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Writing 
with Style

William Cook
based on 

Style: Toward Clarity and Grace
by Joseph Williams

2

Encode
a complex web 
of ideas…

3

…as a linear 
stream of text

4

paper 
organization

≠
research 
process

5

Critically evaluate and support 
your claims with proofs, an 
implementation, examples, or 
experiments. 

Correctness

Extend the frontier of 
knowledge. Explicitly relate 
your research to previous work. 

Novelty

Organize the paper well and 
write clearly. Make sure you 
support your claims. 

Clarity

Motivate why the research is 
important or useful. Explain
what problem it addresses. 

Significance

6

Clarity
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7

•Subject of sentence
names a character

•Verbs name action
involving characters

8

Missing Subjects

“Termination occurred 
after 23 iterations”

9

Missing Subjects

“The program 
terminated after 23 

iterations”

character

action

10

Missing Subjects

“Determination of 
policy occurs at the 
presidential level”

11

Subject = Actor

“The President
determines policy”

12

Weak Verbs

“The algorithm 
supports effective 

garbage collection in 
distributed systems”
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13

Stronger

“The algorithm 
collects garbage 
effectively in 

distributed systems”

14

NOM:
Nominalization

Noun instead of 
verb/adjective

15

Verb NOM

collaborationcollaborate

movementmove
discoverydiscover

NominalizationVerb

16

Adjective NOM

differencedifferent
applicabilityapplicable
difficultydifficult

NominalizationAdjective

17

empty verb + NOM

“The police conducted
an investigation of 

the matter”

18

Verb = Action

“The police 
investigated
the matter”
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19

“there is” + NOM

“There is a need for 
further study of this 

program”

20

Name the Actor

“The engineering staff
must study this 
program futher”

21

NOM + empty verb

“The intention of the 
IRS is to audit our 

records”

weak

22

Verb = action

“The IRS intends to 
audit our records”

23

NOM + NOM

“There was a review of 
the evolution of the 

technique”

24

Find Actor

“She reviewed the 
evolution of the 

technique”
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25

Using “how”

“She reviewed how the 
technique evolved”

26

NOM + verb + NOM

“Extensive rust damage
to the hull prevented
repairs to the ship”

27

Actors, Actions

“Because rust had 
damaged the hull, we
could not repair the 

ship”

28

Useful 
Nominalizations

29

Reference to 
previous sentence

“these arguments all 
depend upon…”

“This decision has…”
30

Name a verb’s object

“I do not understand 
her meaning or 
his intention”

(what she means
what he intends)
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31

Common concepts

“Taxation without 
representation was 

not the central cause 
of the revolution”

32

Be careful

compilation

dependency

inheritance

implementation

33

Cohesion

Managing
the flow of 
information

34

Sentences

•new ideas

•action

•ideas already  
mentioned

•familiar ideas

object

verb

subject

35

Topics form a logical 
sequence of ideas

newold newold newold old
36

Technique

Underline subjects

Do they flow?
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37

Emphasis

Put important things 
at the end

last para.section
last sent.paragraph
final wordssentence

38

Coherence

39

The Point

DiscussionIntro

The point
(best)

…or here
(ok)

40

Paper

Section

Paragraph

Sentence

Containers

•Large-scale 
Structure

•Sequence of 
items

Specific rules

41

DiscussionIntro

DI DI DI DiscIntro

paper

paragraphs sections

DiscIntro

DI DI DI

paragraphs

DI DI DI

paragraphs

DI DI

sentences

sentences

42

Themes

Strings of related 
words

Woven into the text 
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43

Active
Passive

44

Active

the agreement

broke

The partners

object

verb

subject

45

Passive

by the partners

was broken

The agreement

prepositional 
phrase

be + past 
participle

subject

46

Passive 
is fine, 

if it is more  
coherent

47

Active

“Our partners were 
old friends… but they 
let us down. The 
partners broke the 
agreement.”

48

Passive

“We thought we had a 
good agreement. Then 
we found out who 
killed it. The 
agreement was broken 
by the partners.”
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49

Miscellaneous
Rules

50

Section Title Rule

First sentence 
of every section:
Must include the 
section title

(except intro/conclusion)

51

Little Piggy Rule

Avoid “we” as subject, 
unless it is 

something you, the 
author, actually did 

52

“Our” Rule

Avoid “our”, as in 
“our technique”

Give everything 
a name instead

53

“This” Rule

Avoid “this”
as a  subject.

Or qualify it:
“this technique”..

54

Misc.

No parentheses (ever)

“fleshed” not “flushed”
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55

Comma for clauses

We went to the store 
and bought some food.

We ate it, 
and it was good.

56

Summary

57

DiscussionIntro

DI DI DI DiscIntro

paper

paragraphs sections

DiscIntro

DI DI DI

paragraphs

DI DI DI

paragraphs

DI DIsentences

sentences

58

Variable

Fixed

New/UnknownOld/Known
StressTopic

Variable

Fixed

(Point)Point
DiscussionIssue

-

Complement

Variable

Fixed

ActionCharacter

VerbSubject

59

Exercises

60

This paper formalizes the notion of virtual classes, in the form of the 
language vc, an extension of Featherweight Java. We present its dynamic 
semantics and static type rules, and show that the type system is sound.
Let us introduce virtual classes by analogy.  Mainstream object-oriented 
languages invariably enable (virtual) methods to mean different things in 
context of objects of different type, at the syntactic level by means of 
overriding definitions of methods in subclasses, and in the dynamic 
semantics by means of late binding in method invocations.
Virtual classes are class valued attributes of objects, and they can also be 
refined (to subclasses) in context of a subclass; at the syntactic level 
there are introductory and further-binding declarations, and at the 
dynamic level there is late binding.  As a result, the actual, dynamic 
value of a virtual class is not known exactly at compile time, but it is 
known to be a particular class which is accessible as a specific attribute 
of a given object, and it is statically known to be a subclass of some 
compile-time constant class.  Virtual classes give rise to covariance, 
which requires a strict treatment in order to be type safe, such as that of 
Caesar or gbeta.  Other examples of a strict and safe treatment of 
covariance are the formalization of variant parametric types in [32], and 
the inclusion of wildcards into the J2SE 5 version of the Java platform.  
Note, however, that virtual classes is a different and in several respects 
more powerful mechanism than variant parametric types and wildcards.

A1
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61

Virtual classes are class-valued attributes of objects. They 
are analogous to virtual methods in traditional object-
oriented languages: they follow similar rules of definition, 
overriding and reference. In particular, virtual classes are 
defined within an object's class. They can be overridden 
and extended in subclasses, and they are accessed relative 
to an object instance, using late binding. This last 
characteristic is the key to virtual classes: it introduces a 
dependence between static types and dynamic instances, 
because dynamic instances contain classes that act as 
types. As a result, the actual, dynamic value of a virtual 
class is not known at compile time, but it is known to be a 
particular class which is accessible as a specific attribute 
of a given object, and some of its features may be 
statically known, whereas others are not.

A2

62

Proof. By induction on the structure of c. Rule A-
Assign computes a safe approximation of the store by 
joining stores. Rule A-If computes a safe approximation 
of the program behavior by combining the results of the 
statement's two branches. …

Analyzing Traversal Conditions

The precision of the analysis can be significantly 
increased by analyzing the conditions under which a 
program traverses its paths. For example, the analysis in 
the previous section conservatively estimates that the 
program in Fig. 3 needs the name field for every 
employee even though the program traverses the name
field only if the employee's salary is greater than 
$65,000. We extend our analysis to identify and include 
such conditions, so that they may be expressed in a 
database query. B1

63

The analysis in this section is quite imprecise and can 
therefore lead to an excessive over-approximation of 
the database values a program requires. For example, 
the analysis conservatively estimates that the program 
in Fig.3 needs the name field for every employee even 
though the program traverses the name field only if the 
employee's salary is greater than $65,000.

Analyzing Traversal Conditions

The precision of the analysis can be significantly 
increased by considering the conditions under which a 
program traverses data paths. If a program condition 
can be expressed in a query language, then the analysis 
can incorporate that condition in the traversal 
summary. 
… B2 64

An understanding of inheritance as a general concept at the same
level as recursion or iteration provides a basis for interpreting 
inheritance systems provided by particular programming languages. 
Just as iteration and recursion have many different forms, so does 
inheritance, and it is impossible to state exactly what inheritance is. 
One may merely identify when a form of inheritance is supported.
Most of the confusion about inheritance stems not from the actual 
mechanism is provides but from the expectations of those who wish 
to use it. The first task of this paper is to extricate inheritance from 
the grip of these expectations.
We first examine the connection between inheritance and the 
subtype relation. We imagine a situation in which two classes 
implement the same type, but are not related by inheritance 
(subtypes without inheritance), and conversely a situation in which 
one class inherits from another but is not a subtype (inheritance 
without subtypes). Both situations are common enough in object-
oriented programming so we reject the position that inheritance is 
necessarily equated with subtyping. We view inheritance as 
providing an implementation hierarchy, although type-checking 
does play a role in determining the correctness of inheritance. C1

65

Inheritance is one of the central concepts in object-oriented 
programming. Despite its importance, there seems to be a lack of
consensus on the proper way to describe inheritance. This is 
evident from the following review of various formalizations of 
inheritance that have been proposed. 
The concept of prefixing in Simula (Dahl and Nygaard, 1970), 
which evolved into the modern concept of inheritance, was 
defined in terms of textual concatenation of program blocks. 
However, this definition was informal, and only partially 
accounted for more sophisticated aspects of prefixing like the 
pseudo-variable this and virtual operations. 
The most precise and widely used definition of inheritance is 
given by the operational semantics of object-oriented languages. 
The canonical operational semantics is the “method lookup”
algorithm of Smalltalk: (omitted)
Unfortunately, such operational definitions do not necessarily 
foster intuitive understanding. As a result, insight into the proper 
use and purpose of inheritance is often gained only through an 
“Aha!” experience (Borning and O’Shea, 1987). C2 66

Direct instruction communication--in which instructions in a 
block send their operands directly to consumer instructions 
within the same block in a dataflow fashion--permits distributed 
execution by eliminating the need for any intervening shared, 
centralized structures such as an issue window or a register file 
between the producer and consumer.

As shown in Figure 5, the TRIPS ISA supports direct instruction 
communication by encoding the consumers of an instruction as 
targets within the producing instruction, allowing the 
microarchitecture to determine where the consumer resides and 
forward a produced operand directly to its target instruction(s).  
The nine-bit target fields (T0 and T1) shown in the encoding 
each specify the operand type (left, right, predicate) with two 
bits and the target instruction with the remaining seven.  A 
microarchitecture supporting this ISA will determine where each 
of a block's 128 instructions is mapped, thereby determining the
distributed flow of operands along the dataflow graph within 
each block.  An instruction's number is implicitly determined by
its position in the chunks shown in Figure 6. D1
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67

With direct instruction communication, instructions in a block 
send their results directly to intra-block, dependent consumers in a 
dataflow fashion. This model supports distributed execution by 
eliminating the need for any intervening shared, centralized 
structures (e.g. an issue window or register file) between intra-
block producers and consumers.

Figure 5 shows that the TRIPS ISA supports direct instruction 
communication by encoding the consumers of an instruction's 
result as targets within the producing instruction. The 
microarchitecture can thus determine precisely where the 
consumer resides and forward a producer's result directly to its
target instruction(s).  The nine-bit target fields (T0 and T1) each 
specify the target instruction with seven bits and the operand type 
(left, right, predicate) with the remaining two.  A 
microarchitecture supporting this ISA maps each of a block's 128 
instructions to particular coordinates, thereby determining the 
distributed flow of operands along the block's dataflow graph.  An 
instruction's coordinates are implicitly determined by its position 
its chunk. D2 68

2   ISA Description
The PowerPC ISA has some features that 
make it different from the Alpha and PISA 
ISAs. For example, the Alpha ISA has 25 
instructions with 4 formats and the PISA 
ISA has 135 instructions with 4 formats. 
Not all of these instructions are 
implemented in the simulator. In this 
section, we describe features of the ISA 
that are implemented in the simulator.

69

3 TRIPS Architecture
The TRIPS architecture is designed to address key 
challenges posed by next-generation technologies—
power efficiency, high concurrency on a latency-
dominated physical substrate, and adaptability to the 
demands of diverse applications [10, 12]. It uses an 
EDGE ISA [2], which has two defining characteristics: 
block atomic execution and direct instruction 
communication. The ISA aggregates large groups of 
instructions into blocks which are logically fetched, 
executed, and committed as an atomic unit by the 
hardware. This model amortizes the cost of per-
instruction overheads such branch predictions over a 
large number of instructions. With direct instruction 
communication, instructions within a block send their 
results directly to the consumers without writing the 
value to the register file, enabling lightweight intra-block 
dataflow execution. 70

4  Exit Predictor Design
In this section we describe hyperblock-
based exit predictors in detail. We design 
exit predictors based on both conventional 
schemes and neural techniques. Exit 
predictors based on conventional 
techniques have a simple and scalable 
design, and can make fast predictions, 
with accuracies close to some of the best 
traditional branch predictors. The 
perceptron-based exit predictor requires 
more time to make a single prediction, but 
provides higher accuracy than other high-
bandwidth exit predictors.

71

3  Critical Path Model
The critical path model for the TRIPS architecture is 
heavily based on the dependence-graph model 
previously developed for superscalar architectures 
[5]. The model represents various microarchitectural
events as nodes in a directed acyclic graph. Edges 
between the nodes represent dependence constraints 
among the events. Figure 2 shows a typical 
dependence graph constructed for a slice of four 
blocks seen during the program execution. In 
addition to representing the usual constraints such as 
data dependences, branch mispredictions, and finite 
instruction window sizes, the TRIPS model 
represents constraints imposed by block atomic 
execution and operand routing.


