue window or register file) between intra-
block producers and consumers.

Figure 5 shows that the TRIPS ISA supports direct instruction
communication by encoding the consumers of an instruction's
result as targets within the producing instruction. The
microarchitecture can thus determine precisely where the
consumer resides and forward a producer's result directly to its
target instruction(s). The nine-bit target fields (T0 and T1) each
specify the target instruction with seven bits and the operand type
(left, right, predicate) with the remaining two. A
microarchitecture supporting this ISA maps each of a block's 128
instructions to particular coordinates, thereby determining the
distributed flow of operands along the block's dataflow graph. An
instruction's coordinates are implicitly determined by its position
its chunk. D2 68

2 ISA Description
The PowerPC ISA has some features that
make it different from the Alpha and PISA
ISAs. For example, the Alpha ISA has 25
instructions with 4 formats and the PISA
ISA has 135 instructions with 4 formats.
Not all of these instructions are
implemented in the simulator. In this
section, we describe features of the ISA
that are implemented in the simulator.

69

3 TRIPS Architecture
The TRIPS architecture is designed to address key
challenges posed by next-generation technologies—
power efficiency, high concurrency on a latency-
dominated physical substrate, and adaptability to the
demands of diverse applications [10, 12]. It uses an
EDGE ISA [2], which has two defining characteristics:
block atomic execution and direct instruction
communication. The ISA aggregates large groups of
instructions into blocks which are logically fetched,
executed, and committed as an atomic unit by the
hardware. This model amortizes the cost of per-
instruction overheads such branch predictions over a
large number of instructions. With direct instruction
communication, instructions within a block send their
results directly to the consumers without writing the
value to the register file, enabling lightweight intra-block
dataflow execution. 70

4 Exit Predictor Design
In this section we describe hyperblock-
based exit predictors in detail. We design
exit predictors based on both conventional
schemes and neural techniques. Exit
predictors based on conventional
techniques have a simple and scalable
design, and can make fast predictions,
with accuracies close to some of the best
traditional branch predictors. The
perceptron-based exit predictor requires
more time to make a single prediction, but
provides higher accuracy than other high-
bandwidth exit predictors.

71

3 Critical Path Model
The critical path model for the TRIPS architecture is
heavily based on the dependence-graph model
previously developed for superscalar architectures
[5]. The model represents various microarchitectural
events as nodes in a directed acyclic graph. Edges
between the nodes represent dependence constraints
among the events. Figure 2 shows a typical
dependence graph constructed for a slice of four
blocks seen during the program execution. In
addition to representing the usual constraints such as
data dependences, branch mispredictions, and finite
instruction window sizes, the TRIPS model
represents constraints imposed by block atomic
execution and operand routing.

