
Developing Applications for iOS

Today
Introduction to Objective-C (con’t)
Continue showing Card Game Model with Deck, PlayingCard, PlayingCardDeck

Xcode 5 Demonstration
Start building the simple Card Game

Card.h Card.m
Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

- (int)match:(NSArray *)otherCards;

@end

#import "Card.h"

@implementation Card

- (int)match:(NSArray *)otherCards
{
 int score = 0;

 for (Card *card in otherCards) {
if ([card.contents isEqualToString:self.contents]) {

score = 1;
}

 }

 return score;
}

@end

@interface Card()

@end

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>

@interface Deck : NSObject

@end

#import "Deck.h"

@interface Deck()

@end

@implementation Deck

@end

Let’s look at another class.
This one represents a deck of cards.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>

@interface Deck : NSObject

@end

#import "Deck.h"

@interface Deck()

@end

@implementation Deck

@end

- (void)addCard:(Card *)card atTop:(BOOL)atTop;

- (Card *)drawRandomCard;

Note that this method has 2 arguments
(and returns nothing).

It’s called “addCard:atTop:”.

And this one takes no arguments and returns a Card
(i.e. a pointer to an instance of a Card in the heap).

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>

@interface Deck : NSObject

@end

#import "Deck.h"

@interface Deck()

@end

@implementation Deck

@end

- (void)addCard:(Card *)card atTop:(BOOL)atTop;

#import "Card.h"

- (Card *)drawRandomCard;

We must #import the header file for
any class we use in this file (e.g. Card).

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()

@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{

}

- (Card *)drawRandomCard { }

@end

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()

@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{

}

- (Card *)drawRandomCard { }

@end

Arguments to methods
(like the atTop: argument)

are never “optional.”

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()

@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{

}

- (Card *)drawRandomCard { }

@end

- (void)addCard:(Card *)card;

However, if we want an addCard:
method without atTop:, we can

define it separately.

Arguments to methods
(like the atTop: argument)

are never “optional.”

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()

@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{

}

- (Card *)drawRandomCard { }

@end

- (void)addCard:(Card *)card;

 [self addCard:card atTop:NO];

- (void)addCard:(Card *)card
{

}

However, if we want an addCard:
method without atTop:, we can

define it separately.

And then simply implement it in
terms of the the other method.

Arguments to methods
(like the atTop: argument)

are never “optional.”

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()

@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{

}

- (void)addCard:(Card *)card
{
 [self addCard:card atTop:NO];
}

- (Card *)drawRandomCard { }

@end

A deck of cards obviously needs some
storage to keep the cards in.

We need an @property for that.
But we don’t want it to be public

(since it’s part of our private, internal
implementation).

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()

@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{

}

- (void)addCard:(Card *)card
{
 [self addCard:card atTop:NO];
}

- (Card *)drawRandomCard { }

@end

@property (strong, nonatomic) NSMutableArray *cards; // of Card

A deck of cards obviously needs some
storage to keep the cards in.

We need an @property for that.
But we don’t want it to be public

(since it’s part of our private, internal
implementation).

So we put the @property declaration we
need here in our @implementation.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{

}

- (void)addCard:(Card *)card
{

[self addCard:card atTop:NO];
}

- (Card *)drawRandomCard { }

@end

 if (atTop) {
[self.cards insertObject:card atIndex:0];

 } else {
[self.cards addObject:card];

 }

Now that we have a property to store our cards in,
let’s take a look at a sample implementation of the

addCard:atTop: method.

... and these are NSMutableArray methods.
(insertObject:atIndex: and addObject:).

self.cards is an NSMutableArray ...

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{
 if (atTop) {

[self.cards insertObject:card atIndex:0];
 } else {

[self.cards addObject:card];
 }
}

- (void)addCard:(Card *)card
{
 [self addCard:card atTop:NO];
}

- (Card *)drawRandomCard { }

@end

But there’s a problem here.
When does the object pointed to by the pointer

returned by self.cards ever get created?

Declaring a @property makes
space in the instance for the

pointer itself, but not does not
allocate space in the heap for the

object the pointer points to.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{
 if (atTop) {

[self.cards insertObject:card atIndex:0];
 } else {

[self.cards addObject:card];
 }
}

- (void)addCard:(Card *)card
{
 [self addCard:card atTop:NO];
}

- (Card *)drawRandomCard { }

@end

- (NSMutableArray *)cards
{
 return _cards;
}

The place to put this needed heap allocation is
in the getter for the cards @property.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{
 if (atTop) {

[self.cards insertObject:card atIndex:0];
 } else {

[self.cards addObject:card];
 }
}

- (void)addCard:(Card *)card
{
 [self addCard:card atTop:NO];
}

- (Card *)drawRandomCard { }

@end

- (NSMutableArray *)cards
{

 return _cards;
}

 if (!_cards) _cards = [[NSMutableArray alloc] init];The place to put this needed heap allocation is

in the getter for the cards @property.

All properties start out with a value of 0
(called nil for pointers to objects).

So all we need to do is allocate and initialize the object if
the pointer to it is nil.

This is called “lazy instantiation”.
Now you can start to see the usefulness of a @property.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{
 if (atTop) {

[self.cards insertObject:card atIndex:0];
 } else {

[self.cards addObject:card];
 }
}

- (void)addCard:(Card *)card
{
 [self addCard:card atTop:NO];
}

- (Card *)drawRandomCard { }

@end

- (NSMutableArray *)cards
{

 return _cards;
}

 if (!_cards) _cards = [[NSMutableArray alloc] init];

We’ll talk about allocating and
initializing objects more later, but

here’s a simple way to do it.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (void)addCard:(Card *)card atTop:(BOOL)atTop
{
 if (atTop) {

[self.cards insertObject:card atIndex:0];
 } else {

[self.cards addObject:card];
 }
}

- (void)addCard:(Card *)card
{
 [self addCard:card atTop:NO];
}

- (Card *)drawRandomCard { }

@end

- (NSMutableArray *)cards
{

 return _cards;
}

 if (!_cards) _cards = [[NSMutableArray alloc] init];

Now the cards property will always at
least be an empty mutable array, so this

code will always do what we want.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (NSMutableArray *)cards
{
 if (!_cards) _cards = [[NSMutableArray alloc] init];
 return _cards;
}

- (void)addCard:(Card *)card atTop:(BOOL)atTop { }
- (void)addCard:(Card *)card { }

@end

- (Card *)drawRandomCard
 {

 }

Let’s collapse the code we’ve written
so far to make some space.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (NSMutableArray *)cards
{
 if (!_cards) _cards = [[NSMutableArray alloc] init];
 return _cards;
}

- (void)addCard:(Card *)card atTop:(BOOL)atTop { }
- (void)addCard:(Card *)card { }

- (Card *)drawRandomCard
{

}

@end

 Card *randomCard = nil;

 return randomCard;

drawRandomCard simply grabs a card from a
random spot in our self.cards array.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (NSMutableArray *)cards
{
 if (!_cards) _cards = [[NSMutableArray alloc] init];
 return _cards;
}

- (void)addCard:(Card *)card atTop:(BOOL)atTop { }
- (void)addCard:(Card *)card { }

- (Card *)drawRandomCard
{
 Card *randomCard = nil;

 return randomCard;
}

@end

 unsigned index = arc4random() % [self.cards count];
 randomCard = self.cards[index];
 [self.cards removeObjectAtIndex:index];

These square brackets actually are the
equivalent of sending the message

objectAtIndexedSubscript: to the array.

This is the C modulo operator.arc4random() returns a random integer.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (NSMutableArray *)cards
{
 if (!_cards) _cards = [[NSMutableArray alloc] init];
 return _cards;
}

- (void)addCard:(Card *)card atTop:(BOOL)atTop { }
- (void)addCard:(Card *)card { }

- (Card *)drawRandomCard
{
 Card *randomCard = nil;

 return randomCard;
}

@end

 unsigned index = arc4random() % [self.cards count];
 randomCard = self.cards[index];
 [self.cards removeObjectAtIndex:index];

 if ([self.cards count]) {

 }

Calling objectAtIndexedSubscript: with an
argument of zero on an empty array will crash

(array index out of bounds)!

So let’s protect against that case.

Deck.h Deck.m
Objective-C

#import <Foundation/Foundation.h>
#import "Card.h"

@interface Deck : NSObject

- (void)addCard:(Card *)card atTop:(BOOL)atTop;
- (void)addCard:(Card *)card;

- (Card *)drawRandomCard;

@end

#import "Deck.h"

@interface Deck()
@property (strong, nonatomic) NSMutableArray *cards; // of Card
@end

@implementation Deck

- (NSMutableArray *)cards
{
 if (!_cards) _cards = [[NSMutableArray alloc] init];
 return _cards;
}

- (void)addCard:(Card *)card atTop:(BOOL)atTop { }
- (void)addCard:(Card *)card { }

- (Card *)drawRandomCard
{
 Card *randomCard = nil;

 if ([self.cards count]) {
unsigned index = arc4random() % [self.cards count];
randomCard = self.cards[index];
[self.cards removeObjectAtIndex:index];

 }

 return randomCard;
}

@end

PlayingCard.h PlayingCard.m
Objective-C

Let’s see what it’s like to make a subclass of one of our own classes.
In this example, a subclass of Card specific to a playing card (e.g. A♠).

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

@end

#import "Card.h"

@interface PlayingCard : Card

@end

Of course we must #import our superclass.

And #import our own header file in our implementation file.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

@end

#import "Card.h"

@interface PlayingCard : Card

@end

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

A PlayingCard has some properties that a
vanilla Card doesn’t have.

Namely, the PlayingCard’s suit and rank.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

@end

#import "Card.h"

@interface PlayingCard : Card

@end

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank; We’ll represent the suit as an NSString that simply

contains a single character corresponding to the suit
(i.e. one of these characters: ♠♣♥♦).

If this property is nil, it’ll mean “suit not set”.

We’ll represent the rank as an integer from
0 (rank not set) to 13 (a King).

NSUInteger is a typedef for an unsigned integer.

We could just use the C type unsigned int here.
It’s mostly a style choice.

Many people like to use NSUInteger and NSInteger in public API
and unsigned int and int inside implementation.

But be careful, int is 32 bits, NSInteger might be 64 bits.
If you have an NSInteger that is really big (i.e. > 32 bits worth)

it could get truncated if you assign it to an int.
Probably safer to use one or the other everywhere.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

- (NSString *)contents
{

 return [NSString stringWithFormat:@"%d%@", self.rank, self.suit];
}

Users of our PlayingCard class might well simply
access suit and rank properties directly.

But we can also support our superclass’s contents
property by overriding the getter to return a

suitable (no pun intended) NSString.

Even though we are overriding the implementation of
the contents method, we are not

re-declaring the contents property in our header file.
We’ll just inherit that declaration from our superclass.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

- (NSString *)contents
{

 return [NSString stringWithFormat:@"%d%@", self.rank, self.suit];
}

Users of our PlayingCard class might well simply
access suit and rank properties directly.

But we can also support our superclass’s contents
property by overriding the getter to return a

suitable (no pun intended) NSString.

Note we are creating an NSString here
in a different way than alloc/init.

We’ll see more about “class methods” like
stringWithFormat: a little later.

The method stringWithFormat: is an
NSString method that’s sort of like using the

C function printf to create the string.

Even though we are overriding the implementation of
the contents method, we are not

re-declaring the contents property in our header file.
We’ll just inherit that declaration from our superclass.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

- (NSString *)contents
{

 return [NSString stringWithFormat:@"%d%@", self.rank, self.suit];
}

But this is a pretty bad representation of the card
(e.g., it would say 11♣ instead of J♣ and 1♥ instead of A♥).

Calling the getters of our two properties
(rank and suit) on ourself.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{

 return
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

 return [rankStrings[self.rank] stringByAppendingString:self.suit];
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];

We’ll create an NSArray of NSStrings, each of which
corresponds to a given rank.

Again, 0 will be “rank not set” (so we’ll use ?).
11, 12 and 13 will be J Q K and 1 will be A.

Then we’ll create our “J♠” string by appending
(with the stringByAppendingString: method)

the suit onto the end of the string we get by
looking in the array.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{

 return
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

 return [rankStrings[self.rank] stringByAppendingString:self.suit];
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];

Notice the @[] notation to create an array.

Also note the @ “ ” notation to create a (constant) NSString.

Here’s the array-accessing [] notation again
(like we used with self.cards[index] earlier).

All of these notations are converted into normal message-sends by the compiler.
For example, @[...] is [[NSArray alloc] initWithObjects:...].

rankStrings[self.rank] is [rankStrings objectAtIndexedSubscript:self.rank].

PlayingCard.h PlayingCard.m
Objective-C

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@end

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

This is nice because a “not yet set” rank shows up as ?.

But what about a “not yet set” suit?
Let’s override the getter for suit to make a suit of nil return ?.

Yet another nice use for properties versus direct instance variables.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

- (void)setSuit:(NSString *)suit
{
 if ([@[@"♥",@"♦",@"♠",@"♣"] containsObject:suit]) {

_suit = suit;
 }
}

Let’s take this a little further and override the setter for suit to have it
check to be sure no one tries to set a suit to something invalid.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

- (void)setSuit:(NSString *)suit
{
 if ([@[@"♥",@"♦",@"♠",@"♣"] containsObject:suit]) {

_suit = suit;
 }
}

Notice that we can embed the array
creation as the target of this message send.
We’re simply sending containsObject: to

the array created by the @[].

containsObject: is
an NSArray method.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

- (void)setSuit:(NSString *)suit
{
 if ([@[@"♥",@"♦",@"♠",@"♣"] containsObject:suit]) {

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

But there’s a problem here now.
A compiler warning will be generated

if we do this.
Why?

Because if you implement BOTH the
setter and the getter for a property,
then you have to create the instance
variable for the property yourself.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

- (void)setSuit:(NSString *)suit
{
 if ([@[@"♥",@"♦",@"♠",@"♣"] containsObject:suit]) {

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end @synthesize suit = _suit; // because we provide setter AND getter

But there’s a problem here now.
A compiler warning will be generated

if we do this.
Why?

Because if you implement BOTH the
setter and the getter for a property,
then you have to create the instance
variable for the property yourself.

Luckily, the compiler can help with this
using the @synthesize directive.

If you implement only the setter OR
the getter (or neither), the compiler

adds this @synthesize for you.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

- (void)setSuit:(NSString *)suit
{
 if ([@[@"♥",@"♦",@"♠",@"♣"] containsObject:suit]) {

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end @synthesize suit = _suit; // because we provide setter AND getter

Name of the property
we’re creating an

instance variable for.

Name of the instance
variable to associate with

the property.

We almost always pick an
instance variable name that is

underbar followed by the
name of the property.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

- (void)setSuit:(NSString *)suit
{
 if ([@[@"♥",@"♦",@"♠",@"♣"] containsObject:suit]) {

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end @synthesize suit = _suit; // because we provide setter AND getter

You should only ever access the instance variable directly ...

... in its getter ...

... in the property’s setter ...

... or in an initializer (more on this later).

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter

- (void)setSuit:(NSString *)suit
{
 if ([@[@"♥",@"♦",@"♠",@"♣"] containsObject:suit]) {

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

All of the methods we’ve seen so far
are “instance methods”.

They are methods sent to instances of a class.
But it is also possible to create methods

that are sent to the class itself.
Usually these are either creation methods

(like alloc or stringWithFormat:)
or utility methods.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter

- (void)setSuit:(NSString *)suit
{
 if ([@[@"♥",@"♦",@"♠",@"♣"] containsObject:suit]) {

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

+ (NSArray *)validSuits
{
 return
}

Here’s an example of a class utility method
which returns an NSArray of the NSStrings
which are valid suits (e.g. ♠, ♣, ♥, and ♦).

Class methods start with +
Instance methods start with -

Since a class method is not sent to an instance, we
cannot reference our properties in here

(since properties represent per-instance storage).

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray *)validSuits
{
 return
}

- (void)setSuit:(NSString *)suit
{
 if ([

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

@[@"♥",@"♦",@"♠",@"♣"];

containsObject:suit]) {

Here’s an example of a class utility method
which returns an NSArray of the NSStrings
which are valid suits (e.g. ♠, ♣, ♥, and ♦).

We actually already have the array
of valid suits, so let’s just move that

up into our new class method.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray *)validSuits
{
 return @[@"♥",@"♦",@"♠",@"♣"];
}

- (void)setSuit:(NSString *)suit
{
 if ([containsObject:suit]) {

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

 if ([[PlayingCard validSuits]Now let’s invoke our new
class method here.

See how the name of the class appears in
the place you’d normally see a pointer to

an instance of an object?

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray *)validSuits
{
 return @[@"♥",@"♦",@"♠",@"♣"];
}

- (void)setSuit:(NSString *)suit
{
 if ([containsObject:suit]) {

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

 if ([[PlayingCard validSuits]Now let’s invoke our new
class method here.

See how the name of the class appears in
the place you’d normally see a pointer to

an instance of an object?

It’d probably be instructive to go back and look at the invocation of
the NSString class method stringWithFormat: a few slides ago.

Also, make sure you understand that stringByAppendingString: above
is not a class method, it is an instance method.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter

+ (NSArray *)validSuits
{
 return @[@"♥",@"♦",@"♠",@"♣"];
}

- (void)setSuit:(NSString *)suit
{
 if ([[PlayingCard validSuits] containsObject:suit]) {

_suit = suit;
 }
}

- (NSString *)suit
{
 return _suit ? _suit : @"?";
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

@end

+ (NSArray *)validSuits;

The validSuits class method might be
useful to users of our PlayingCard class,

so let’s make it public.

PlayingCard.h PlayingCard.m
Objective-C

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

+ (NSArray *)validSuits;

@end

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings =
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter
+ (NSArray *)validSuits { }
- (void)setSuit:(NSString *)suit { }
- (NSString *)suit { }

@end

@[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];

PlayingCard.h PlayingCard.m
Objective-C

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

+ (NSArray *)validSuits;

@end

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings =
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter
+ (NSArray *)validSuits { }
- (void)setSuit:(NSString *)suit { }
- (NSString *)suit { }

@end

@[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];

+ (NSArray *)rankStrings
{
 return
}

Let’s move our other array
(the strings of the ranks)
into a class method too.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings =
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter
+ (NSArray *)validSuits { }
- (void)setSuit:(NSString *)suit { }
- (NSString *)suit { }

+ (NSArray *)rankStrings
{
 return @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

+ (NSArray *)validSuits;

@end

 NSArray *rankStrings = [PlayingCard rankStrings];

And now let’s call
that class method.

We’ll leave this one private
because the public API for
the rank is purely numeric.

Note that we are not
required to declare this earlier

in the file than we use it.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = [PlayingCard rankStrings];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter
+ (NSArray *)validSuits { }
- (void)setSuit:(NSString *)suit { }
- (NSString *)suit { }

+ (NSArray *)rankStrings
{
 return @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

+ (NSArray *)validSuits;

@end

+ (NSUInteger)maxRank { return [[self rankStrings] count]-1; }

+ (NSUInteger)maxRank;

But here’s another class
method that might be good

to make public.

So we’ll add it to the header file.

PlayingCard.h PlayingCard.m
Objective-C

- (void)setRank:(NSUInteger)rank
{
 if (rank <= [PlayingCard maxRank]) {

_rank = rank;
 }
}

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = [PlayingCard rankStrings];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter
+ (NSArray *)validSuits { }
- (void)setSuit:(NSString *)suit { }
- (NSString *)suit { }

+ (NSArray *)rankStrings
{
 return @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
}

+ (NSUInteger)maxRank { return [[self rankStrings] count]-1; }

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

+ (NSArray *)validSuits;
+ (NSUInteger)maxRank;

@end

And, finally, let’s use maxRank inside the
setter for the rank @property to make sure
the rank is never set to an improper value.

PlayingCard.h PlayingCard.m
Objective-C

#import "PlayingCard.h"

@implementation PlayingCard

- (NSString *)contents
{
 NSArray *rankStrings = [PlayingCard rankStrings];
 return [rankStrings[self.rank] stringByAppendingString:self.suit];
}

@synthesize suit = _suit; // because we provide setter AND getter
+ (NSArray *)validSuits { }
- (void)setSuit:(NSString *)suit { }
- (NSString *)suit { }

+ (NSArray *)rankStrings
{
 return @[@"?",@"A",@"2",@"3",...,@"10",@"J",@"Q",@"K"];
}

+ (NSUInteger)maxRank { return [[self rankStrings] count]-1; }

- (void)setRank:(NSUInteger)rank
{
 if (rank <= [PlayingCard maxRank]) {

_rank = rank;
 }
}

@end

#import "Card.h"

@interface PlayingCard : Card

@property (strong, nonatomic) NSString *suit;
@property (nonatomic) NSUInteger rank;

+ (NSArray *)validSuits;
+ (NSUInteger)maxRank;

@end

That’s it for our PlayingCard.
It’s a good example of array
notation, @synthesize, class

methods, and using getters and
setters for validation.

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

Let’s look at one last class.
This one is a subclass of Deck and
represents a full 52-card deck of

PlayingCards.

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

It appears to have no public API,
but it is going to override a

method that Deck inherits from
NSObject called init.

init will contain everything
necessary to initialize a
PlayingCardDeck.

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

- (instancetype)init
{

}

Initialization in Objective-C happens immediately after allocation.
We always nest a call to init around a call to alloc.

e.g. Deck *myDeck = [[PlayingCardDeck alloc] init]
 or NSMutableArray *cards = [[NSMutableArray alloc] init]

Classes can have more complicated initializers than just plain “init”
(e.g. initWithCapacity: or some such).

We’ll talk more about that next week as well.

Only call an init method immediately after calling
alloc to make space in the heap for that new object.

And never call alloc without immediately calling some
init method on the newly allocated object.

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

- (instancetype)init
{

}

Notice this weird “return type” of instancetype.
It basically tells the compiler that this method returns an
object which will be the same type as the object that this

message was sent to.
We will pretty much only use it for init methods.

Don’t worry about it too much for now.
But always use this return type for your init methods.

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

 self = [super init];

 if (self) {

 }

 return self;

- (instancetype)init
{

}

This sequence of code might also seem weird.
Especially an assignment to self!

This is the ONLY time you would ever assign something to self.
The idea here is to return nil if you cannot initialize this object.

But we have to check to see if our superclass can initialize itself.
The assignment to self is a bit of protection against our trying to
continue to initialize ourselves if our superclass couldn’t initialize.

Just always do this and don’t worry about it too much.

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

 self = [super init];

 if (self) {

 }

 return self;

- (instancetype)init
{

}

Sending a message to super is how
we send a message to ourselves, but
use our superclass’s implementation

instead of our own.
Standard object-oriented stuff.

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

 self = [super init];

 if (self) {

 }

 return self;

for (NSString *suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {

}
}

- (instancetype)init
{

}

The implementation of init is quite simple.
We’ll just iterate through all the suits and
then through all the ranks in that suit ...

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

 self = [super init];

 if (self) {

 }

 return self;

for (NSString *suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {

}
}

- (instancetype)init
{

}

PlayingCard *card = [[PlayingCard alloc] init];
card.rank = rank;
card.suit = suit;

Then we will allocate and initialize
a PlayingCard

and then set its suit and rank.

We never implemented an init
method in PlayingCard, so it just
inherits the one from NSObject.
Even so, we must always call an
init method after alloc.

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

 self = [super init];

 if (self) {

 }

 return self;

for (NSString *suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {

}
}

- (instancetype)init
{

}

#import "PlayingCard.h"

PlayingCard *card = [[PlayingCard alloc] init];
card.rank = rank;
card.suit = suit;

Then we will allocate and initialize
a PlayingCard

and then set its suit and rank.

We never implemented an init
method in PlayingCard, so it just
inherits the one from NSObject.
Even so, we must always call an
init method after alloc.

We will need to #import
PlayingCard’s header file

since we are referencing it now
in our implementation.

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

 self = [super init];

 if (self) {

 }

 return self;

for (NSString *suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {

}
}

- (instancetype)init
{

}

#import "PlayingCard.h"

PlayingCard *card = [[PlayingCard alloc] init];
card.rank = rank;
card.suit = suit;
[self addCard:card];

Finally we just add each PlayingCard
we create to ourself

(we are a Deck, remember).

PlayingCardDeck.h PlayingCardDeck.m
Objective-C

#import "Deck.h"

@interface PlayingCardDeck : Deck

@end

#import "PlayingCardDeck.h"

@implementation PlayingCardDeck

@end

 self = [super init];

 if (self) {

 }

 return self;

for (NSString *suit in [PlayingCard validSuits]) {
for (NSUInteger rank = 1; rank <= [PlayingCard maxRank]; rank++) {

}
}

- (instancetype)init
{

}

#import "PlayingCard.h"

PlayingCard *card = [[PlayingCard alloc] init];
card.rank = rank;
card.suit = suit;
[self addCard:card];

And that’s it!
We inherit everything else we need to

be a Deck of cards
(like the ability to drawRandomCard)

 from our superclass.

Demo
Let’s start building a Card Game out of these classes
Today we’ll just have a single card that we can flip over to reveal the Ace of clubs.

Green Bubbles
with small text is for

“minor notes.”

Green Bubbles
are just for

“information.”

Yellow Bubbles
 mean “do something.”

Red Bubbles
 mean “important!”

The following slides are a walkthrough of the demonstration done in class.
You will need this walkthrough to do your first homework assignment.

Launch Xcode 5 and
click here to create a

new project. As you create
projects, they will

appear here.

Xcode 5
Splash Screen

Click on the “Single View Application” template.
It creates a simple MVC application.

Then click Next.

These buttons are used to select
a template which Xcode 5 uses to

generate some code to get you
started.

Xcode 5 can be used to
develop both iOS and
Mac OSX applications.

Our first application is going to be a
Card Matching Game

These fields describe
your project.

We’ll be filling them in
during the next few

slides.

The name of our project is going to be
“Matchismo” so type that in here.

This will appear in
the copyright at the
top of all code files

you create.

Here you can enter CS193p
or Stanford

or Bob’s Awesome App House.

Enter edu.stanford.cs193p.yoursunetid

This field is used to
uniquely identify
your application.

Using an entity’s reverse DNS lookup string is a
pretty good way to get a unique identifier.

We don’t want the names of the
classes generated by the template to be

too generic (e.g. “ViewController”).
That’s why we specify this prefix.

Enter “CardGame” as the prefix for the name of the
Controller this template is going to generate for us.

Thus our Controller class will be called
CardGameViewController.

Sometimes we would use the name of the application for this prefix.
In fact, older versions of Xcode would automatically do this whether we wanted it or not.

Set the Device we’re
developing for to iPhone.

Our first application
is going to be for the

iPhone (not iPad).
At least for starters.

A Universal application runs on both iPhone and iPad.
In a Universal application, the iPad and the iPhone each has its own UI design

(since they have different UI idioms).
Xcode provides tools for designing two different UIs in the same application.

Then click Next.

Xcode wants to know where to
store this project’s directory.

Navigate to a directory called
“Developer” in your home directory

(create it if needed).

Home directory.
“Developer” folder inside the home directory.

There are no projects in it currently.

If you don’t have a Developer folder in your home
directory, you can create it with this New Folder button.

We will hopefully be covering source control in this course.
But not for this first project, so leave this switch turned off.

Then click Create to create your
project directory inside ~/Developer.

Congratulations, you’ve created your
first iOS Application!

You’ll probably want to make this window as big as possible.
Xcode loves screen real-estate!

There’s a lot of stuff in this window, but we won’t
be covering any of it in this first application.

Let’s open up and look at our
MVC’s View

by clicking on
Main.storyboard.

The Single View Application template we chose at
the beginning has created a simple MVC for us.

CardGameViewController.[mh] is the code for our MVC’s Controller.

Our MVC’s View is inside Main.storyboard.

We’ll have to create our MVC’s Model ourselves later.

Don’t worry about
CardGameAppDelegate.[mh]

for this project.

This should be selected.
If it’s not, that would explain why

you’re not seeing your MVC’s View. This is our MVC’s View.
It starts out blank, of course.

Click here to switch to a iPhone 4-sized View.

This View is sized for the iPhone 5 (i.e. taller).
We’re going to design for the iPhone 4.

We’re only doing this because it
fits better on these slides!

This area here is called the Document Outline.
We’re going to close it to make space.

We’ll look at the Document Outline in detail later
in the course.

Close the Document Outline by clicking here.

This is the
Navigator.

It shows all the files in
your project in a

hierarchical
arrangement of

folders. The
arrangement of folders
is conceptual, it does
not necessarily match

what’s in the file
system.

This area can also
show symbols, search
results, breakpoints,
issues, etc. (see the
icons at the top).

Utilities Area

The top part of this
area shows
information

(identity, attributes,
help, connections,

dimensions)
about the currently

selected thing
(file, object, etc.)

at the left.

The bottom is a
library of items
(objects, code
snippets, file
templates).

Click here to show the Utilities Area
(if it’s not already showing).

This button shows/hides the Navigator.

Drag this bar up (if necessary)
to expose the Library Area.

Click here (if necessary) to
select the Objects Palette.

Issues
Compiler warnings/errors, etc.

Search
Find/replace in files in your Project.

Logs
Every time you build/run, a log of it is saved.

Access old ones here.

File Template Library
Templates for storyboards, classes, etc.

Code Snippet Library
Snippets of code for common tasks.

Object Library
Buttons, text fields, controllers, etc.

Media Library
Images, sounds, etc.

File Inspector
Shows information about the file

containing the selected item.

Quick Help
If the selected item at the left has

some documentation reference, this
shows a “summary” version of it.

Breakpoints
We’ll cover the debugger later.

Threads
We’ll cover multithreading later too.

Class Hierarchy
This slide is just for reference.

Don’t worry about all these details for now.

Tests
We’ll cover Unit Testing later.

Scroll down to find Button.

If you are not seeing
Button in the list, try
clicking on your View.

The Objects Palette contains a bunch of
objects you can use to build your View.

It’s time to start building the user-interface in our MVC View.
We’re building a card game, so we’ll start with our first “card.”

We’ll use a button to represent it.

Drag a Button from the
Object Library to your View.

Drop the Button into the
very center of your View.

Notice the dashed blue lines which
Xcode displays as you drag which help

you line things up nicely.
Buttons are instances of the class

UIButton in the iOS SDK.

Attributes Inspector
See and set the attributes of the selected item.

Click on this.

Connections Inspector
Connections between your View and Controller.

Size Inspector
Position and size the selected item.

Identity Inspector
Set the class of the selected item.

There are all kinds of attributes about the
button you can set. We’ll do this in a moment.

Drag this back down to make
more room for the Attributes.

Click on the background of our View.

Before we set the attributes of our Button,
let’s set the attributes of our View’s background.

Hopefully the Attributes Inspector now
shows the attributes of the area which is

at the root of our MVC’s View.

Let’s change the Background
color of the root of our

MVC’s View by clicking here ...

This is what buttons look like usually in iOS 7.
Think of them sort of like links in a web page.

We’re going to change the look of the button dramatically
 (to look like a card) using images, but that’s actually somewhat unusual.

The Background color is
currently White.

Click on Other... to change the
Background color to something else ...

Moss is a good color because it’s sort
of like the green felt of a card table.

You can close this when
you’ve chosen the color.

Click on the Button again.

Notice these little white resize handles.
Seeing these is another way to know the

Button is selected.

You can see the current
selection here.

The Button’s attributes
should appear here.

Next we’re going to set a background image
for the Button (to a blank white card).

This is where all
the images in your

application go.
Click on it.

We’ll set our application’s
icon next week.

We’ll talk about what a
Launch Image

is later in the course.

The front of our card is going to have a
background of a blank white card and the back

is going to have a Stanford logo on it.
We need to drag those 2 images into here so

we can use them on the Button.

Bring up the Finder with the
images we want to use

(linked in your homework assignment).

Then drag them
(one by one or all at the same time)

into Xcode.

You may not want the name of the image
(as referred to in your code)

to be the same as the name of the file.
You can simply double-click on it

and change the name.

We’ll use the name “cardfront” to
refer to the button’s background

when the card is “face up”.

We’ll change the name of the
image on the back of the card

from “stanford” to ...

Notice that there’s a “1x” version and a
“2x” version of all images.

The 1x version is for non-Retina devices
and the 2x version is for Retina devices.

You should have both.

... cardback

Sometimes the Retina version might be able to
show more detail.

Showing the tree here is sort of an extreme
example just to demonstrate this.

Drag the higher resolution
version into the 2x slot.

Items can also be deleted from
this list by right clicking on them

and choosing Remove.

These buttons also can be
used to add/remove images.

Hi-res Stanford Logo.

Now you can see both versions.

Let’s do the same for the hi-res
version of the background of the

front of the card.

It’s hard to see these two since they are blank,
but they are white “rounded rectangles.”

You’ll be able to see them better in the UI.

Any images we added to
the Images asset library

will be listed here.

Click here to change the
Button’s background image.

Choose cardfront.

The Button is too small
to see the whole
background image.

Click on one of the resize
handles to resize the button to

fit the background image.

If you press and hold on one
of the resize handles, you can

see the size of the button.

The button is off-center
now though ...

... so just pick it up and
move it back to the middle.

Once again, the blue
guidelines will help you.

Double-click on the button to
change the text on the card.

You can also edit the button’s text
in the Attributes Inspector here.

Let’s put the A♣ on the card.
The A is easy ...

... the ♣ requires you to choose
“Special Characters ...”

from the Edit menu
in Xcode to get this window ...

... then double-click on the ♣ ...

... then press the return
key to finish editing.

This is not quite what we want.
We want a little bigger font and for

the A to be black, not blue.

A button can show different attributes in different states.
We’re going to only set Default attributes.

The Default attributes are what will show in any button state
that does not have specific attributes set.

We can fix the font size by
clicking this little button ...

The size has been bumped up
to 24 point from 15 point.

... or for even more font control,
we can click on this T ...

... and then change the font, it’s
family or style, and size.

We’ll leave this set to
the System font for now.

Typography is crucially important to
iOS 7 user-interface design.

We’ll talk about that
(especially these Text Styles)

 later in the course.

Changing the text color
is simple, just click on the

Text Color control.

And choose Black.

Color is now black.

Let’s Run our application for the first
time and see what it looks like.

Click on this “Play” button to run.

Our UI is built for 3.5-inch Retina iPhone, so you’ll
probably want to make sure that’s set in this popup.

If you press and hold this Run button,
other run options will be available,

but we’re just using plain “Run” for now.

As the application is built, you’ll see status here.

If all goes well, you’ll briefly see this.

Notice this area below
automatically appears when you run

your application.
It contains the debugger area and

the console output.
We’ll cover that later.

Debugger Console

This button shows or hides
the debugger/console.

This button shows or hides
the debugger/console.

A separate application,
the iOS Simulator,

will launch and your
application will run.

You can click on the button, but it will not
change because we haven’t coded what we
want the button to do when we click on it.

Congratulations!
You’ve built and run your first iOS app!

This simulator is not exactly like a
device, but it’s close.

You can even hit the home button ...

And swipe over to see (and run)
other applications.

You can swipe back and click on your application
(Matchismo) to get back to debugging it.

Click this “Stop”
button to stop
running your

application in the
Simulator.

Click here to close the Utilities Area.

If the debug area at the bottom does not automatically
disappear when you stop running, click here.

Click here to show the Assistant Editor.

When an MVC View is showing,
the Assistant Editor will bring up
the code for the corresponding

MVC Controller.
That’s exactly what we want.

This is the code for our MVC’s Controller.
So far it’s just some stubs created by Xcode
based on the template we chose at the start.

You can adjust the space between the two panes of
the editor by just dragging the space between them.

If you want to edit the header file of the Controller
 (to make something public for example),

you can switch it here.

All Controllers inherit from
UIViewController.

Switch back to the Controller’s implementation.

Select all of the code inside
the @implementation block ...

These two methods are part of the View Controller Lifecycle.
We’ll talk about that in-depth next week.

For now, we’re not going to use them.

And hit the delete key.

Even though our card button is “selected” (note the resize handles),
hitting delete does not delete the card button because the icons at the

top of the left side of the Assistant Editor are grayed out.

The right side of the Assistant Editor is the active pane
(notice the icons on the top of it are in color).

Whichever side of the Assistant Editor you
clicked in last will be the active pane.

Hold down the ctrl key while dragging
from the card button into the

@implementation block somewhere.

If you do not hold down the
ctrl key, this will simply drag the

button around.

Now it’s time to connect the button to our Controller
so that touching the button “flips the card over.”

Believe it or not, you connect your View to your Controller by
directly dragging from objects in your View into your source code.

Sounds crazy, I know ...

You can drag from your View to the header (.h) file of your
Controller if you want to make a public connection (rare).

Be sure to drag somewhere
between the @implementation

and the @end.

When you let go of the mouse, this dialog will appear.
It wants to know some details about the action message

this button is going to send when touched.

Let’s name this action method
touchCardButton.

We know that the sender of this action is a UIButton.
If this action could be sent from objects of another class

(e.g. a UISlider), we could leave the type “id”
(which means an object of any (unknown) class).

Specifying that we know the class of the sender makes it easier for the
compiler to check that the code in our action method is not faulty.

We’ll talk more about this type id next week.

Make sure it says UIButton here.

Action methods are allowed to have either no arguments,
one argument (the object sending the message),

or even two arguments
(the sender and the touch event provoking the action).

In this case, though, what we want is just the sending button
so that we can change it when it is touched.

Normally buttons send their action when a
touch that started by landing on them goes “up”

while still inside the button’s boundaries.
That’s what we want.

Once you’ve set up the action as shown,
click Connect to create the action method.

This method’s return type is actually void, but Xcode uses the typedef
IBAction instead just so that Xcode can keep track that this is not just a

random method that returns void, but rather, it’s an action method.
Apart from that, IBAction is exactly the same thing as void.

The only argument to this method is the object that is sending the message to
us (“us” is the Controller). In the previous slide, we made it clear that it is a
button, so that’s why the type of this argument is UIButton (instead of id).

The name of this method
is actually touchCardButton:,

not touchCardButton.

Mouse over (do not click) this little icon.
The object in the View that sends this

message will highlight.Highlighted!

Our implementation of this method is quite simple.
We’re just going to change the text on the button to be blank

and change the background image to be our card back
(the Stanford logo), thus “flipping the card over to its back.”

Let’s start by declaring a local variable called cardImage to hold
the cardback image (the Stanford logo we imported).

The local variable is a pointer to an instance of the class
UIImage which represents a JPEG, PNG, TIFF or other image.

UIImage has a class method called imageNamed: which creates
an instance of UIImage given the name of an image in the image assets library.

We just specify cardback (what we called the Stanford logo in the assets library).

Uh-oh, a warning!

Remember
that @“”

notation just
creates an
NSString

object.

Xcode is constantly parsing your code in the background.
Thus, warnings and errors will appear in this gutter without

your having to explicitly build your project.

To get more details about a warning
or error, click on the triangle.

This warning is correct
(we are not using the local variable cardImage yet),

but nothing to worry about since we’ll be using it in a moment.

Next we are going to set the background image of the card
button to be that Stanford logo

(an instance of which is now stored in cardImage).

To do that, we need to send a message to the UIButton
that sent this touchCardButton: message to us.

The syntax for sending a message in
Objective-C starts off with [,

then a pointer to the instance of the
object to send the message to ...

The argument sender is the
UIButton sending this message.

... then the name of the message with
the arguments interspersed ...

Type setB and then choose the method
setBackgroundImage:forState:

from the list that appears.

We only have to type the first few letters of
the message and Xcode will immediate

suggest matching method names.

You can select from the list using the arrow keys and then
TAB or you can double-click on the method you want.

After choosing the method you want, it should fill
that method in and highlight the first argument.

This argument is obviously the image to set as the
background of the UIButton.

For us, that’s the cardImage local variable.

Again, you need only type a couple of characters
before Xcode will suggest what you want.

Then double-click on the list or hit TAB once the
one you want is selected.

Notice that there are LOTS of things that start with the two letters “ca”, but that
Xcode is pretty smart about guessing which one you intend based on context.

The setBackgroundImage:forState: method asks for the
state because you can set different background images for
selected, highlighted or disabled states of the UIButton.

We’re just going to set the
background for the default
(Normal) state so it will be

that way in all button states.

Start typing UIC and you’ll get close to
what we want (UIControlStateNormal) ...

Now choose UIControlStateNormal.

Easy!
But we don’t actually need this local variable.
We can just embed that message-send in-line.

So select this message send ...

... cut it ...

... select the variable here ...

... and paste.

Now we can select this line ...

... and hit delete to get rid of it.

This line of code is so long
that it is wrapping now.

And not really in a great spot.

Put your cursor here ...

... and press the return key.

Notice that Xcode lined up the
two colons in the message name!

You should always line up the colons
when you manually wrap the

arguments of a method
(in other words, don’t undo what

Xcode will do for you).

Send the message
setTitle:forState:

to the UIButton ...

To “flip the card over” not only do we need to
set the background image to the Stanford logo,

we need to get rid of the A♣.

... with an empty
string as the title.

Forgetting the @ before the “” is a very common coding error.
“” without the @ is a const char *.

const char *, while legal, is almost never used in Objective-C.

Again, we specify that we are
setting this title for the default

(Normal) button state.

Let’s run again!

Starts out the same as before ...

... but now when you touch the button,
it “flips the card over.”

Unfortunately, if you touch it
again, it doesn’t flip back!

Let’s fix that.

Stop the simulator.

If the sending button’s currentTitle’s ...

Notice that currentTitle is a @property of
the button, so we are using dot notation here.

 ... length ...

Checking the length of an NSString to see if it is
blank is cool because it works whether the string is

the empty string (i.e. @””) or is nil.

... (note that we don’t have to type the [,
since Xcode automatically adds it when we type]) ...

... is non-zero (front is showing), then ...

Move this code inside
the curly braces.

... flip the card over to show it’s back ...

... else ...

Copy/paste this code into the else ...

... and change cardback to cardfront ...

... and change @“” to @“A♣”.

... flip back over to the A♣ (the front).

Now let’s Run again ...

Touch once ...

... twice ...

... three times.

Hopefully your application is working!

Stop!
Let’s take a little timeout to talk

about documentation.
There are numerous ways to

transition to the documentation, but
an easy one is to use the ALT key.

Hold down the ALT key and
hover your mouse over

something like currentTitle.
A dashed line should appear
underneath and the cursor
should be a question mark.

retain is the same as strong.
We’ll cover the readonly directive next lecture.

ALT-clicking on currentTitle will bring
up this “mini-documentation” in-line.

Click on the UIButton Class Reference link
in this little “mini-documentation” window

to get more detailed documentation.

You can also hold down the ALT key and
double-click on a term go directly to the

documentation.

TIP: If you ever accidentally navigate
away from your source code, you can click

on this back button to get back.

This is the Documentation window.

You should explore what is here.
It is substantial.

Being able to maneuver through the
documentation is critical to success in

iOS Development.

For example, scroll down to
setBackgroundImage:forState:.

You can click on the many
links here, like UIImage ...

And get detailed class overviews.

You can also search for classes, methods,
or just general topics of interest.

So we’ve learned how our Controller can react to the
user manipulating an element of our MVC’s View.
Next lets learn how the Controller can proactively

communicate with an element of the View.

Hide the Navigator ...

... and bring back the Utilities area.

And bring back the Object Palette by
dragging this bar up from the bottom.

Find UILabel in the Object Palette
(it’s right above UIButton).

We’re going to have a bit of text in our UI which
shows how many times we’ve flipped the card.

A UILabel is the UIKit class we want
(it displays small bits of uneditable text).

Drag one into the lower left corner of the View.
Use the blue guidelines to place it.

Put this away by dragging it down.

The Attributes Inspector has
now changed to show
attributes of the Label.

Grab a resize handle and make
this UILabel very wide

(again, use the blue guidelines).

Now double-click on it
to change the text ...

... to “Flips: 0”.
We’re actually going to set this text

entirely from our code, but
“Flips: 0” is what is going to appear
when our application first launches.

Now we have to connect this label to our Controller.
We do this by dragging to our code again

(but to the @interface instead of the @implementation).

Hold down the CTRL key while dragging the mouse
from the label to the code (then let go).

Since we’re creating a @property here, we drag
somewhere between the @interface and the @end.

This @property we’re going to create is called
an “outlet property” or “outlet” for short.

The @property created by this process is weak because the
MVC’s View already keeps a strong pointer to the UILabel, so

there’s no need for the Controller to do so as well.
And if the UILabel ever left the View, the Controller most likely

wouldn’t want a pointer to it anyway
(but if you did want to keep a pointer to it even if it left the

View, you could change this to strong (very rare)).

We’ll call this UILabel flipsLabel.

Then press Connect.

IBOutlet is a keyword Xcode puts here
(similar to IBAction) to remind Xcode that this

is not just a random @property, it’s an outlet
(i.e. a connection to the View).

The compiler ignores it.

Otherwise this syntax
should all be familiar to you.

Just like with an action, you can
mouse over this icon to see
what the outlet connects to.

Highlighted!

For example, right-click
on the Flips:0 label.

It is also possible to see the connections
between your View and Controller by

right-clicking on an element in your View.

Here are all the connections
to/from this UILabel.

Notice the outlet flipsLabel.

Try right-clicking on
the card button.

Here’s the touchCardButton:
action connection.

You can “disconnect” connectoins
by clicking on these little x’s.

But don’t do it now!
If you do so accidentally, just drag

again from the View element to the
appropriate code

(method or @property).

It is a source of annoying bugs to forget to disconnect a no-
longer-being-used connection. At runtime, you’ll get a crash with

a complaint like “no such method, touchCardButton:”.

You can actually ctrl-drag from these
little circles to make connections too but

it’s pretty rare to do it that way.

Mouse over this connection ...

If you mouse over something in this dialog,
it will show what it is connected to.

... and you’ll see that the entire View highlights.

This mouse over mechanism shows
connections to the Controller by

highlighting the entire View.

You can also “right-click” on
your Controller itself

(and thus see all connections)
by using this icon.

Right-click
on this
icon.

This title bar says that we are looking at
the connections to/from our Controller.

Mouse over.

Highlighted!

Mouse over.

Highlighted!
This is an automatically connected outlet from
your Controller to the top-level of your View.

We’ll talk about that later in the course.

Let’s hide the Utilities
area again to make more

room for code.

We are going to keep track of
the number of flips of the card

using a new @property.

We’ll call this @property flipCount.

Nothing special about this @property, it’s just an integer.
We could use NSInteger or NSUInteger here,

 but we’re using int, just to show doing so.

And we’ll just increment it
each time we flip the card.

Notice that we can use ++ notation just like with a variable.
This is the same as self.flipCount = self.flipCount+ 1.

In other words, self.flipCount++ invokes both
the getter and the setter for the flipCount @property.

But how can we coordinate the flipCount
@property with the flipsLabel UILabel?

This is what the setter for
flipCount would normally look like.

Easy! We’ll use the setter of the flipCount @property.
This is yet another advantage of using @property instead of

accessing instance variables directly.

We’ll just add this one line of code to set
the text @property of the flipsLabel to a
string formatted to include the flipCount.

Now any time the flipCount @property changes,
the flipsLabel UILabel will get updated.

Advanced thinking: note that we use self.flipCount here
instead of just _flipCount. Imagine if a subclass wanted to
control the value of flipCount by overriding the getter but

still benefit from this method’s display of it. Subtle.

We do it using the C function NSLog().
The first argument to NSLog() is a @“”

printf-like format string specifying what to output.
The rest of the arguments are the values matching

up with the %’s in the format string.

While we’re here, let’s take another aside
to look at a debugging technique.

We can output something to the console
any time we want.

The first argument to NSLog() must always be an @“”.
Not any other kind of NSString.

Remember, the console will automatically appear
at the bottom of the screen when you run.

Okay, let’s run again!

Note this starts out with
whatever we typed in our View.

Touch

This should change.

And here’s the output of the NSLog().

Changes again.

And outputs here again.

Touch again.

Stop.

Well this is all wonderful, but it’s sort of boring
since it only shows the A♣ all the time.

If only we had a Deck of PlayingCards to drawRandomCard from,
we could make each flip show a different card.

Hmmm ...

Let’s start by revealing the Navigator again.

We need to add all the classes from the Model we created in lecture
(Card, Deck, PlayingCard and PlayingCardDeck).

Whenever we want to add a file
to our project in Xcode (of any kind),

we use the File > New > File ... menu item.

New File ... can be used to add all sorts of things
(database schema files, storyboards, etc.).

In this case, we want the default: Objective-C class.

Then click Next.

Enter the name of the class ...

... and its superclass ...

... and click Next.

It’s important to be thoughtful about
where you put your class files.

In this case, we’d like to group them
in a Model folder

(just to show you how it’s done).
Another option would

have been to put all of your
class files at this top level.

Click here to create a Model folder.

Call it Model.

And click Create.

The Model folder has
appeared here and is

now selected.

Click Create to
create the Card class
in this Model folder.

Here is a (blank) Card class.
You will have to go through the slides from

earlier and type in the implementation of Card.

It is important to type the code in
(not copy/paste it from somewhere)

so that you gain experience with entering code in Xcode.

You can put the header file in either the left or
right side of the Assistant Editor as you prefer.

You can choose which goes where by
clicking on the name of the file at the

top of the pane in question.

Choosing the header or implementation from the
Counterparts menu at the top of the pane ensures

that Xcode will continue to always match the
implementation up with the interface (or vice versa),

even if you change what is in the left pane.

Select both Card.h and Card.m and then
right-click on them to get this menu, then

choose New Group from Selection.

Let’s create a Navigator group
for all of our Model classes.

And we’ll rename the group ...

... to Model.

A group in the File Navigator can be linked to a
directory in the filesystem or not, as you prefer.

You control this from
the File Inspector in the Utilities area.

You can drag things around in
the File Navigator to put them in

whatever order you want.

For example, often we’ll drag the
AppDelegate.[mh] into Supporting Files

group since we rarely edit them.

If you explicitly click on Card.h in
the File Navigator, it will show it in the

left pane of the Assistant Editor.

And Card.m will automatically
appear in the right pane as long as

Counterparts is selected here.

Close Supporting Files folder.

Type in the code for Card.[mh].

Now let’s move on to creating templates for the
Deck, PlayingCard and PlayingCardDeck classes.

File > New > File ... again for PlayingCard.

It is perfectly fine to specify one of
our own classes as the superclass.

Be careful to choose both
the Model folder ...

... and the Model group in
the Navigator.

Hopefully PlayingCard.[mh] appeared
in your Model group!

Drag it in if not.

Type in the code for PlayingCard.[mh].

All the code doesn’t fit here, so use the
other lecture slides to enter this code.

Repeat for Deck.[mh].

All the code doesn’t fit here, so use the
other lecture slides to enter this code.

Repeat for PlayingCardDeck.[mh].

Click here to go back to the View.

Whew!
We did all this so that we could have each card not be A♣.

Your homework is to make each flip draw a new random card.
One of the first things you’ll want is a @property for a Deck.

Good luck!

Coming Up
Needs more Card Game!
Your homework will be to have that single card flip through an entire Deck of PlayingCards.
Next week we’ll make multiple cards and put in logic to match them against each other.

Also next week ...
Objective-C language in depth
Foundation classes: arrays, dictionaries, strings, etc.
Dynamic vs. static typing
Protocols, categories and much, much more!

