
Virtual Memory and
Address Translation

1

Review

Program addresses are virtual addresses.
Relative offset of program regions can not change during program
execution. E.g., heap can not move further from code.g p
Virtual addresses == physical address inconvenient.

Program location is compiled into the program.

A single offset register allows the OS to place a process’ virtual
address space anywhere in physical memory.

Virtual address space must be smaller than physical.
Program is swapped out of old location and swapped into new.

Segmentation creates external fragmentation and requires large

2

g g q g
regions of contiguous physical memory.

We look to fixed sized units, memory pages, to solve the problem.

Virtual Memory
Concept

Key problem: How can one support programs that
require more memory than is physically available?

How can we support programs that do not use all of their
memory at once?

2n-1

Hide physical size of memory from users
Memory is a “large” virtual address space of 2n bytes
Only portions of VAS are in physical memory at any one
time (increase memory utilization).

Issues
Placement strategies

Where to place programs in physical memory

Program
P’s

VAS

3

Replacement strategies
What to do when there exist more processes than can fit in
memory

Load control strategies
Determining how many processes can be in memory at one
time

0

Realizing Virtual Memory
Paging

Physical memory partitioned into equal sized
page frames

Page frames avoid external fragmentation.

(fMAX-1,oMAX-1)

g g

(f,o)

o

Physical
Memory

A memory address is a pair (f, o)
f — frame number (fmax frames)
o — frame offset (omax bytes/frames)
Physical address = omax×f + o

4
(0,0)

PA:

f o

f

1log2 omaxlog2 (fmax × omax)

Physical Address Specifications
Frame/Offset pair v. An absolute index

Example: A 16-bit address space with (omax =)
512 byte page frames

Addressing location (3, 6) = 1,542
(3,6) 1,542

0
19

PA:
16

(3,6)

f

o

Physical
Memory

111 0 10000000000

3 6

10

1,542

5

(0,0)

f

1,542

0

Questions

The offset is the same in a virtual address and a
physical address.

A TA. True
B. False

If your level 1 data cache is equal to or smaller than
2number of page offset bits then address translation is not
necessary for a data cache tag check.

A. True
B False

6

B. False

Realizing Virtual Memory
Paging

A process’s virtual address space is
partitioned into equal sized pages

page = page frame

2n-1 =
(pMAX-1,oMAX-1)

page = page frame
(p,o)

o
Virtual
Address
Space

A virtual address is a pair (p, o)
p — page number (pmax pages)
o — page offset (omax bytes/pages)
Virtual address = omax×p + o

7
(0,0)p o

p

VA:
1log2 oMAXlog2 (pmax×omax)

Paging
Mapping virtual addresses to physical addresses

Pages map to frames
Pages are contiguous in a VAS...

But pages are arbitrarily located
i h i l dVirtual in physical memory, and
Not all pages mapped at all times

Virtual
Address
Space

(p2,o2)
Physical
Memory

(f1,o1)

8

(p1,o1)
(f2,o2)

Frames and pages

Only mapping virtual pages that are in use does
what?

A. Increases memory utilization.A. Increases memory utilization.
B. Increases performance for user applications.
C. Allows an OS to run more programs concurrently.
D. Gives the OS freedom to move virtual pages in the virtual
address space.

Address translation is
A. Frequent

9

B. Infrequent

Changing address mappings is
A. Frequent
B. Infrequent

Paging
Virtual address translation

A page table maps virtual
pages to physical frames (f,o)Program

P

CPU

P’s
Virtual

Address
Space

Physical
Memory120 910

p o

116 910

f o

Virtual
Add

10
Page Table

(p,o)

p

Physical
Addresses

Addresses

f

Virtual Address Translation Details
Page table structure

Contents:
Flags — dirty bit, resident bit,
clock/reference bit
Frame number

1 table per process
Part of process’s state

120 910

p o

116 910

f o

Virtual

CPU

11

1 0

Page Table

p

Physical
Addresses

Addresses

f0PTBR +

Virtual Address Translation Details
Example

A system with 16-bit addresses
32 KB of physical memory
1024 byte pages

(4,1023)

(4,0)

CPU

Physical
Memory15

p o

14 910

f o

Physical
Addresses

Virtual
Add

P’s
Virtual

Address
Space

(3,1023)
(4,0)

0010 9

12

1 1 0 0 1 0 0

Page Table

Addresses

0 0 0 0 0 0 0

(0,0)

1
0

Virtual Address Translation
Performance Issues

Problem — VM reference requires 2 memory references!
One access to get the page table entry
One access to get the data

Page table can be very large; a part of the page table can be on
disk.

For a machine with 64-bit addresses and 1024 byte pages, what is
the size of a page table?

What to do?
Most computing problems are solved by some form of…

13

Caching
Indirection

Virtual Address Translation
Using TLBs to Speedup Address Translation

Cache recently accessed page-to-frame translations in a TLB
For TLB hit, physical page number obtained in 1 cycle
For TLB miss, translation is updated in TLB
Has high hit ratio (why?)

f

120 910

p o

116 910

f o
Physical

Addresses

Virtual
Addresses

CPU

Key Value

?

14Page Table

TLB

f

Key Value

p

p

f

X

Dealing With Large Page Tables
Multi-level paging

Add additional levels of indirection
to the page table by sub-dividing
page number into k parts

Create a “tree” of page tables
TLB still used, just not shown Second-Level

Page TablesThe architecture determines the
number of levels of page table

p2 o
Virtual Address

p3

Page Tables

p1

p2

15

Third-Level
Page TablesFirst-Level

Page Table

p1

p3

Dealing With Large Page Tables
Multi-level paging

Example: Two-level paging

CPU Memory

120 1016

p1 o

116 10

f o
Physical

Addresses
Virtual

Addresses

CPU

p2

Memory

16

Second-Level
Page Table

First-Level
Page Table

page table

p2

f

p1

PTBR ++

The Problem of Large Address Spaces

With large address spaces (64-bits) forward mapped page
tables become cumbersome.

E.g. 5 levels of tables.g

Instead of making tables proportional to size of virtual address
space, make them proportional to the size of physical address
space.

Virtual address space is growing faster than physical.

Use one entry for each physical page with a hash table

17

Use one entry for each physical page with a hash table
Size of translation table occupies a very small fraction of physical
memory
Size of translation table is independent of VM size

Virtual Address Translation
Using Page Registers (aka Inverted Page Tables)

Each frame is associated with a register containing
Residence bit: whether or not the frame is occupied
Occupier: page number of the page occupying frameOccupier: page number of the page occupying frame
Protection bits

Page registers: an example
Physical memory size: 16 MB
Page size: 4096 bytes
Number of frames: 4096
Space used for page registers (assuming 8 bytes/register): 32

18

Space used for page registers (assuming 8 bytes/register): 32
Kbytes
Percentage overhead introduced by page registers: 0.2%
Size of virtual memory: irrelevant

Page Registers
How does a virtual address become a physical address?

CPU generates virtual addresses, where is the
physical page?

H h th i t l ddHash the virtual address
Must deal with conflicts

TLB caches recent translations, so page lookup can
take several steps

Hash the address
Check the tag of the entry
Possibly rehash/traverse list of conflicting entries

19

Possibly rehash/traverse list of conflicting entries
TLB is limited in size

Difficult to make large and accessible in a single cycle.
They consume a lot of power (27% of on-chip for
StrongARM)

Dealing With Large Inverted Page Tables
Using Hash Tables

Hash page numbers to find corresponding frame number
Page frame number is not explicitly stored (1 frame per entry)
Protection, dirty, used, resident bits also in entry

120 9

p o

116 9

f o
Physical

Addresses

Virtual
Address

CPU

Hash

Memory

grunning
PID

=?=? =?=?
tag check

20

h(PID, p)

PTBR PID

Inverted Page Table

10page

0

fmax– 1
fmax– 2+ 1

Searching Inverted Page Tables
Using Hash Tables

Page registers are placed in an array

Page i is placed in slot f(i) where f is an agreed-upon
hash function

To lookup page i, perform the following:
Compute f(i) and use it as an index into the table of page
registers

21

Extract the corresponding page register
Check if the register tag contains i, if so, we have a hit
Otherwise, we have a miss

Searching the Inverted Page Table
Using Hash Tables (Cont’d.)

Minor complication
Since the number of pages is usually larger than the number of
slots in a hash table, two or more items may hash to the same
l tilocation

Two different entries that map to same location are said to
collide

Many standard techniques for dealing with collisions
Use a linked list of items that hash to a particular table entry
Rehash index until the key is found or an empty table entry is

22

Rehash index until the key is found or an empty table entry is
reached (open hashing)

Questions

Why use inverted page tables?
A. Forward mapped page tables are too slow.
B F d d t bl d ’t l t l i t lB. Forward mapped page tables don’t scale to larger virtual
address spaces.
C. Inverted pages tables have a simpler lookup algorithm, so
the hardware that implements them is simpler.
D. Inverted page tables allow a virtual page to be anywhere
in physical memory.

23

Virtual Memory (Paging)
The bigger picture

A process’s VAS is its context
Contains its code, data, and stack

Code pages are stored in a user’s file on disk

Code

Data

Stack

Code pages are stored in a user s file on disk
Some are currently residing in memory; most are
not

Data and stack pages are also stored in a file
Although this file is typically not visible to users
File only exists while a program is executing

OS determines which portions of a process’s VAS
d i t ti

File System
(Disk)

24

are mapped in memory at any one time

OS/MMU

Physical
Memory

Virtual Memory
Page fault handling

References to non-mapped pages generate
a page fault

CPU

Physical
Memory

P

CPU

Page
Table

0

OS resumes/initiates some other process
Read of page completes

Page fault handling steps:
Processor runs the interrupt handler
OS blocks the running process
OS starts read of the unmapped page

25

Program
P’s

VAS

Disk

OS maps the missing page into memory
OS restart the faulting process

Virtual Memory Performance
Page fault handling analysis

To understand the overhead of paging, compute the effective
memory access time (EAT)

EAT = memory access time × probability of a page hit +
page fault service time × probability of a page fault

Example:
Memory access time: 60 ns
Disk access time: 25 ms
Let p = the probability of a page fault
EAT = 60(1–p) + 25,000,000p

26

(p) , , p

To realize an EAT within 5% of minimum, what is the largest
value of p we can tolerate?

Vista reading from the pagefile

27

Vista writing to the pagefile

28

Virtual Memory
Summary

Physical and virtual memory partitioned into equal
size units

Size of VAS unrelated to size of physical memory

Virtual pages are mapped to physical frames

Simple placement strategy

There is no external fragmentation

29

g

Key to good performance is minimizing page faults

Segmentation vs. Paging

Segmentation has what advantages over paging?
A. Fine-grained protection.
B E i t t f f t t /f th di kB. Easier to manage transfer of segments to/from the disk.
C. Requires less hardware support
D. No external fragmentation

Paging has what advantages over segmentation?
A. Fine-grained protection.
B. Easier to manage transfer of pages to/from the disk.
C Requires less hardware support

30

C. Requires less hardware support.
D. No external fragmentation.

