
Thread Synchronization:
Too Much Milk

1

Implementing Critical Sections in Software Hard

The following example will demonstrate the difficulty
of providing mutual exclusion with memory reads and
writeswrites

Hardware support is needed

The code must work all of the time
Most concurrency bugs generate correct results for some
interleavings

Designing mutual exclusion in software shows you
how to think about concurrent updates

2

how to think about concurrent updates
Always look for what you are checking and what you are
updating
A meddlesome thread can execute between the check and
the update, the dreaded race condition

Thread Coordination

Jack Jill

Too much milk!

Jack
Look in the fridge; out of
milk
Go to store
Buy milk
Arrive home; put milk away

Jill

Look in fridge; out of milk
Go to store
Buy milk
Arrive home; put milk away

3

Arrive home; put milk away
Oh, no!

Fridge and milk are shared data structuresFridge and milk are shared data structures

Formalizing “Too Much Milk”

Shared variables
“Look in the fridge for milk” – check a variable
“Put milk away” – update a variable

Safety property
At most one person buys milk

Liveness
Someone buys milk when needed

How can we solve this problem?

4

How to think about synchronization code

Every thread has the same pattern
Entry section: code to attempt entry to critical section
Critical section: code that requires isolation (e.g., with mutual
exclusion)exclusion)
Exit section: cleanup code after execution of critical region
Non-critical section: everything else

There can be multiple critical regions in a program
Only critical regions that access the same resource (e.g., data
structure) need to synchronize with each other

while(1) {

5

Entry section
Critical section
Exit section
Non-critical section

}

The correctness conditions

Safety
Only one thread in the critical region

Liveness
Some thread that enters the entry section eventually enters the
critical region
Even if some thread takes forever in non-critical region

Bounded waiting
A thread that enters the entry section enters the critical section
within some bounded number of operations.

Failure atomicity
It is OK for a thread to die in the critical region

6

It is OK for a thread to die in the critical region
Many techniques do not provide failure atomicity

while(1) {
Entry section
Critical section
Exit section
Non-critical section

}

Too Much Milk: Solution #0

while(1) {
if (noMilk) { // check milk (Entry section)

if (noNote) { // check if roommate is getting milk
leave Note; //Critical section
buy milk;

while(1) {
if (noMilk) { // check milk (Entry section)

if (noNote) { // check if roommate is getting milk
leave Note; //Critical section
buy milk;

Is this solution
1. Correct
2. Not safe

buy milk;
remove Note; // Exit section

}
// Non-critical region

}

buy milk;
remove Note; // Exit section

}
// Non-critical region

}

7

3. Not live
4. No bounded wait
5. Not safe and not live

It works sometime and doesn’t some other times

What if we switch the
order of checks?

Too Much Milk: Solution #1

while(1) {
while(turn ≠ Jack) ; //spin
while (Milk) ; //spin
b milk; // C iti l s ti n

while(1) {
while(turn ≠ Jack) ; //spin
while (Milk) ; //spin
b milk; // C iti l s ti n

while(1) {
while(turn ≠ Jill) ; //spin
while (Milk) ; //spin
b milk;

while(1) {
while(turn ≠ Jill) ; //spin
while (Milk) ; //spin
b milk;

turn := Jill // Initializationturn := Jill // Initialization

buy milk; // Critical section
turn := Jill // Exit section
// Non-critical section

}

buy milk; // Critical section
turn := Jill // Exit section
// Non-critical section

}

buy milk;
turn := Jack
// Non-critical section

}

buy milk;
turn := Jack
// Non-critical section

}

Is this solution
1. Correct
2. Not safe

8

3. Not live
4. No bounded wait
5. Not safe and not live

At least it is safe

Solution #2 (a.k.a. Peterson’s algorithm):
combine ideas of 0 and 1

Variables:
ini: thread Ti is executing , or attempting to execute, in CS
turn: id of thread allowed to enter CS if multiple want to

Claim: We can achieve mutual exclusion if the following invariant holds
before entering the critical section:

9

{(¬inj ∨ (inj ∧ turn = i)) ∧ ini}
CS
………

ini = false

((¬in0 ∨ (in0 ∧ turn = 1)) ∧ in1) ∧
((¬in1 ∨ (in1 ∧ turn = 0)) ∧ in0)

⇒
((turn = 0) ∧ (turn = 1)) = false

Peterson’s Algorithm

Jack
while (1) {

in0:= true;
turn := Jack;

Jack
while (1) {

in0:= true;
turn := Jack;

Jill
while (1) {

in1:= true;
t Jill

Jill
while (1) {

in1:= true;
t Jill

in0 = in1 = false;in0 = in1 = false;

turn := Jack;
while (turn == Jack

&& in1) ;//wait
Critical section
in0 := false;
Non-critical section

}

turn := Jack;
while (turn == Jack

&& in1) ;//wait
Critical section
in0 := false;
Non-critical section

}

turn := Jill;
while (turn == Jill

&& in0);//wait
Critical section
in1 := false;
Non-critical section

}

turn := Jill;
while (turn == Jill

&& in0);//wait
Critical section
in1 := false;
Non-critical section

}

10

Safe, live, and bounded waiting
But, only 2 participants

Too Much Milk: Lessons

Peterson’s works, but it is really unsatisfactory
Limited to two threads
Solution is complicated; proving correctness is tricky evenSolution is complicated; proving correctness is tricky even
for the simple example
While thread is waiting, it is consuming CPU time

How can we do better?
Use hardware to make synchronization faster
Define higher-level programming abstractions to simplify
concurrent programming

11

concurrent programming

Towards a solution

The problem boils down to establishing the following right after
entryi

(¬inj ∨ (inj ∧ turn = i)) ∧ ini = (¬inj ∨ turn = i) ∧ ini

How can we do that?

12

entryi = ini := true;
while (inj ∧turn ≠ i);

We hit a snag

Thread T0
while (!terminate) {

in0:= true Thread T1
hil (!t i t) {{in0}

while (in1 ∧turn ≠ 0);
{in0 ∧ (¬ in1 ∨ turn = 0)}
CS0
………

}

while (!terminate) {
in1:= true
{in1}
while (in0 ∧turn ≠ 1);

{in1 ∧ (¬ in0 ∨ turn = 1)}
CS1
………

13

}

The assignment to in0
invalidates the invariant!

What can we do?

Add assignment to turn to establish the second disjunct

Thread T0
while (!terminate) {

in0:= true;
turn := 1;
{in0}
while (in1 ∧turn ≠ 0);
{in0 ∧ (¬ in1 ∨ turn = 0 ∨ at(α1))}
CS0
in : f ls ;

Thread T0
while (!terminate) {

in0:= true;
turn := 1;
{in0}
while (in1 ∧turn ≠ 0);
{in0 ∧ (¬ in1 ∨ turn = 0 ∨ at(α1))}
CS0
in : f ls ;

Thread T1
while (!terminate) {

in1:= true;
turn := 0;
{in1}
while (in0 ∧turn ≠ 1);

{in1 ∧ (¬ in0 ∨ turn = 1 ∨ at(α0))}
CS1
in : f ls ;

Thread T1
while (!terminate) {

in1:= true;
turn := 0;
{in1}
while (in0 ∧turn ≠ 1);

{in1 ∧ (¬ in0 ∨ turn = 1 ∨ at(α0))}
CS1
in : f ls ;

α0 α1

14

in0 := false;
NCS0

}

in0 := false;
NCS0

}

in1 := false;
NCS1

}

in1 := false;
NCS1

}

Safe?

Thread T0

while (!terminate) {
in0:= true;
turn := 1;

Thread T0

while (!terminate) {
in0:= true;
turn := 1;

Thread T1

while (!terminate) {
in1:= true;
turn := 0;

Thread T1

while (!terminate) {
in1:= true;
turn := 0;α0 α1;

{in0}
while (in1 ∧turn ≠ 0);

{in0 ∧ (¬ in1 ∨ turn = 0 ∨ at(α1))}
CS0

in0 := false;
NCS0

}

;
{in0}
while (in1 ∧turn ≠ 0);

{in0 ∧ (¬ in1 ∨ turn = 0 ∨ at(α1))}
CS0

in0 := false;
NCS0

}

;
{in1}
while (in0 ∧turn ≠ 1);

{in1 ∧ (¬ in0 ∨ turn = 1 ∨ at(α0))}
CS1

in1 := false;
NCS1

}

;
{in1}
while (in0 ∧turn ≠ 1);

{in1 ∧ (¬ in0 ∨ turn = 1 ∨ at(α0))}
CS1

in1 := false;
NCS1

}

1

15

If both in CS, then

in0 ∧ (¬in1 ∨ at(α1) ∨ turn = 0) ∧ in1 ∧ (¬in0 ∨ at(α0) ∨ turn = 1) ∧
∧ ¬ at(α0) ∧ ¬ at(α1) = (turn = 0) ∧ (turn = 1) = false

Live?

Thread T0
while (!terminate) {

{S1: ¬in0 ∧ (turn = 1 ∨ turn = 0)}
in0:= true;
{S2: in0 ∧ (turn = 1 ∨ turn = 0)}
turn := 1;

Thread T0
while (!terminate) {

{S1: ¬in0 ∧ (turn = 1 ∨ turn = 0)}
in0:= true;
{S2: in0 ∧ (turn = 1 ∨ turn = 0)}
turn := 1;

Thread T1
while (!terminate) {

{R1: ¬in0 ∧ (turn = 1 ∨ turn = 0)}
in1:= true;
{R2: in0 ∧ (turn = 1 ∨ turn = 0)}
turn := 0;

Thread T1
while (!terminate) {

{R1: ¬in0 ∧ (turn = 1 ∨ turn = 0)}
in1:= true;
{R2: in0 ∧ (turn = 1 ∨ turn = 0)}
turn := 0;α0 α1turn ;

{S2}
while (in1 ∧turn ≠ 0);
{S3: in0 ∧ (¬ in1 ∨ at(α1) ∨ turn = 0)}
CS0
{S3}
in0 := false;
{S1}
NCS0

}

turn ;
{S2}
while (in1 ∧turn ≠ 0);
{S3: in0 ∧ (¬ in1 ∨ at(α1) ∨ turn = 0)}
CS0
{S3}
in0 := false;
{S1}
NCS0

}

turn ;
{R2}
while (in0 ∧turn ≠ 1);
{R3: in1 ∧ (¬ in0 ∨ at(α0) ∨ turn = 1)}
CS1
{R3}
in1 := false;
{R1}
NCS1

}

turn ;
{R2}
while (in0 ∧turn ≠ 1);
{R3: in1 ∧ (¬ in0 ∨ at(α0) ∨ turn = 1)}
CS1
{R3}
in1 := false;
{R1}
NCS1

}

0 1

16

Non-blocking: T0 before NCS0, T1 stuck at while loop
S1 ∧ R2 ∧ in0 ∧ (turn = 0) = ¬in0 ∧ in1 ∧ in0 ∧ (turn = 0) = false
Deadlock-free: T1 and T0 at while, before entering the critical section
S2 ∧ R2 ∧ (in0 ∧ (turn = 0)) ∧ (in1 ∧ (turn = 1)) ⇒ (turn = 0) ∧ (turn = 1) = false

Bounded waiting?

Thread T0
while (!terminate) {

in0:= true;
turn := 1;

Thread T0
while (!terminate) {

in0:= true;
turn := 1;

Thread T1
while (!terminate) {

in1:= true;
turn := 0;

Thread T1
while (!terminate) {

in1:= true;
turn := 0;

while (in1 ∧turn ≠ 0);
CS0
in0 := false;
NCS0

}

while (in1 ∧turn ≠ 0);
CS0
in0 := false;
NCS0

}

while (in0 ∧turn ≠ 1);
CS0
in1 := false;
NCS0

}

while (in0 ∧turn ≠ 1);
CS0
in1 := false;
NCS0

}

17

Yup!

