Virtual Memory and
Address Translation

Review

+ Program addresses are virtual addresses.

» Relative offset of program regions can not change during program
execution. E.g., heap can not move further from code.

» Virtual addresses == physical address inconvenient.
< Program location is compiled into the program.
+ A single offset register allows the OS to place a process’ virtual
address space anywhere in physical memory.
» Virtual address space must be smaller than physical.
» Program is swapped out of old location and swapped into new.
+ Segmentation creates external fragmentation and requires large
regions of contiguous physical memory.
» We look to fixed sized units, memory pages, to solve the problem.

Virtual Memory
Concept

*

n_
Key problem: How can one support programs that 27-1

require more memory than is physically available?

>

» How can we support programs that do not use all of their
memory at once?

Hide physical size of memory from users

» Memory is a “large” virtual address space of 2" bytes

> Only portions of VAS are in physical memory at any one Program

time (increase memory utilization).

P’s

Issues J(AS_

» Placement strategies

<+ Where to place programs in physical memory

> Replacement strategies

<+ What to do when there exist more processes than can fit in
memory

» Load control strategies

< Determining how many processes can be in memory at one
time

Realizing Virtual Memory

Paging

L 4

A memory address is a pair (f, 0)

PA: | LTI ELELETT]

IOgZ (fmax x Omax) IOgZ Omax 1

Frax—1 1 Oyax—1)

(
Physical memory partitioned into equal sized”
page frames

» Page frames avoid external fragmentation.
(£,0)
7 — frame number (7, frames) 0

o — frame offset (0,,, bytes/frames)
Physical address = o,,,x7+ o0

\ J\ J
Y Y

f 0

(0,0)

Physical Address Specifications
Frame/Offset pair v. An absolute index

+ Example: A 16-bit address space with (0.4 =)
512 byte page frames

» Addressing location (3, 6) = 1,542

(3,6) 1,542
0
i i Physteal
d N - Niemory
PA: [olojojofof1|2|ololojojofofz|]o] -
16 10 9 1 f
NS ~ J
1,542
(0,0) 0

Questions

+ The offset is the same in a virtual address and a
physical address.
> A. True
> B. False

« If your level 1 data cache is equal to or smaller than
2number of page offset hitg then address translation is not
necessary for a data cache tag check.

> A. True
> B. False

Realizing Virtual Memory
Paging

2n-1 =
(Pyax=1: Opax~1)
+ A process’s virtual address space is
partitioned into equal sized pages
> |page| :|page frame |
(p,o)
. . . 0
A virtual address is a pair (p, 0)
p — page number (p,,,, pages) Virtual
o — page offset (0, bytes/pages) Address
Virtual address = o0,,,xp+ 0 p—
UHM\J\J
P
il
A N 1
IOgZ (pmaxxomax) IOgZ OMAX
N N J
g g
p 0 (0,0) ,
Paging
Mapping virtual addresses to physical addresses
+ Pages map to frames
+ Pages are contiguous in a VAS...
Tral > But pages are arbitrarily located
A in physical memory, and
AOAress » Not all pages mapped at all times F—o50
CSnaca -
\J'JM\J\J
Physicat
(D;.0,) Aamor\,
LAAAARBAA | _y
(D, .0,)
(f,.0,)

Frames and pages

">

L

&

Only mapping virtual pages that are in use does

what?

» A. Increases memory utilization.

» B. Increases performance for user applications.

» C. Allows an OS to run more programs concurrently.

» D. Gives the OS freedom to move virtual pages in the virtual
address space.

Address translation is

» A. Frequent
» B. Infrequent

Changing address mappings is

» A. Frequent
» B. Infrequent

Paging

Virtual address translation

D
|)

Virtuat

ATGUress

SPdCe

(p,0)

Program
P

p | o
TTTIIT1T11]

20 | 109 \1
Virtual

+ A page table maps virtual
pages to physical frames

Addresses

- = |

Page Table

Physical
Addresses

(f, o)

Physical

VIEMOTY

Page

table structure

Virtual Address Translation Details

1ta

ble per process
Part of process's state

+ Contents:
» Flags — dirty bit, resident bit,
clock/reference bit
» Frame number

p l 0 f 0
LOTIITTIN (ITIITT]
20 | 109 \1 16 109j 1
Virtual I
Addresses ‘ Physical
Addresses
PTBR|—(+ 0[1/0] f
i
: Y
Page Table u
Virtual Address Translation Details
Example
A system with 16-bit addresses (4,1023)
» 32 KB of physical memory
» 1024 byte pages
(4,0)
(3,1023)
Physical
— Addresses
o p [0 f 0
VML [0 OO0 [Physicat
Address] 15 109 0 14 109 0 Memory
s Virtual K] /
Addresses |
I\ 1olofoloolojo] _/
[0111110]011f0]0
(0,0)

Page Table

Virtual Address Translation
Performance Issues

+ Problem — VM reference requires 2 memory references!
» One access to get the page table entry
» One access to get the data

*

Page table can be very large; a part of the page table can be on
disk.
» For a machine with 64-bit addresses and 1024 byte pages, what is
the size of a page table?

What to do?
» Most computing problems are solved by some form of...
« Caching
< Indirection

+*

Virtual Address Translation
Using TLBs to Speedup Address Translation

¢+ Cache recently accessed page-to-frame translations in a TLB
» For TLB hit, physical page number obtained in 1 cycle
» For TLB miss, translation is updated in TLB
» Has high hit ratio (why?)

] f 0
Physical 1T
Addresses 1610 9 1

EI)IIIIIICI)ZD] Vinual
05 \ 1 Addresses / j

Key Value _{_______________________
\ TLB p
N

Page Table 1

Multi-level paging

Dealing With Large Page Tables

+ Add additional levels of indirection

page number

to the page table by sub-dividing

into k parts

» Create a “tree” of page tables
» TLB still used, just not shown

Second-Level

20| 16 |

\

10

1 Addresses

aR-()—

Py

|

First-Level
Page Table

page table —@—* f

Second-Level
Page Table

» The architecture determines the Page Tables
number of levels of page table |
Y
Virtual Address ™
P; P> P3 0 E
OTTITIITIITITTTTITTT
L [
—2
P1 .
Third-Level
First-Level Page Tables
Page Table _
Dealing With Large Page Tables
Multi-level paging
+« Example: Two-level paging
CPU Memory
P1 P, 0 - - 0
T T Virtual Physical

Addresses 161 10 j 1

The Problem of Large Address Spaces

+ With large address spaces (64-bits) forward mapped page
tables become cumbersome.
» E.g. 5 levels of tables.

Instead of making tables proportional to size of virtual address
space, make them proportional to the size of physical address
space.

» Virtual address space is growing faster than physical.

<+

»

Use one entry for each physical page with a hash table

» Size of translation table occupies a very small fraction of physical
memory

» Size of translation table is independent of VM size

Virtual Address Translation
Using Page Registers (aka Inverted Page Tables)

+ Each frame is associated with a register containing
» Residence bit: whether or not the frame is occupied
» Occupier: page number of the page occupying frame
» Protection bits

+« Page registers: an example
» Physical memory size: 16 MB
» Page size: 4096 bytes
» Number of frames: 4096
>

Space used for page registers (assuming 8 bytes/register): 32
Kbytes

Percentage overhead introduced by page registers: 0.2%
» Size of virtual memory: irrelevant

Y

Page Registers
How does a virtual address become a physical address?

L

CPU generates virtual addresses, where is the
physical page?

» Hash the virtual address

» Must deal with conflicts

TLB caches recent translations, so page lookup can
take several steps

» Hash the address

» Check the tag of the entry

» Possibly rehash/traverse list of conflicting entries
TLB is limited in size

» Difficult to make large and accessible in a single cycle.

» They consume a lot of power (27% of on-chip for
StrongARM)

L

4

Dealing With Large Inverted Page Tables
Using Hash Tables

+ Hash page numbers to find corresponding frame number
» Page frame number is not explicitly stored (1 frame per entry)
» Protection, dirty, used, resident bits also in entry

Memory
Virtual

p 10 Address PID f Io

9

9 @ tag check
L fmax_ 1

.
PlD page |0I11 fmax_2

Inverted Page Table

i iresens ITTTITT]
running Addresses |/

1

Searching Inverted Page Tables
Using Hash Tables

»

Page registers are placed in an array

4

Page i is placed in slot f(i) where f is an agreed-upon
hash function

To lookup page i, perform the following:

» Compute f(i) and use it as an index into the table of page
registers

» Extract the corresponding page register
» Check if the register tag contains i, if so, we have a hit
» Otherwise, we have a miss

t 1

Searching the Inverted Page Table
Using Hash Tables (Cont'd.)

+ Minor complication

» Since the number of pages is usually larger than the number of
slots in a hash table, two or more items may hash to the same
location

+ Two different entries that map to same location are said to
collide

+ Many standard techniques for dealing with collisions
» Use a linked list of items that hash to a particular table entry

» Rehash index until the key is found or an empty table entry is
reached (open hashing)

Questions

+« Why use inverted page tables?
» A. Forward mapped page tables are too slow.

» B. Forward mapped page tables don't scale to larger virtual

address spaces.

» C. Inverted pages tables have a simpler lookup algorithm, so

the hardware that implements them is simpler.

» D. Inverted page tables allow a virtual page to be anywhere

in physical memory.

Virtual Memory (Paging)
The bigger picture

+

A process’s VAS is its context
» Contains its code, data, and stack

+ Code pages are stored in a user’s file on disk

» Some are currently residing in memory; most are
not

+ Data and stack pages are also stored in a file
» Although this file is typically not visible to users
» File only exists while a program is executing

4+ OS determines which portions of a process’s VAS
are mapped in memory at any one time

Physical
Memory

OS/MMU

Virtual Memory _
Page fault handling Physical

Memaory
¥

s References to non-mapped pages generate
a page fault

Page fault handling steps: 5
Processor runs the interrupt handler Page
OS blocks the running process Table
OS starts read of the unmapped page
OS resumes/initiates some other process
Read of page completes ;
OS maps the missing page into memory / |Program

. / P’s
OS restart the faulting process VAS

Disk

Virtual Memory Performance
Page fault handling analysis

+ To understand the overhead of paging, compute the effective
memory access time (EAT)

» EAT = memory access time x probability of a page hit +
page fault service time x probability of a page fault

+ Example:
» Memory access time: 60 ns
» Disk access time: 25 ms
» Let p = the probability of a page fault
» EAT =60(1-p) + 25,000,000p

+ To realize an EAT within 5% of minimum, what is the largest
value of p we can tolerate?

Vista reading from the pagefile

Releability and Performance Monstor .- e -vh-' D e i
(@ File Action View Favorites Window Help = I
e |@ET »E
@ Reliability and Performa || CPU 100% 1 Disk 10 MB/sec | Network 1Mbps | Memory 100 HardFa.] | =
| « “m Monitoring Tools |
W Performance Moni |
B Reliability Monitor
a Data Collector Sets
| + T Reports |
60 Seconds 0% [[[
| L
| Py oy 9 100% Mssimum Frequency 2l |
| Disk W 0 MEjsec 7 &% Highest Active Time
Image [+ File FRoead (B/min) Write (B/min) = [
WIRAME ik 4534 Chpagetia.sys (Page File) 4288 512 0
swchostse (secsves) w2 Capageiesys Page File) 1038,563 a
suchashse [netives) 164 Cpagetiesys Page File) SELE5L a
frafox s 2404 53 (Page File) 76544 Q .
Searchindexer ane 2544 ys (Page File) 723 a
swhastexe (LocalSerice) 412 Chpagefie.sys (Page File) 22 o P
Taae BBy A IHASE gy 1ETR FAnansils svs Bane Fils) A M0 n i
. i v
| Metwork ™ 2:0 kbps B 0% Network Utikzation =
27
Releability and Performance Monstor .- e -vh-' D e i
(@ File Action View Favorites Window Help = I
e |@ET »E
@ Reliability and Performa || CPU 100% 1 Disk 10 MB/sec | Network 1Mbps | Memory 100HardFa.] | =
| « “m Monitoring Tools
| W Performance Moni |
B Reliability Monitor
| a Data Collector Sets
| + T Reports |
60 Seconds 0% [[[
| L
L_BT:TY 100 Maximun n Frequency L |
W 1 MEjsec 7 100v% Highast Adtive Time:
D File Fotad (B/min) Write (B/min) = [
System 4 Chpageiays Page File) 2772 e
System "l CASLogRle (MTFS Volume Log) 0 42410
System 4 CASHAR (NTFS Master File Table) 68 73195
4 0 197170 A
4 CAUsers\rootintuser.dat o 180,758
096 CaSLogFile (NTFS Volume Log) o 155726
FRUL AT aaFile INTFS, Vinkims | onl n 7188 x
i v
B 0% etwork Utikzation

Virtual Memory
Summary

+ Physical and virtual memory partitioned into equal
size units

i

Size of VAS unrelated to size of physical memory

+ Virtual pages are mapped to physical frames

2

Simple placement strategy
+ There is no external fragmentation

+« Key to good performance is minimizing page faults

Segmentation vs. Paging

+« Segmentation has what advantages over paging?
» A. Fine-grained protection.
» B. Easier to manage transfer of segments to/from the disk.
» C. Requires less hardware support
» D. No external fragmentation

+ Paging has what advantages over segmentation?
» A. Fine-grained protection.
» B. Easier to manage transfer of pages to/from the disk.
» C. Requires less hardware support.
» D. No external fragmentation.

