CS 278 Spring 2015

Homework #3: Trimodal Matching

Due: Tuesday, February 3 @ 12:30 PM
Submission:

Please turn in all files on Canvas before the deadline. You should compress your
submission into a single file, do not submit a large number of individual files. If you know
you are going to miss a deadline, contact the TA before the deadline. Canvas has been
known to be quirky, so it is not advised to wait until 5 minutes before it is due to make
your submission.

Please include a text file called “README” at the top level of your main project
directory. Include the following:

Your name

Your email address

How long this project took you to complete
Any comments or notes for the grader

Overview:

This is not a group assignment. It is acceptable to consult with other class members,
but your code must be your own.

You will expand upon homework 2 to create several views each having a variant of the
card matching game in it.

Specifications:
Part 1: Model
RSCard

Take your Card class from project 2. Generalize this class into a class called “RSCard”
where RS stands for “Rank and Suit.”

This class should still inherit from the base class “Card”.



CS 278 Spring 2015

RSCard will have a public method “validSuits”. This function should return type
NSArray*. RSCard should return nil for this method. Classes that inherit from RSCard
should override this method to return an NSArray containing all of the valid suit choices.

(For example, @[@"4", ..., @"Y"]).
RSCard will have a public class method “suitColors”. This function should return type
NSDictionary*. RSCard should return nil for this method. Classes that inherit from

RSCard should override this method to return an NSDictionary with the mapping
between suits and their appropriate color. (For example, @{@"+":@"black’, ...,

@”'”:@”red”}).
The setter method for the suit of this card should reject any suit that is not a valid suit.

The ranks for type RSCard are the same as the standard card ranks (Ace through
King). The setter for this method should reject any rank that is not a valid rank.

Matching for these cards should follow the same rules as in assignment 2.

Reduced playing cards

Create a new type of card and deck called “ReducedPlayingCard”. This should inherit
from RSCard.

This type of card may have any of the ranks allowed of playing cards (A through K), but
it is only allowed to have the suit “#”.

Create a new type of deck called “ReducedPlayingCardDeck”. A deck of reduced
playing cards will have 52 cards. It will have four copies of each type of card. For
example, there will be four “Aa”, four “24”, etc.

Standard playing cards

Create classes “PlayingCard” and “PlayingCardDeck”. Playing Card should inherit from
RSCard.

These cards should have the standard four suits. The behavior of these classes should
be essentially identical to their behavior in Homework 2.

Expanded playing cards

Create a new type of card called “ExpandedPlayingCard”. This class should inherit
from RSCard.



CS 278 Spring 2015

The expanded playing cards have all of the suits as the standard playing cards, with the
addition of four new suits.

Red suits: ¥ (heart), ¢ (diamond)
Black suits: # (spade), # (club)
Blue suits: ¥ (sun), ¢ (moon)
Green suits: ¥ (trident), « (turnip)

If you have trouble finding any of these symbols, copy and paste them from this
document.

Create a new type of deck called “ExpandedPlayingCardDeck”. There should be one of
every type of card for a total of 104 cards in a deck.

Part 2: View

Add a UlTabBarController to your app. This should allow you to navigate to three
different views.

View 1: your matching game but with ReducedPlayingCard cards
View 2: your matching game with standard PlayingCard cards
View 3: your matching game but with ExpandedPlayingCard cards

Each variation of of the game should have a different image for the back of the card.
Also, don’t forget to add an icon in the UITabBarController for each action.

Embed each matching game inside of a separate UINavigationController. There should
be a button inside each game that will take the user to something called the History
view. (Consider using a Bar Button Item in the Navigation Controller bar.)

In the History view there should be a scrollable text field where we will display the
history of the game. The game will create a variety of log messages. These messages
should be displayed as a bulleted list (or equivalent).

You may remove the following Ul elements from each matching game (since they will
be displayed in the history tab):

e Number of games played
e Average score
e Score value of the previous match (of the current game)

Don’t forget to properly color cards in the expanded playing card version. Any suits
displayed in the history view should also be properly colored.

Part 3: Control



CS 278 Spring 2015

The behavior for the matching games should be identical to the behavior specified in
Homework 2 (with the exception of the card types).

Each version of the game should have its own unique history view. That is, actions
taken in the expanded version should not be visible in the reduced version.

Log the followings things in the history log:

e Card matches. Log the cards that were flipped (rank and suit) as well as the
point value of the match.

e Peek. Log when the user has taken a peek action. Also log here how many
cards have yet to be matched (i.e. how many cards the user is peeking at).

e Reset. Log the score of the previous game as well as the current average score.
Log how many cards were matched in the previous game as well.

Notes:

You may use any code presented in class. Please type the code yourself (as opposed
to copy-paste) as it is a good learning experience.

Don’t forget to add an alpha layer (i.e. transparency) to your icons down in the tab bar
controller.

If you violated MVC in your solution to of Assignment 2, then this will be more difficult
(that’s why you shouldn’t have violated MVC!) and you’ll probably want to go back and
redo those parts.

There is no concept like “protected” in Objective-C. Unfortunately, if a subclass wants to
send messages to its superclass in code (not with ctrl-drag), those methods (including
properties) will have to be made public. A good object-oriented design usually keeps
publication of internal implementation to a minimum!

All methods (including properties) are inherited by subclasses regardless of whether
they are public or private. And if you implement a method in a subclass, you will be
overriding your superclass’s implementation (if there is one) regardless of whether the
method is public or private. As you can imagine, this could result in some unintentional
overrides, but rarely does in practice.

If you copy and paste an entire MVC scene in your storyboard (not the components of it
piece-by-piece, but the entire thing at once), then all the outlets and actions will, of



CS 278 Spring 2015

course, be preserved (this can be quite convenient). Even if you then change the class
of the Controller in one of the scenes, as long as the new class implements those
outlets and actions (for example, by inheritance), the outlets and actions will continue to
be preserved.

As you start working with multiple MVCs in a storyboard, you might get yourself into
trouble by accidentally changing the name of an action or outlet or making a typo or
otherwise causing your View to send messages to your Controller that your Controller
does not understand. Remember from the first walkthrough of this course that you can
right click on any object in your storyboard to see what it is connected to (i.e. what
outlets point to it and what actions it sends) and you can also disconnect outlets and
actions from there (by clicking the little X’s next to the outlets and actions). If you are
getting crashes that complain of messages being sent to objects that don’t respond to
that message (sometimes a method is referred to by the term “selector” by the way),
this might be something to check.

There is no reason that the history-reporting MVC needs to be different for the two
games. In fact, if you decide to use a different history-reporting MVC for each, you will
want to justify your reasons for doing so in comments in your code.

Remember that every time you segue to a new MVC in a UINavigationController, it is an
entirely new instance of that MVC. Also remember that that MVC is considered part of
the pushing MVC’s View (can only talk back to the Controller of the pushing MVC in a
blind, structured way--luckily, there’s no need to do that in this assignment).

The History MVC required task is mostly about creating a new MVC and how to segue
to it (and only a tiny bit about using a UlTextView to display text). Don’t overthink the
part of this which is actually displaying the attributed strings in the UlTextView.



