Volume 10 Issue 03 Published, August 10, 2006 ISSN 1535-864X DOI: 10.1535/itj.1003

| )

Intel® Virtualization Technology

The broad availability of virtualization technology makes possible entirely new applications for virtualization in
servers, clients and embedded systems, and provides new ways to improve system reliability, manageability,
security and real-time quality of service. This issue of Intel Technology Journal (Volume 10, Issue 3), gives the
reader an in-depth view into Intel’s plans to support this emerging trend in systems based on Intel® architecture,
and the vibrant ecosystem that is forming around it.

Inside you’ll find the following articles:

Intel® Virtualization Technology: Hardware Support

for Efficient Processor Virtualization _ Intel®Virtualization Technology
in Embedded and Communications

Infrastructure Applications

Intel® Virtualization Technology
for Directed 1/0

Virtualization in the Enterprise

Extending Xen* with
Intel® Virtualization Technology

Redefining Server Performance Characterization
New Client Virtualization Usage Models for Virtualization Benchmarking
Using Intel® Virtualization Technology

More information, including current and past issues of Intel Technology Journal, can be found at:
http://developer.intel.com/technology/itj/index.htm



Volume 10 Issue 03 Published, August 10, 2006 ISSN 1535-864X DOI: 10.1535/itj.1003
R ] VN

¥ Intel’ Technology Journal

c Intel® Virtualization Technology

Articles
Preface iii
Foreword Y
Technical Reviewers Vil

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 167

Intel® Virtualization Technology for Directed I/O 179
Extending Xen* with Intel® Virtualization Technology 193
New Client Virtualization Usage Models Using Intel® Virtualization Technology 205
Intel® Virtualization Technology in Embedded and Communications 217

Infrastructure Applications
Virtualization in the Enterprise 227

Redefining Server Performance Characterization for Virtualization Benchmarking 243

Intel® Virtualization Technology i



Intel Technology Journal, Volume 10, Issue 3, 2006

THIS PAGE INTENTIONALLY LEFT BLANK

Intel® Virtualization Technology



Intel Technology Journal, Volume 10, Issue 3, 2006

Preface

By Lin Chao
Publisher, Intel Technology Journal

Virtualization technology has a long history in computer science. It was Christopher Strachey who
first published a paper entitled “Time Sharing in Large Fast Computers” in the International
Conference on Information Processing at UNESCO, New York, in June 1959, and he commented that
his paper, "...was mainly about multi-programming (to avoid waiting for peripherals).” Virtualization
today is a methodology whereby the resources of a computer are divided into multiple execution
environments, by applying one or more technologies such as hardware and software partitioning,
time-sharing, partial or complete machine simulation, emulation, or quality of service. This issue of
the Intel Technology Journal (Volume 10, Issue 3) reviews virtualization, especially Intel®
Virtualization Technology (Intel® VT). These seven technical papers describe the key capabilities of
virtualization on Intel’s hardware and software platforms and the virtualization roadmap for both
Intel® Architecture and Intel® Ttanium® processors. Intel VT is part of a collection of premier Intel
designed and manufactured silicon technologies that deliver new and improved computing benefits
for home and business users, and IT managers.

There are many advantages to virtualization. Virtual machines can be used to run multiple operating
systems simultaneously—different versions, or even entirely different systems. These machines can
also be used to consolidate the workloads of several under-utilized servers so that fewer machines are
used, thereby saving hardware resources and reducing related infrastructure costs. Legacy software
can run on virtual machines, whereas an older application might not run on newer hardware and/or
operating systems. They can also provide secure, isolated sandboxes for running un-trusted
applications, making virtualization an important concept in building secure computing platforms. To
the user, they can provide the illusion of hardware, or hardware configuration (such as SCSI devices,
multiple processors, etc.) and they can even be used to simulate networks of independent computers.
Finally, in this age of heightened awareness regarding security of information, they enable powerful
debugging and performance-monitoring scenarios and moreover make software easier to migrate, thus
aiding application and system mobility.

The first two papers provide an overview of Intel VT architectures both for hardware and for directed
1/O. The first paper provides an overview of Intel VT for the IA-32 Intel® architecture and Intel VT
for the Intel® Itanium® architecture. The second paper looks at I/O-device virtualization known as
Intel VT for Directed I/O. This paper surveys a variety of established and emerging techniques for I/O
virtualization and outlines their associated advantages and challenges. The paper details the
architecture of Intel VT for Directed I/O and describes how it enables the industry to meet the future
challenges of I/O virtualization.

The third paper looks at Virtual Machine Monitors and Xen*, an open source virtual machine monitor
(VMM) developed at the University of Cambridge to support operating systems that have been
modified to run on top of the monitor. Intel has extended the Xen VMM to use Intel VT to support
unmodified guest operating systems.
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The fourth, fifth, and sixth papers look at new and extended usage models. The fourth paper looks at
how Intel VT enables a virtualized environment for a host of provisioning manageability and
diagnostic applications for the IT professional. One of the usage models involves embedded IT
through the use of Intel VT for Client Isolation and Recovery (CIR) that emphasizes isolating
manageability and security services. The fifth paper describes the unique requirements that embedded
systems and communications infrastructure place on virtualized environments and shows how Intel is
working with a number of third parties in the embedded markets. Some features of the embedded
applications include maintaining bounded real-time performance; increased system uptime, and easier
software migration—without having to bring down the application. The requirement for embedded
applications dictates that different architectural and design tradeoffs be made within the VMM and the
guest operating systems executing within the virtual machines. The sixth paper presents how an
enterprise IT organization sees virtualization in the enterprise and how it can be applied. Enterprise
virtualization programs can help to achieve higher server utilization, make it easier to manage data
center assets, and reduce the consumption of datacenter resources (floor space, power, etc.), as well as
facilitate simpler server releases.

The seventh and final paper looks at performance benchmarking for virtualization. There are no
established performance methodologies to measure virtualization performance. The vConsolidate
benchmark is presented as an example implementation, highlighting the compromises required in
workload selection, component definition, and metric aggregation.

These papers highlight new and innovative virtualization markets, open standards support, and
hardware platforms with efficient processor virtualization. Best of all, most PC users today, though
they may not know it, are already using virtualization in their off-the-shelf systems that are based on
Intel Architecture platforms.

Note: Throughout this journal references to VT-x refer to Intel VT for the IA-32 Intel architecture, VT-i refers to the Intel
VT for the Intel Itanium architecture, and VT-d refers to Intel VT for Directed I/0.

Intel® Virtualization Technology iv



Intel Technology Journal, Volume 10, Issue 3, 2006

Foreword

By Rich Uhlig
Senior Principal Engineer
Intel VT Architect, Corporate Technology Group

For many years, virtualization was confined to proprietary mainframe systems. The ability to run
multiple operating systems on the same physical platform was regarded as useful or feasible only in
the largest server systems and there it remained—for decades. But the introduction of Intel®
Virtualization Technology (Intel® VT), and the recent emergence of new virtualization solutions for
Intel-based systems are changing all of that.

We began our work on Intel VT with a simple premise: the ever-increasing performance of platforms
based on Intel” Architecture (IA) would overcome the traditional performance barriers to full-system
virtualization, and eventually bring the capability to all classes of systems from servers to clients to
embedded systems. The ubiquity of the capability, in turn, would spur innovation in new uses for the
technology.

However, some barriers stood in the way of turning this opportunity into a reality: traditional IA
wasn’t designed to allow straightforward sharing of processor or other platform resources, and so
software needed to resort to complex work-arounds to make virtualization work. To get over these
barriers, we set out to identify the various aspects of [A-based systems that complicate virtualization,
and then we extended the hardware architecture to fix them. The result was Intel VT, a multi-
generational series of extensions to Intel” processor and platform architecture that provides a new
hardware foundation for virtualization, establishing a common infrastructure for all classes of [A-
based systems. The broad availability of Intel VT makes possible entirely new applications for
virtualization in servers, clients, and embedded systems, providing new ways to improve system
reliability, manageability, security, and real-time quality of service.

This issue of the Intel Technology Journal (ITJ), Volume 10, Issue 3, on virtualization begins with a
look at Intel’s VT hardware roadmap, which is rooted in new support for virtualizing IA-32 and Intel®
Itanium® processors, and extends into the platform with new support for I/O device virtualization.
You’ll find papers that show how Intel VT hardware significantly simplifies the design and
implementation of virtualization software, and how it provides a supportive new infrastructure for
system and I/O-device vendors to build and extend virtualization solutions based on Intel® platforms.

The success of any new hardware architecture is highly dependent on the system software that puts its
new features to use. In the case of virtualization technology, that support comes from the virtual
machine monitor (VMM), a layer of software that controls the underlying physical platform resources,
sharing them between multiple “guest” operating systems. As the first to market with hardware
support for IA-32 virtualization, Intel VT is already incorporated into most commercial and open-
source VMM s including those from VMware, Microsoft, XenSource, Parallels, Virtual Iron, Jaluna
and TenAsys. Throughout this issue of the ITJ you’ll see how Intel VT hardware is being used by
VMM developers, from the open-source Xen* VMM, to a lightweight VMM design in support of
client manageability, to enhanced embedded real-time system design.
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The traditional use of virtualization in mainframe systems has been to simplify the provisioning and
management of the physical resources of large server systems. But as virtualization technology
becomes widespread in IA-based systems, the computing industry is witnessing a remarkable
proliferation of new uses for virtualization, and a reinterpretation of old usages that extends well
beyond the traditional mainframe. In this ITJ issue, you’ll find many such examples, including a case
study of server consolidation in a modern datacenter by Intel’s Information Technology Group,
improved client manageability and security enabled by Intel® vPro™ technology-based platforms
with Intel VT support, and the marriage of real-time system design with virtualization to meet the
needs of embedded and communications applications. A common theme throughout these case studies
is that different usage models and market segments require different styles of VMM software
design—but all share a need for the improved platform hardware support for virtualization.

It’s gratifying to see that our original vision for Intel VT of providing broadly available hardware
support to enable innovative new applications of virtualization is indeed becoming a reality. I hope
that you enjoy this special ITJ issue on virtualization and the in-depth view that it provides into Intel’s
plans to support this emerging trend in [A-based systems, and the vibrant ecosystem that is forming
around Intel VT.
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ABSTRACT

Virtualizing the physical resources of a computing system
to improve sharing and utilization has been done for
decades. Virtualization had once been confined to
specialized server and mainframe systems, but
improvements in the performance of platforms based on
Intel® technology now allow those platforms to efficiently
support virtualization. However, the IA-32 and Itanium®
processor architectures pose a number of significant
challenges to virtualization.

The first generation of Intel® Virtualization Technology”
(VT) for IA-32 and Itanium processors provides hardware
support that simplifies processor virtualization, enabling
reductions in virtual machine monitor (VMM) software
size and complexity. Resulting VMMSs can support a
wider range of legacy and future operating systems (OSs)
on the same physical platform while maintaining high
performance.

In this paper, we provide details of the virtualization
challenges posed by IA-32 and Itanium processors;
present an overview and furnish details of VT-x (Intel
Virtualization Technology for the IA-32 architecture) and
VT-i (Intel Virtualization Technology for the Itanium
architecture); show how VT-x and VT-i address
virtualization challenges; and finally provide examples of
usage of the VT-x and VT-i architecture.

INTRODUCTION

Virtualizing the physical resources of a computing system
to achieve improved degrees of sharing and utilization is a
well-established concept that goes back decades [1]. Full
virtualization of all system resources (including
processors, memory and I/O devices) makes it possible to
run multiple operating systems (OSs) on a single physical

platform. In contrast to a non-virtualized system, in which
a single OS is solely in control of all hardware platform
resources, a virtualized system includes a new layer of
software, called a virtual-machine monitor (VMM). The
principal role of the VMM is to arbitrate access to the
underlying physical host platform resources so that these
resources can be shared among multiple OSs that are
“guests” of the VMM. The VMM presents to each guest
OS a set of virtual platform interfaces that constitute a
virtual machine (VM).

Virtualization was once confined to specialized,
proprietary, high-end server and mainframe systems. It is
now becoming more broadly available and is supported in
off-the-shelf [A-based systems—systems based on Intel
architecture hardware. This development is due in part to
the steady performance improvements of [A-based
systems, which mitigate traditional virtualization
performance overheads. Other factors include new
creative software approaches addressing the difficulties
inherent to A virtualization [2—4] and the emergence of
novel applications for virtualization in both industry and
academia.

In the sections that follow, we examine some of the
technical difficulties with bringing virtualization to IA-
based systems and present an overview of Intel
Virtualization Technology (VT), which provides hardware
assists for overcoming these difficulties. The first
generation of VT focuses on a set of hardware assists that
facilitates the virtualization of IA processors. VT-x refers
to new architectural extensions that aid in IA-32 processor
virtualization, while VT-i refers to a set of assists for
virtualizing Itanium processors. VT-x and VT-i eliminate
many of the problems that make writing a VMM for 1A-
based systems a challenge and hence make possible the
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broader availability of virtualization technology in both
server and client systems.

SOFTWARE-ONLY VIRTUALIZATION
WITH THE IA-32 AND ITANIUM®
ARCHITECTURES

Established and emerging uses provide strong motivation
for improving virtualization support in both server and
client computing systems. Unfortunately, the IA-32 and
Itanium architectures present many challenges to
providing such support. Software techniques exist that
address some of those challenges.

Challenges to Virtualizing Intel Architectures

Intel microprocessors (both IA-32 and Itanium
architecture) provide protection based on the concept of a
2-bit privilege level, using 0 for most-privileged software
and 3 for least-privileged. The privilege level determines
whether privileged instructions, which control basic CPU
functionality, can execute without fault. It also controls
address-space accessibility based on the configuration of
the processor’s page tables and, for IA-32, segment
registers. Most IA software uses only privilege levels 0
and 3.

For an OS to control the CPU, some of its components
must run with privilege level 0. Because a VMM cannot
allow a guest OS such control, a guest OS cannot execute
at privilege level 0. Thus, VMMs running on either [A-32
or Itanium processors must use ring deprivileging, a
technique that runs all guest software at a privilege level
greater than 0. A guest OS could be deprivileged in two
distinct ways: it could run either at privilege level 1 (the
0/1/3 model) or at privilege level 3 (the 0/3/3 model).

Although the 0/1/3 model supports simpler VMMs, it
cannot be used for guests on IA-32 processors in 64-bit
mode (more details in “ring compression” section). (64-bit
mode is part of Intel® Extended Memory 64
Technology®—Intel® EM64T—the 64-bit extensions to
1A-32))

Ring Aliasing

Ring aliasing refers to problems that arise when software
is run at a privilege level other than the privilege level for
which it was written.

An example in IA-32 involves the CS segment register,
which points to the code segment. Ifthe PUSH
instruction is executed with the CS segment register, the
contents of that register (which include the current
privilege level) is pushed on the stack. Similarly, the
Itanium instruction br.call saves the current privilege level
into the pp/ field of the Previous Function State (PFS)
register, which can be read at any privilege level. In either

case, a guest OS could easily determine that it is not
running at privilege level 0.

Address-Space Compression

OSs expect to have access to the processor’s full virtual-
address space (known as the linear-address space in
[A-32). A VMM must reserve for itself some portion of
the guest’s virtual-address space. It could run entirely
within the guest’s virtual-address space, which allows it
easy access to guest data, but the VMM’s instructions and
data structures would use a substantial amount of the
guest’s virtual-address space.

Alternatively, the VMM can run in a separate address
space, but even in that case, the VMM must use a minimal
amount of the guest’s virtual-address space for the control
structures that manage transitions between guest software
and the VMM. For IA-32, these structures include the
interrupt-descriptor table (IDT) and the global-descriptor
table (GDT), which reside in the linear-address space. For
the Itanium architecture, the structures include the
interruption vector table (IVT), which resides in the
virtual-address space.

The VMM must prevent guest access to those portions of
the guest’s virtual-address space that the VMM is using.
Otherwise, the VMM’s integrity could be compromised (if
the guest can write to those portions) or the guest could
detect that it is running in a VM (if it can read those
portions). Guest attempts to access these portions of the
address space must generate transitions to the VMM,
which can emulate or otherwise support them. The term
address-space compression refers to the challenges of
protecting these portions of the virtual-address space and
supporting guest accesses to them.

Non-Faulting Access to Privileged State

Privilege-based protection prevents unprivileged software
from accessing certain components of CPU state. In most
cases, attempted accesses result in faults, allowing a
VMM to emulate the desired guest instruction. However,
the IA-32 and Itanium architectures both include
instructions that access privileged state and do not fault
when executed with insufficient privilege. For example,
the IA-32 registers GDTR, IDTR, LDTR, and TR contain
pointers to data structures that control CPU operation.
Software can execute the instructions that write to, or
load, these registers (LGDT, LIDT, LLDT, and LTR) only
at privilege level 0. However, software can execute the
instructions that read, or store, from these registers
(SGDT, SIDT, SLDT, and STR) at any privilege level. If
the VMM maintains these registers with unexpected
values, a guest OS using the latter instructions could
determine that it does not have full control of the CPU.

Another example pertains to the page-table address (PTA)
register of the Itanium architecture, a field that references
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the base address of the virtual hash page table (VHPT).
The instruction mov to cr.PTA is the normal way to access
this register, and software can execute it only at privilege
level 0. However, the thash instruction indirectly exposes
all or part of the VHPT base address, and software can
execute it at any privilege level. If the VMM maintains the
VHPT at a different address than the guest OS expects, a
guest OS using the thash instruction could determine that
it does not have full control of the CPU.

Adverse Impact on Guest System Calls

Ring deprivileging can interfere with the effectiveness of
facilities in the [A-32 architecture that accelerate the
delivery and handling of transitions to OS software. The
1A-32 SYSENTER and SYSEXIT instructions support low-
latency system calls. SYSENTER always effects a
transition to privilege level 0, and SYSEXIT faults if
executed outside that ring. Ring deprivileging thus has the
following implications:

e Executions of SYSENTER by a guest application
cause transitions to the VMM and not to the guest
0OS. The VMM must emulate every guest execution of
SYSENTER.

e Executions of SYSEXIT by a guest OS cause faults to
the VMM. The VMM must emulate every guest
execution of SYSEXIT.

Interrupt Virtualization

Providing support for external interrupts, especially
regarding interrupt masking, presents some specific
challenges to VMM design. Both the IA-32 and Itanium
architectures provide mechanisms for masking external
interrupts thus preventing their delivery when the OS is
not ready for them. IA-32 uses the interrupt flag (IF) in
the EFLAGS register to control interrupt masking; the
Itanium architecture uses the i bit in the processor status
register (PSR) to provide this function. In both cases, a
value of 0 indicates that interrupts are masked.

A VMM will likely manage external interrupts and deny
guest software the ability to control interrupt masking.
Existing protection mechanisms allow such denial of
control by ensuring that guest attempts to control interrupt
masking fault in the context of ring deprivileging. Such
faulting can cause problems because some OSs frequently
mask and unmask interrupts. Intercepting every guest
attempt to do so could significantly affect system
performance.

Even if it were possible to prevent guest modifications of
interrupt masking without intercepting each attempt,
challenges would remain when a VMM has a “virtual
interrupt” to deliver to a guest. A virtual interrupt should
be delivered only when the guest has unmasked interrupts.
To deliver virtual interrupts in a timely way, a VMM

should intercept some but not all attempts by a guest to
modify interrupt masking. Doing so could significantly
complicate the design of a VMM.

Access to Hidden State

Some components of TA-32 and Itanium processor state
are not represented in any software-accessible register.
Examples for IA-32 include the hidden descriptor caches
for the segment registers. A segment-register load copies
the referenced descriptor (from the GDT or LDT) into this
cache, which is not modified if software later writes to the
descriptor tables. IA-32 does not provide a mechanism for
saving and restoring hidden components of a guest context
when changing VMs or for preserving them while the
VMM is running.

In the Itanium architecture, there is a field in the Register
Stack Engine (RSE) called the current frame load enable
(CFLE). There is no direct way to write this value. There
are cases where the VMM may take an external interrupt
and wants to return to the guest OS with this value equal
to zero. The return from interrupt (#fi) instruction forces
this value to a one.

Ring Compression

Ring deprivileging uses privilege-based mechanisms to
protect the VMM from guest software. IA-32 includes two
such mechanisms: segment limits and paging. Because
segment limits do not apply in 64-bit mode, paging must
be used in this mode. Because IA-32 paging does not
distinguish privilege levels 02, the guest OS must run at
privilege level 3 (the 0/3/3 model). Thus, the guest OS
runs at the same privilege level as guest applications and
is not protected from them. This problem is called ring
compression.

Frequent Access to Privileged Resources

A VMM may prevent guest access to privileged resources
by forcing attempts at such accesses to fault. Even when
this ensures correct behavior, performance may be
compromised if the frequency of such faults is excessive.

In the IA-32 and Itanium architectures, an example
involves the task-priority register (TPR). For the 1A-32
architecture, this register is located in the advanced
programmable interrupt controller (APIC), and for the
Itanium architecture, it is one of the control registers.
Because it controls interrupt prioritization, a VMM must
not allow a guest OS access to the TPR. However, some
OSs perform such accesses with very high frequency.
These accesses require VMM intervention only if they
cause the TPR to drop below a value determined by the
VMM.

The Itanium architecture supports efficient interruption
handlers by providing them with information about the
interruption and the interrupted context. These data are

Intel® Virtualization Technology: Hardware Support for Efficient Processor Virtualization 169



Intel Technology Journal, Volume 10, Issue 3, 2006

recorded, not in memory, but in a set of interruption-
control registers. The processor protects system integrity
by generating faults in response to accesses to those
registers outside privilege level 0. Typically, every
interruption handler reads these registers. If each such
access generates a fault to the VMM, the performance of
these handlers will be severely compromised.

ADDRESSING VIRTUALIZATION
CHALLENGES IN SOFTWARE

To address the virtualization challenges that the IA-32 and
Itanium architecture present, VMM designers have
developed creative techniques for modifying guest
software (source or binary). Denali [5] and Xen* [2] are
examples of VMMs that use source-level modifications in
a technique called paravirtualization. Developers of these
VMMs modify the source code of a guest OS to create an
interface that is easier to virtualize. Paravirtualization
offers high performance and does not require changes to
guest applications. A disadvantage of paravirtualization is
that it limits the range of supported OSs; VMMs that rely
on paravirtualization cannot support an OS whose source
code the VMM’s developers have not modified.

A VMM can support unmodified OSs by transforming
guest-OS  binaries on-the-fly to handle virtualization-
sensitive operations. VMMSs that use such binary-
translation techniques include those developed by
VMware [4] as well as Virtual PC* and Virtual Server*
from Microsoft. [3]. Such VMMs support a broader range
of OSs than VMM s that use paravirtualization.

A central design goal for Intel VT has been to eliminate
the need for CPU paravirtualization and binary translation
techniques, to simplify the implementation of robust
VMMs that can support a broad range of unmodified
guest OSs, and to maintain high levels of performance.

INTEL® VIRTUALIZATION
ARCHITECTURE OVERVIEW

In this section, we discuss some of the details of Intel VT
architecture. We first describe the VT-x support for IA-32
processor virtualization [6], and then we describe the VT-i
support for Itanium processor virtualization [7].

VT-x Architecture Overview

VT-x augments 1A-32 with two new forms of CPU
operation: VMX root operation and VMX non-root
operation. VMX root operation is intended for use by a
VMM, and its behavior is very similar to that of 1A-32
without VT-x. VMX non-root operation provides an
alternative IA-32 environment controlled by a VMM and
designed to support a VM. Both forms of operation
support all four privilege levels, allowing guest software

to run at its intended privilege level, and providing a
VMM with the flexibility to use multiple privilege levels.

VT-x defines two new transitions: a transition from VMX
root operation to VMX non-root operation is called a
VM entry, and a transition from VMX non-root operation
to VMX root operation is called a VM exit. VM entries
and VM exits are managed by a new data structure called
the virtual-machine control structure (VMCS). The VMCS
includes a guest-state area and a host-state area, each of
which contains fields corresponding to different
components of processor state. VM entries load processor
state from the guest-state area. VM exits save processor
state to the guest-state area and then load processor state
from the host-state area.

Processor operation is changed substantially in VMX non-
root operation. The most important change is that many
instructions and events cause VM exits. Some instructions
(e.g., INVD) cause VM exits unconditionally and thus can
never be executed in VMX non-root operation. Other
instructions (e.g., INVLPG) and all events can be
configured to do so conditionally using VM-execution
control fields in the VMCS.

Guest-State Area

The guest-state area of the VMCS is used to contain
elements of the state of virtual CPU associated with that
VMCS.

For proper VMM operation, certain registers must be
loaded by every VM exit. These include those IA-32
registers that manage operation of the processor, such as
the segment registers (to map from logical to linear
addresses), CR3 (to map from linear to physical
addresses), IDTR (for event delivery), and many others.
The guest-state area contains fields for these registers so
that their values can be saved as part of each VM exit.

In addition, the guest-state area contains fields
corresponding to elements of processor state that are not
held in any software-accessible register. One of these
elements is the processor’s interruptibility state, which
indicates whether external interrupts are temporarily
masked (e.g., due to execution of the MOV-SS
instruction) and whether non-maskable interrupts (NMIs)
are masked because software is handling an earlier NMI.

The guest-state area does not contain fields corresponding
to registers that can be saved and loaded by the VMM
itself (e.g., the general-purpose registers). Exclusion of
such registers improves the performance of VM entries
and VM exits. Software can manage these additional
registers more efficiently as it knows better than the CPU
when they need to be saved and loaded.
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VM-Execution Control Fields

The VMCS contains a number of fields that control VMX
non-root operation by specifying the instructions and
events that cause VM exits. In this section, we present
some of these controls.

The VMCS includes controls that support interrupt
virtualization:

e  External-interrupt exiting. When this control is set,
all external interrupts cause VM exits; in addition, the
guest is not able to mask these interrupts (e.g.,
interrupts are not masked if EFLAGS.IF=0).

e [Interrupt-window exiting. When this control is set, a
VM exit occurs whenever guest software is ready to
receive interrupts (e.g., when EFLAGS.IF=1).

o  Use TPR shadow. When this control is set, accesses
to the APIC’s TPR through control register CR8
(available only in 64-bit mode) are handled in a
special way: executions of MOV CRS8 access a TPR
shadow referenced by a pointer in the VMCS. The
VMCS also includes a TPR threshold, a VM exit
occurs after any instruction that reduces the TPR
shadow below the TPR threshold.

There are also VM-execution control fields that support
efficient virtualization of the IA-32 control registers CRO
and CR4. These registers each comprise a set of bits
controlling processor operation. A VMM may wish to
retain control of some of these bits (e.g., those that
manage paging) but not others (e.g., those that control
floating-point instructions). The VMCS includes, for each
of these registers, a guest/host mask that a VMM can use
to indicate which bits it wants to protect. Guest writes can
freely modify the unmasked bits, but an attempt to modify
a masked bit causes a VM exit. The VMCS also includes,
for each of these registers, a read shadow whose value is
returned to guest reads of the register.

To support VMM flexibility, the VMCS includes bitmaps
that allow a VMM selectivity regarding the causes of
some VM exits. The following items detail three of these:

e Exception bitmap: This field contains 32 entries for
the 1A-32 exceptions. It allows a VMM to specify
which exceptions should cause VM exits and which
should not. For page faults, further selectivity is
supported based on a fault’s error code.

e J/O bitmaps: These bitmaps contain one entry for
each port in the 16-bit I/O space. An I/O instruction
(e.g., IN) causes a VM exit if it attempts to access a
port whose entry is set in the I/O bitmaps.

e MSR bitmaps: These bitmaps contain two entries (one
for read, one for write) for each model-specific
register (MSR) currently in use. An execution of

RDMSR (or WRMSR) causes a VM exit if it attempts
to read (or write) an MSR whose read bit (or write
bit) is set in the MSR bitmaps.

In addition to the controls mentioned above, there are
VM-execution controls that support flexible VM exiting
for a number of privileged instructions.

VMCS Details

Like the TA-32 page tables, each VMCS is referenced with
a physical (not linear) address. This eliminates the need to
locate the VMCS in the guest’s linear-address space
(which, as noted below, may be different from that of the
VMM). The format and layout of the VMCS in memory is
not architecturally defined, allowing implementation-
specific optimizations to improve performance in VMX
non-root operation and to reduce the latency of
VM entries and VM exits. VT-x defines a set of new
instructions that allows software to access the VMCS in
an implementation-independent manner.

Details of VM Entries and VM Exits

As noted earlier, VM entries load processor state from the
guest-state area of the VMCS. (Note that, because the
state loaded includes CR3, the guest may run in a different
linear-address space than the VMM.) In addition to
loading guest state, VMentry can be optionally
configured for event injection. The CPU effects this
injection using the guest IDT to deliver an event
(exception or interrupt) specified by the VMM, just as if it
had actually occurred immediately after VM entry. This
feature removes the need for a VMM to emulate delivery
of these events.

As noted above, VM exits save processor state into the
guest-state area and then load processor state from the
host-state area. (Again, because the state loaded includes
CR3, the VMM may run in a different linear-address
space than the guest.) This implies that all VM exits use a
common entry point in the VMM. To simplify the design
of a VMM, VT-x specifies that each VM exit save into the
VMCS detailed information on the cause of the VM exit.
Every VM exit records an exit reason (specifying, for
example, which instruction caused the VM exit); many
also record an exit qualification, which provides further
details. For example, if a VM exit is caused by the MOV
CR instruction, the exit reason would indicate “control-
register access” and the exit qualification would identify
the following: (1) the specific control register (e.g., CRO);
(2) whether the MOV was to or from the register; and
(3) which other register was the source or destination of
the instruction.

Each VMexit due to an IA-32 exception saves, in
addition to information about the exception, information
about any event (e.g., an external interrupt) that was being
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delivered at the time the exception occurred. This allows a
VMM to virtualize nested exceptions properly.

VT-i Architecture Overview

VT-i expands the Itanium architecture with extensions to
the processor hardware and the Processor Abstraction
Layer (PAL) firmware.

VT-i adds a new PSR bit (PSR.vm) that allows guest OSs
to be run at the privilege level for which they were
designed and creates interceptions to a VMM necessary
for the creation of a complete VM. The VMM runs with
this bit equal to zero and runs guest software with this bit
equal to one.

The PSR.vm bit modifies the behavior of all privileged
instructions as well as that of some non-privileged
instructions that access state that a VMM may want to
control (including the thash, ttag, and mov cpuid
instructions). When a guest OS executes one of these
instructions a virtualization intercept is caused which
transfers control to the VMM with the PSR.vm bit set to
Zero.

PSR.vm is orthogonal to the privilege level. This fact
allows guest software to run at its designated privilege
level; if desired, a VMM can span multiple privilege
levels.

PSR.vm also controls the number of virtual-address bits
available to software. When a VMM is running
(PSR.vm = 0), all implemented virtual-address bits are
available. When a guest is running (PSR.vm= 1) the
uppermost implemented virtual-address bit is not available
and unimplemented data/instruction address faults or
unimplemented instruction address traps are created if this
bit is used. This provides a VMM a dedicated address
space that guest software cannot access.

VT-i also includes a number of additions to the PAL
firmware layer. These additions provide a consistent
programming interface to a VMM even if the hardware is
not implemented identically across processor generations.
These PAL extensions include a set of new procedures;
the addition of PAL services for high-frequency VMM
operations; and a virtual processor descriptor (VPD) table.

The PAL procedures are used for setting up and tearing
down a VM environment; for setting global VMM
configuration options; for initializing and terminating
virtual processors; and for saving and restoring a subset of
state of a virtual processor. These procedures follow the
same calling convention as existing PAL procedures. In
addition, a new PAL interface called a PAL service has
been introduced for virtualization. PAL services reduce
overhead through use of a new calling convention
specifically targeted for use by a VMM. PAL services

provide functionality to synchronize guest hardware
registers and the VPD; to save and restore a subset of the
state of a virtual processor; to resume execution of the
guest software after a virtualization intercept; to calculate
guest VHPT hashes and tags; and to set up pending
interrupts for the guest.

The VPD table is located in memory selected by the
VMM. 1t is usually located in the VMM’s virtual-address
space and is accessed by both the PAL firmware and the
VMM. The VPD contains configuration settings for the
virtual processor and a subset of the virtual processor’s
state that influences its execution characteristics. For
example, the virtual processor’s control-register values are
located in the VPD but not its general registers. The
layout of the VPD is architected to be 64K in size and
includes reserved space for future usage.

The VPD contains two configuration fields that allow the
VMM to customize the virtualization environment:

e Virtualization-acceleration field. This field allows the
VMM to customize the virtualization of a particular
resource or instruction, leading to a reduction in the
number of virtualization intercepts that the VMM has
to handle. It provides accelerations for external-
interrupt handling as well as intercept control for
reads and writes to interruption control registers
(crl16-cr25), reads of the PSR, reads of CPUID, the
cover instruction, and the bank-switch instruction
(bsw).

For example, a VMM could enable the bank-switch
optimization. Guest execution of bsw would use
values that the VMM had set up in the VPD for the
guest OS and would never cause a virtualization
intercept to the VMM.

o Virtualization-disable field. This field allows the
VMM to disable virtualization of a particular
resource or instruction, leading to a reduction in the
number of virtualization intercepts the VMM handles.
This field provides disables for virtualization of the
external interrupt control registers (cr65-71), the
performance monitoring registers, the debug registers,
the PSR.i bit, and the interval timer match register.

To provide efficient handling of virtualization intercepts
for a VMM, the architecture has added two new vectors
into the IVT:

e Virtualization vector. This vector is used for all
virtualization-related intercepts. To reduce decoding
complexity, a VMM can configure the processor to
provide the cause of the virtualization intercept (a
bitmap field of intercepting instructions) as well as
the faulting opcode in two of the processor banked
registers. A VMM can relocate this handler to a
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memory location outside the IVT as well through a
PAL interface.

e Virtual external interrupt vector. The processor uses
this vector when the guest unmasks a pending
external interrupt. It would be used when the VMM
has a virtual interrupt for the guest that it cannot
deliver due to guest masking. When the guest
performs an operation to unmask the highest pending
interrupt, the guest state is updated and control is
transferred to this new vector. This streamlines
delivery of guest external interrupts for the VMM.

VT-i also provides global configuration options that a
VMM can set that apply to all virtual processors activated
by the VMM. These global configuration options
determine whether the cause of a virtualization intercept is
provided, if the opcode of the instruction causing the
virtualization intercept is provided, if the performance
counters are frozen for all virtualization intercepts, and the
byte order (or endianness) of the date located in the VPD.

VT-i also includes the vmsw instruction. This instruction
transitions the PSR.vm bit with minimum overhead. This
can reduce transition overhead between guest software
and a VMM in cooperative virtualization environments.

SOLVING VIRTUALIZATION
CHALLENGES WITH VT-X AND VT-I

VT-x and VT-i allow guest software to run at its intended
privilege level. Guest software is constrained, not by
privilege level, but because for VT-x it runs in VMX non-
root operation or for VT-i with PSR.vm = 1. These facts
allow VMMs to avoid the virtualization challenges
identified earlier.

Address-Space Compression

VT-x and VT-i provide two different techniques for
solving address-space compression problems.

With VT-x, every transition between guest software and
the VMM can change the linear-address space, allowing
guest software full use of its own address space. The
VMX transitions are managed by the VMCS, which
resides in the physical-address space, not the linear-
address space.

With VT-i, the VMM has a virtual-address bit that guest
software cannot use. A VMM can conceal hardware
support for this bit by intercepting guest calls to the PAL
procedure that reports the number of implemented virtual-
address bits. As a result, the guest will not expect to use
this uppermost bit, and hardware will not allow it to do so,
thus providing the VMM exclusive use of half of the
virtual-address space.

Ring Aliasing and Ring Compression

VT-x and VT-i allow a VMM to run guest software at its
intended privilege level. This fact eliminates ring aliasing
problems because instructions such as PUSH (of CS) and
br.call cannot reveal that software is running in a VM. It
also eliminates ring compression problems that arise when
a guest OS executes at the same privilege level as guest
applications.

Nonfaulting Access to Privileged State

VT-x and VT-i avoid the problem of providing
nonfaulting access to privileged state in two ways: by
adding support that causes such accesses to transition to a
VMM and by adding support that causes the state to
become unimportant to a VMM.

A VMM based on VT-x does not require control of the
guest privilege level, and the VMCS controls the
disposition of interrupts and exceptions. Thus, it can allow
its guest access to the GDT, IDT, LDT, and TSS. VT-x
allows guest software running at privilege level 0 to use
the instructions LGDT, LIDT, LLDT, LTR, SGDT, SIDT,
SLDT, and STR.

With VT-i, the thash instruction causes virtualization
faults, giving a VMM the opportunity to conceal any
modifications it may have made to the VHPT base
address.

Guest System Calls

Problems occur with the IA-32 instructions SYSENTER
and SYSEXIT when a guest OS runs outside privilege
level 0. With VT-x, a guest OS can run at privilege level
0, which eliminates problems associated with guest
transitions.

Interrupt Virtualization

VT-x and VT-i both provide explicit support for interrupt
virtualization.

VT-x includes an external-interrupt exiting VM-execution
control. When this control is set to 1, a VMM prevents
guest control of interrupt masking without gaining control
of every guest attempt to modify EFLAGS.IF. Similarly,
VT-i includes a virtualization-acceleration field that
prevents guest software from affecting interrupt masking
and avoids making transitions to the VMM on every
access to the PSR.i bit.

VT-x also includes an interrupt-window exiting VM-
execution control. When this control is set to 1, a VM exit
occurs whenever guest software is ready to receive
interrupts. A VMM can set this control when it has a
virtual interrupt to deliver to a guest. Similarly, VT-i
includes a PAL service that a VMM can use to register the
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vector of the pending virtual interrupt. When guest
software executes instructions to unmask the pending
interrupt, control is transferred to the VMM via the new
virtual external interrupt vector.

Access to Hidden State

VT-x and VT-i use different techniques to allow a VMM
to manipulate components of guest state that are not
represented in any software-accessible register.

VT-x includes, in the guest-state area of the VMCS, fields
corresponding to CPU state not represented in any
software-accessible register. The processor loads values
from these VMCS fields on every VM entry and saves
into them on every VM exit. This provides the support
necessary for preserving this state while the VMM is
running or when changing VMs.

VT-i provides a way for the VMM to set the RSE CFLE
bit to the desired value via an argument value in the PAL
service used to return to guest interruption handlers.

Frequent Access to Privileged Resources

VT-x and VT-i allow a VMM to avoid the overhead of
high-frequency guest accesses to the TPR register. A
VMM can configure the VMCS (for VT-x) or use an
acceleration (for VT-i) so that the VMM is invoked only
when required: For VT-x this occurs when the value of the
TPR shadow associated with the VMCS drops below that
of a TPR threshold in the VMCS. For VT-i this occurs
only when the writing of the TPR unmasks a virtual
pending external interrupt for the guest.

With VT-i, a VMM can use the virtualization-acceleration
field in the VPD to indicate that guest software can read
or write the interruption-control registers without invoking
the VMM on each access. The VMM can establish the
values of these registers before any virtual interruption is
delivered and can revise them before the guest
interruption handler returns.

USAGE OF THE INTEL
VIRTUALIZATION ARCHITECTURE

We have described the basic architecture for VT-x and
VT-i, and in the next section, we provide some usage
examples of the architecture by a VMM. This is intended
to highlight some usage models, but it is not a
comprehensive set of all usage models.

VMM Usage of VT-x Architecture Features

Exception Handling

VT-x allows a VMM to configure any [A-32 exception to
cause a VM exit based on its vector (for page faults,
further selectivity is supported based on a fault’s error

code). When handling such VM exits, a VMM has access
to complete information about the exception, including its
error code and any other fault-specific information (e.g.,
the faulting linear address for a page fault).

The VMM may determine that the exception causing the
VM exit should be handled by the guest OS. In these
cases, the VMM can perform a VM entry to guest using
event injection to deliver the exception.

Alternatively, a VMM may respond to such a VM exit by
eliminating the cause of the exception (e.g., by modifying
the page tables to mark present a page that had not been
present). In these cases, the VMM can then perform a
VM entry to the guest, which will resume execution at the
point at which the exception occurred. If the VM exit was
due to a nested fault, the VMM can use event injection to
deliver to the guest that event whose delivery encountered
that nested fault.

Interrupt Virtualization

When a VMM has an interrupt to deliver to a guest OS, it
can do so using event injection with the next VM entry. If
guest software is not ready for an interrupt (e.g., because
EFLAGS.IF = 0), the VMM can instead re-enter the guest
having set the interrupt-window exiting VM-execution
control. A VM exit will occur the next time the guest is
ready for an interrupt. A VMM can then use event
injection as part of the next VM entry.

Lazy Floating-Point State Processing

The TA-32 architecture includes features by which an OS
can avoid the time-consuming restoring the floating-point
state when activating a user process that does not use the
floating-point unit. It does this by setting the TS bit in
control register CRO. If a user process then tries to use the
floating-point  unit, a  device-not-available fault
(exception 7 = #NM) occurs. The OS can respond to this
by restoring the floating-point state and by clearing
CRO.TS, which prevents the fault from recurring.

VT-x includes features by which a VMM can process
floating-point state lazily, even when supporting a guest
OS that does so also. We outline how this may be done.

Before entering a guest whose floating-point state has not
been restored, a VMM can do the following:

e Set the TS bit in the CRO field in the guest-state area;
this ensures that any guest floating-point access
causes a #NM.

e Set bit 7 (corresponding to #NM) in the exception
bitmap; this ensures that any #NM causes a VM exit.

e Set the TS bit in the CRO guest/host mask; this
ensures that any guest attempt to modify CRO.TS
causes a VM exit.
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e Set the TS bit in the CRO read shadow to the value
expected by guest software (determined on VM exits
caused by guest attempts to modify CRO.TS).

In response to a VM exit caused by a #NM, a VMM can
check the value of the TS bit in the CRO read shadow. If it
is set, the guest would have incurred its own #NM; the
VMM can use event injection to deliver it to the guest.
Otherwise, the VMM can do the following:

e Restore the guest’s floating-point state.

e Set the TS bit in the CRO field in the guest-state area
to the value expected by guest software.

e Clear bit 7 in the exception bitmap; this ensures that
the guest OS will handle any subsequent #NM.

e C(Clear the TS bit in the CRO guest/host mask; this
allows the guest to modify CRO.TS freely.

VMM Usage of VT-i Architecture Features

Instruction Emulation

The VMM virtualization intercept handler is responsible
for emulating certain instructions for a guest OS including
side effects of successful emulation. One example of
instruction emulation is the MOV-£from-PTA instruction.
The VMM emulates this instruction by placing the guest
PTA value in the target register of the instruction. Since
the VMM has successfully implemented the MOV - f rom-
PTA instruction, it needs to implement the side effects of
the instruction execution required by the Itanium
architecture. In this example the VMM must also update
the value in the cr.iipa register, which records the last
successfully executed instruction with PSR.ic equal to 1.

Virtualization Configuration

VT-i is capable of providing a virtualization intercept on
every access to privileged resources that may be required
or desired for certain VMM implementations. VT-i also
provides a way for a VMM to specify virtualization
policies on certain resources in advance such that
interceptions to the VMM can be reduced for high
frequency operations. This functionality is provided
through  virtualization-accelerations, virtualization-
disables, and new synchronization services. One example
is the interruption control register reads. Guest OS
interruption handlers read interruption control registers
frequently and cause a lot of interceptions into the VMM.
The interruption control register read acceleration allows
VMM software to provide preset values for all
interruption control registers in the VPD and invoke the
PAL write synchronization service before returning to a
guest handler. When this acceleration is enabled, guest
reads of the interruption control registers are not
intercepted to the VMM; instead the value preset by the

VMM is returned to the guest. Similarly, the interruption
control register write acceleration allows the guest to
write to interruption control registers without VMM
interceptions. VMM can invoke the PAL read
synchronization service to obtain the latest values written
by the guest and perform any virtualization functions
required before emulating the return from interrupt (7f7)
instruction of the guest handler. All other accelerations
and disables in VT-i have the same goal—to allow the
VMM to specify the virtualization policies of the
privileged resources ahead of time such that guest
instructions can execute without interceptions to the
VMM.

External and PAL-Based Interruption Handling

In addition to implementing policies to virtualize accesses
to privileged resources on the processor, VMM software
also needs to virtualize external interruptions as well as
accesses to platform resources that are considered
privileged. For example, VMM software will continue to
handle external interruptions or PAL-based interruptions
even if the guest OS had masked these interruptions.

VMM software delivers guest external interrupts only
when they are unmasked. When unmasked, the VMM
delivers the interruption to the guest handler required by
the architecture. For example, the VMM needs to set up
the values of the guest interruption control registers, PSR
fields, and register stack engine (RSE) state. Since some
of the RSE state is not accessible by VMM software, VT-i
provides PAL service to allow VMMs to invoke guest
handlers correctly.

VMM software registers the corresponding handlers for
PAL-based interruptions (e.g., initialization and machine
check events) and provides the virtualization policies for
these events. VT-i makes no changes to the handling of
PAL-based interruptions. The handling and propagation of
these events from the VMM to the guest OS is VMM
design specific.

FUTURE OF INTEL VIRTUALIZATION
ARCHITECTURE

The following features are anticipated for future
processors supporting VT-x:

e NMl-window exiting. The interrupt-window exiting
VM-execution control (described earlier) causes a
VM exit when a guest is ready for maskable external
interrupts, allowing a VMM to deliver such interrupts
in a timely way. NMI-window exiting provides
corresponding support for non-maskable interrupts
(NMIs), which are blocked by other conditions than
those that block maskable external interrupts.
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e Virtual-processor identifiers (VPIDs). This feature
allows a VMM to assign a different non-zero VPID to
each virtual processor (the zero VPID is reserved for
the VMM). The CPU can use VPIDs to tag
translations in the TLBs. This feature eliminates the
need for TLB flushes on every VM entry and VM exit
and eliminates the adverse impact of those flushes on
performance.

e Extended page tables (EPT). When this feature is
active, the ordinary IA-32 page tables (referenced by
control register CR3) translate from linear addresses
to guest-physical addresses. A separate set of page
tables (the EPT tables) translate form guest-physical
addresses to the host-physical addresses that are used
to access memory. As a result, guest software can be
allowed to modify its own [A-32 page tables and
directly handle page faults. This allows a VMM to
avoid the VM exits associated with page-table
virtualization, which are a major source of
virtualization overhead without EPT.

CONCLUSION

While the use of virtualization was once confined to
proprietary server and mainframe computing systems,
established and emerging applications for virtualization in
both server and client systems are moving it into the
mainstream. Despite the promise of new and existing
virtualization usages, many challenges stand in the way of
achieving efficient virtualization of today’s IA-based
systems.

VT-x and VT-i are the first components of Intel VT, a
series of processor innovations soon to become available
in [A-based client and server platforms. VT-x and VT-i
offer solutions to the problems inherent in IA-32 and
Itanium processor virtualization and thus enable the
development of simpler VMM software that supports a
wider range of legacy and future OS’s while maintaining
high levels of performance.
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ABSTRACT

Intel® Virtualization Technology” for Directed I/O (VT-d)
is the next important step toward comprehensive hardware
support for the virtualization of Intel® platforms. VT-d
extends Intel’s Virtualization Technology (VT) roadmap
from existing support for IA-32 (VT-x) [1] and Itanium®
processor (VT-i) [2] virtualization to include new support
for I/0-device virtualization. This paper surveys a variety
of established and emerging techniques for I/O
virtualization and outlines their associated problems and
challenges. We then detail the architecture of VT-d and
describe how it enables the industry to meet the future
challenges of I/O virtualization.

INTRODUCTION

There are a number of existing and emerging usage
models where support for I/O virtualization is, or will
become, increasingly important. Performance, scalability,
cost, trust, reliability, and availability are all important
considerations, and their relative importance can vary
depending upon usage models and the market segment in
which they are deployed.

There are two key requirements that are common across
market segments and usage models. The first requirement
is protected access to I/O resources from a given virtual
machine (VM), such that it cannot interfere with the
operation of another VM on the same platform. This
isolation between VMs is essential for achieving
availability, reliability, and trust. The second major
requirement is the ability to share I/O resources among

multiple VMs. In many cases, it is not practical or cost-
effective to replicate I/O resources (such as storage or
network controllers) for each VM on a given platform.

First we consider the importance of I/O virtualization in
the data center. Many server applications are I/O
intensive, especially for networking and storage. Key
requirements within the data center include scalability and
performance to enable server consolidation. Reliability
and availability are important as mission-critical
applications move onto virtualized data center servers and
infrastructures.

In the case of server consolidation, virtualization is used
to deploy multiple VMs (each containing an operating
system (OS) and associated services and applications)
onto a single server. This consolidation is done primarily
to utilize the underlying server hardware more effectively.
Many server applications require a significant amount of
I/O performance, and so it follows that the consolidation
of multiple server applications will need a scalable and
high-performance solution for I/O virtualization. The
scalability requirement comes from the fact that the total
network and storage I/O required from a given server
platform is the aggregate of the I/O requirements of the
multiple consolidated applications. /O performance is
needed by each VM to satisfy a wide range of server
applications with varied and demanding I/O performance
requirements.

Next we look at the importance of I/O virtualization in
client platforms. For most client platforms, I/O scalability
and performance are relatively modest as compared to
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servers, but tend to be more sensitive to cost and trust
issues.

In the case of the enterprise client, virtualization can be
used to create a self-contained operating environment, or
“virtual appliance,” that is dedicated to capabilities such
as manageability or security. These capabilities generally
need protected and secure access to a network device to
communicate with down-the-wire management agents and
to monitor network traffic for security threats. For
example, a security agent within a VM requires protected
access to the actual network controller hardware. This
agent can then intelligently examine network traffic for
malicious payloads or suspected intrusion attempts before
the network packets are passed to the guest OS, where
user applications might be affected.

This virtual-appliance model can be applied beyond the
enterprise client. Workstations and home computers can
use this technique for management, security, content
protection, and a wide variety of other dedicated services.
The type of service deployed may dictate that various
types of I/O resources, graphics, network, and storage
devices, be isolated from the OS where the user’s
applications are running.

In this paper we survey a variety of existing and emerging
techniques for addressing the above requirements of I/O
virtualization. We begin in the next section by studying
different options for Virtual Machine Monitor (VMM)
structuring and software architecture, and then we discuss
various techniques for sharing I/O resources among
multiple guest OSs. Our survey highlights various
challenges faced by today’s I/O-virtualization techniques,
and it underscores the need for new forms of hardware
support to facilitate I/O-resource assignment, protection,
and sharing. We then detail the architecture of Intel’s
VT-d and explain how it helps to establish a new platform
infrastructure for addressing the challenges of I/O
virtualization in future platforms based on Intel®
technology.

VMM SOFTWARE ARCHITECTURE
OPTIONS

As background, we identify and compare three distinct
types of virtualization layer (or VMM) software
architectures in this section (see Figure 1):

e OS-hosted VMMs
e Stand-alone hypervisor VMMs
e Hybrid VMMs

Each of these styles of VMM software architecture has its
pros and cons, and the choice often depends on the

particular requirements of a given usage model or market
segment.

OS-Hosted VMMs

One approach to VMM software architecture is to build
on the infrastructure of an existing OS [3] [15]. Such OS-
hosted VMMs consist of a privileged ring-0 component
(shown as the “VMM kernel” in Figure 1) that runs
alongside the kernel of the hosting OS, and that obtains
control of system resources—such as CPUs and system
memory — to create an execution environment for one or
more guest OSs. The VMM kernel context switches
between host-OS and guest-OS state at periodic intervals
as dictated by scheduling policy, or whenever host-OS
support is required (e.g., to service hardware interrupts
from a physical I/O device that is programmed by a host-
OS device driver). Although the guest OS is allowed to
directly execute on a physical CPU and to directly access
certain portions of host physical memory subject to the
control of the VMM kernel, any accesses to I/O devices
are typically intercepted by the VMM kernel and proxied
to a second, user-level component of the VMM (shown in
Figure 1 as a User-Level Monitor or ULM). The ULM
runs as an ordinary process of the host OS, and it contains
virtual I/O-device models that service I/O requests from
guest OSs. Device models in the ULM call the facilities of
the underlying host OS via its file system and networking
and graphics APIs to handle I/O requests from guest OSs.

An OS-hosted VMM architecture offers several
advantages: the VMM can leverage any I/O device drivers
that have been developed for the hosting OS, which can
significantly ease porting of the VMM to a range of
different physical host platforms. Further, the VMM can
leverage other facilities of the host OS, such as code for
scanning I/O busses, to perform I/O resource discovery
and to manage host platform power-management
functions.

A disadvantage of an OS-hosted VMM is that it is only as
reliable, available, and secure as the host OS upon which
it depends: If the host OS fails or must be rebooted (e.g.,
to install a software security patch), then all other guest
OSs must be taken out of service as well. An OS-hosted
VMM is also subject to the CPU scheduling policies of
the host OS, which serves not only the VMM and its guest
OSs, but also other applications running above the host
OS. Depending on the security, availability, or real-time
quality-of-service requirements of a given usage model,
these disadvantages may not be acceptable, and alternative
VMM software architectures may be warranted.

Stand-Alone Hypervisor VMMs

One such alternative approach is to structure the VMM as
a stand-alone hypervisor that does not depend on a hosting
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OS [4, 10, 11]. A hypervisor-style VMM incorporates its
own I/O device drivers, device models, and scheduler.

A hypervisor-style VMM can fully control provisioning of
physical platform resources, enabling it to provide
scheduling and quality-of-service guarantees to its guest
OSs. An additional advantage of a hypervisor-based
VMM is that the code paths from guest OSs requests for
I/0O services to the actual physical I/O device drivers are
typically shorter than in an OS-hosted VMM, which
requires I/O requests to traverse two I/O stacks, first that
of the guest OS, and then that of the host OS. Further, by
controlling and limiting the size of the hypervisor kernel,
the VMM can provide enhanced security and reliability
through a smaller trusted computing base (TCB) [5, 9].

The advantages of a hypervisor-style VMM come at the
expense of limited portability, because the necessary I/O-
device drivers for any given physical platform must be
developed to run within the hypervisor. More advanced
system functions, such as ACPI-based system power
management—which are inherited from the host OS in a
hosted VMM-must also be reimplemented in a
hypervisor-based VMM. While not as complex as a full
modern OS, a mature hypervisor-based VMM can grow to
a significant size over time, gradually compromising some
of the benefits noted earlier (e.g., improved security
through limiting the size of the TCB).

Hybrid VMMs

In an effort to retain some of the security and reliability
benefits of hypervisor-style VMM architecture, while at
the same time leveraging the facilities of an existing OS
and its associated device drivers as in an OS-hosted
VMM, some VMMs adopt a hybrid approach [6, 7, 9].

In a hybrid VMM architecture, a small hypervisor kernel
(shown in Figure 1 as a u-hypervisor) controls CPU and
memory resources, but I/O resources are programmed by
device drivers that run in a deprivileged service OS. The
service OS functions in a manner similar to that of a host
OS in that the VMM is able to leverage its existing device
drivers. However, because the service OS is deprivileged
by the p-hypervisor, and because it operates solely on
behalf of the VMM (i.e., it does not support other,
arbitrary user applications), it is possible to improve the
overall security and reliability of the system.

While a hybrid VMM architecture offers the promise of
retaining the best characteristics of hosted- and
hypervisor-style VMM, it does introduce new challenges,
including new performance overheads, due to frequent
privilege-level transitions between guest OS and service
OS through the p-hypervisor. Further, the full benefits of
deprivileging a service OS are only possible with new
hardware support for controlling device Direct Memory

Access (DMA) via the p-hypervisor. As we will see later,
such hardware support is provided by VT-d.
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Figure 1: VMM software architectures
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CURRENT I/0 VIRTUALIZATION
TECHNIQUES

When virtualizing an I/O device, it is necessary for the
underlying virtualization software to service several types
of operations for that device. Interactions between
software and physical devices include the following:

e Device discovery: a mechanism for software to
discover, query, and configure devices in the
platform.

e Device control: a mechanism for software to
communicate with the device and initiate I/O
operations.

e Data transfers: a mechanism for the device to transfer
data to and from system memory. Most devices
support DMA in order to transfer data.

e J/O interrupts: a mechanism for hardware to be able
to notify the software of events and state changes.

Each of these interactions is discussed, covering
implementation, challenges, advantages, and
disadvantages of each of the common virtualization
techniques. The VMM could be a single monolithic
software stack or could be a combination of a hypervisor
and specialized guests (as shown in Figure 1). The type of
VMM architecture used is independent of the concepts
discussed in this section, but will become relevant later in
our discussion.

Emulation

I/0 mechanisms on native (non-virtualized) platforms are
usually performed on some type of hardware device. The
software stack, commonly a driver in an OS, will interface
with the hardware through some type of memory-mapped
(MMIO) mechanism, whereby the processor issues
instructions to read and write specific memory (or port)
address ranges. The values read and written correspond to
direct functions in hardware.

Emulation refers to the implementation of real hardware
completely in software. Its greatest advantage is that it
does not require any changes to existing guest software.
The software runs as it did in the native case, interacting
with the VMM emulator just as though it would with real
hardware. The software is unaware that it is really talking
to a virtualized device. In order for emulation to work,
several mechanisms are required.

The VMM must expose a device in a manner that it can be
discovered by the guest software. An example is to present
a device in a PCI configuration space so that the guest
software can “see” the device and discover the memory
addresses that it can use to interact with the device.

The VMM must also have some method for capturing
reads and writes to the device’s address range, as well as
capturing accesses to the device-discovery space. This
enables the VMM to emulate the real hardware with
which the guest software believes it is interfacing.

The device (usually called a device model) is
implemented by the VMM completely in software (see
Figure 2). It may be accessing a real piece of hardware in
the platform in some manner to service some I/O, but that
hardware is independent of the device model. For
example, a guest might see an Integrated Drive
Electronics (IDE) hard disk model exposed by the VMM,
while the real platform actually contains a Serial ATA
(SATA) drive.
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Figure 2: Device emulation model

The VMM must also have a mechanism for injecting
interrupts into the guest at appropriate times on behalf of
the emulated device. This is usually accomplished by
emulating a Programmable Interrupt Controller (PIC).
Once again, when the guest software exercises the PIC,
these accesses must be trapped and the PIC device
modeled appropriately by the VMM. While the PIC can
be thought of as just another I/O device, it has to be there
for any other interrupt-driven I/O devices to be emulated

properly.

Emulation facilitates migration of VMs from one platform
to another. Since the devices are purely emulated and have
no ties to physical devices in the platform, it is easy to
move a VM to another platform where the VMM can
support the exact same emulated devices. If the guest VM
did have some tie to any platform physical devices, those
same physical devices would need to be present on any
platform to which the VM was migrated.
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Emulation also facilitates the sharing of platform physical
devices of the same type, because there are instances of an
emulation model exposed to potentially many guests. The
VMM can use some type of sharing mechanism to allow
all guest’s emulation models access to the services of a
single physical device. For example, the traffic from many
guests with emulated network adapters could be bridged
onto the platform’s physical network adapter.

Since emulation presents to the guest software the exact
interface of some existing physical hardware device, it can
support a number of different guest OSs in an OS-
independent manner. For example, if a particular storage
device is emulated completely, then it will work with any
software written for that device, independent of the guest
OS, whether it be Windows*, Linux*, or some other TA-
based OS. Since most modern OSs ship with drivers for
many well-known devices, a particular device make and
model can be selected for emulation such that it will be
supported by these existing legacy environments.

While emulation’s greatest advantage is that there are no
requirements to modify guest device drivers, its largest
detractor is low performance. Each interaction of the guest
device driver with the emulated device hardware requires
a transition to the VMM, where the device model
performs the necessary emulation, and then a transition
back to the guest with the appropriate results. Depending
upon the type of I/O device that is being emulated, many
of these transactions may be required to actually retrieve
data from the device. These activities add considerable
overhead compared to normal software-hardware
interactions in a non-virtualized system. Most of this new
overhead is compute-bound in nature and increases CPU
utilization. The timing involved in each interaction can
also accumulate to increase overall latency.

Another disadvantage of emulation is that the device
model needs to emulate the hardware device very
accurately, sometimes to the revision of the hardware, and
must cover all corner cases. This can result in the need for
“bug emulation” and problems arising with new revisions
of hardware.

Paravirtualization

Another technique for virtualizing I/O is to modify the
software within the guest, an approach that is commonly
referred to as paravirtualization [4, 8]. The advantage of
I/O  paravirtualization is better performance. A
disadvantage is that it requires modification of the guest
software, in particular device drivers, which limits its
applicability to legacy OS and device-driver binaries.

With paravirtualization (see Figure 3) the altered guest
software interacts directly with the VMM, usually at a
higher abstraction level than  the normal

hardware/software interface. The VMM exposes an 1/O
type-specific API, for example, to send and receive
network packets—in the case of a network adaptor. The
altered software in the guest then uses this VMM API
instead of interacting directly with a hardware device
interface.

Paravirtualization reduces the number of interactions
between the guest OS and VMM, resulting in better
performance (higher throughput, lower latency, reduced
CPU utilization), compared to device emulation.

Instead of using an emulated interrupt mechanism,
paravirtualization uses an eventing or callback
mechanism. This again has the potential to deliver better
performance, because interactions with a PIC hardware
interface are eliminated, and because most OS’s handle
interrupts in a staged manner, adding overhead and
latency. First, interrupts are fielded by a small Interrupt
Service Routine (ISR). An ISR usually acknowledges the
interrupt and schedules a corresponding worker task. The
worker task is then run in a different context to handle the
bulk of the work associated with the interrupt. With an
event or callback being initiated directly in the guest
software by the VMM, the work can be handled directly in
the same context. With some implementations, when the
VMM wishes to introduce an interrupt into the guest, it
must force the running guest to exit to the VMM, where
any pending interrupts can be picked up when the guest is
reentered. To force a running guest to exit, a mechanism
like IPI can be used. But this again adds overhead
compared to a direct callback or event. Again, the largest
detractor to this approach is that the interrupt handling
mechanisms of the guest OS kernel must also be altered.
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Figure 3: Device paravirtualization

Since paravirtualization involves changing guest software,
usually the changed components are specific to the guest
environment. For instance, a paravirtualized storage driver
for Windows XP" will not work in a Linux environment.
Therefore, a separate paravirtualized component must be
developed and supported for each targeted guest
environment. These changes require apriori knowledge of
which guest environments will be supported by a
particular VMM.

As with device emulation, paravirtualization is supportive
of VM migration, provided that the VM is migrated to a
platform that supports the same VMM APIs required by
the guest software stack.

Sharing of any platform physical devices of the same type
is supported in the same manner as emulation. For
example, guests using a paravirtualized storage driver to
read and write data could be backed by stores on the same
physical storage device managed by the VMM.

Paravirtualization is increasingly deployed to satisfy the
performance requirements of I/O-intensive applications.
Paravirtualization of I/O classes that are performance
sensitive, such as networking, storage, and high-
performance graphics, appears to be the method of choice
in modern VMM architecture. As described, para-
virtualization of I/O decreases the number of transitions
between the client VM and the VMM, as well as
eliminates most of the processing associated with device
emulation.

Paravirtualization leads to a higher level of abstraction for
I/O interfaces within the guest OS. I/O-buffer allocation
and management policies that are aware of the fact that
they are virtualized can be used for more efficient use of
the VT-d protection and translation facilities than would
be possible with an unmodified driver that relies on full
device emulation.

At least three of the major VMM vendors have adopted
the capability to paravirtualize I/O in order to accomplish
greater scaling and performance. Xen  and VMware
already have the ability to run paravirtualized I/O drivers
and Microsoft’s plans include I/O paravirtualization in its
next-generation VMM.

Direct Assignment

There are cases where it is desirable for a physical I/O
device in the platform to be directly owned by a particular
guest VM. Like emulation, direct assignment allows the
owning guest VM to interface directly to a standard device
hardware interface. Therefore, direct device assignment
provides a native experience for the guest VM, because it
can reuse existing drivers or other software to talk directly
to the device.

Direct assignment improves performance over emulation
because it allows the guest VM device driver to talk to the
device in its native hardware command format eliminating
the overhead of translating from the device command
format of the virtual emulated device. More importantly,
direct assignment increases VMM reliability and
decreases VMM complexity since complex device drivers
can be moved from the VMM to the guest.

Direct assignment, however, is not appropriate for all
usages. First, a VMM can only allocate as many devices
as are physically present in the platform. Second, direct
assignment complicates VM migration in a number of
ways. In order to migrate a VM between platforms, a
similar device type, make, and model must be present and
available on each platform. The VMM must also develop
methods to extract any physical device state from the
source platform, and to restore that state at the destination
platform.

Moreover, in the absence of hardware support for direct
assignment, direct assignment fails to reach its full
potential in improving performance and enhancing
reliability. First, platform interrupts may still need to be
fielded by the VMM since it owns the rest of the physical
platform. These interrupts must be routed to the
appropriate guest—in this case the one that owns the
physical device. Therefore, there is still some overhead in
this relaying of interrupts. Second, existing platforms do
not provide a mechanism for a device to directly perform
data transfers to and from the system memory that belongs
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to the guest VM in an efficient and secure manner. A
guest VM is typically operating in a subset of the real
physical address space. What the guest VM believes is its
physical memory really is not; it is a subset of the system
memory virtualized by the VMM for the guest. This
addressing mismatch causes a problem for DMA-capable
devices. Such devices place data directly into system
memory without involving the CPU. When the guest
device driver instructs the device to perform a transfer it is
using guest physical addresses, while the hardware is
accessing system memory using host physical addresses.

In order to deal with the address space mismatch, VMMs
that support direct assignment may employ a pass-through
driver that intercepts all communication between the guest
VM device driver and the hardware device. The pass-
through driver performs the translation between the guest
physical and real physical address spaces of all command
arguments that refer to physical addresses. Pass-through
drivers are device-specific since they must decode the
command format for a specific device to perform the
necessary translations. Such drivers perform a simpler task
than traditional device drivers; therefore, performance is
improved over emulation. However, VMM complexity
remains high, thereby impacting VMM reliability. Still,
the performance benefits have proven sufficient to employ
this method in VMMs targeted to the server space, where
it is acceptable to support direct assignment for only a
relatively small number of common devices.

VMM Software Architecture Implications

Different I/O virtualization methods are not equally
applicable to all VMM software architecture options.

Emulation is the most general I/O virtualization method,
able to expose standard I/O devices to an unmodified
guest OS. Accordingly, it is widely employed in existing
OS-hosted, stand-alone hypervisor or hybrid VMM
implementations.

As already mentioned, paravirtualization is increasingly
being deployed in many VMMs to improve performance
for common guests. It is readily applicable to stand-alone
hypervisor VMMs. It can also be used in the interaction
between the guest OS and the ULM in an OS-hosted
VMM or can be used in the guest OS and the service VM
in a hybrid VMM.

Direct assignment is used in cases where the guest OS
cannot be modified either because it is difficult to do so or
the paravirtualized guest device drivers are not qualified
for a specific application. However, it is difficult to
introduce direct assignment in an OS-hosted VMM since
in general, such VMMSs do not own real platform devices
and do not maintain device drivers for such devices. On
the other hand, direct assignment naturally reduces

complexity in stand-alone hypervisor and hybrid VMMs
since device drivers can be moved to the guest OS or
service OSs, respectively. This reduced complexity is not
possible with either emulation or paravirtualization.

As our discussion suggests, it is quite likely that a VMM
can employ many different techniques for I/O
virtualization concurrently. For instance, in the context of
hybrid VMM, direct assignment might be used to assign a
platform physical device to a particular guest VM, whose
responsibility it is to share that device with many guests.
Depending upon the needs and requirements of the guest,
it may offer both emulated device models, as well as
paravirtualized solutions to the different guests. A
common configuration is to provide paravirtualized
solutions for the most common guest environments, while
an emulation solution is offered to support all other legacy
environments.

IOVM Architecture

A major emerging trend among developers of
virtualization software, in particular for I/O processing
and sharing, is the VMM system decomposition.

The trend for the software architecture of VMMs is to
move from a monolithic hypervisor model towards a
software architecture that decomposes the VMM into a
very thin privileged “micro-hypervisor” that resides just
above the physical hardware, and one or more special-
purpose VMs that are de-privileged relative to the
hypervisor, and are responsible for services and policy.
With regard to I/O virtualization, these deprivileged
components of the VMM can be responsible for I/O
processing and I/O resource sharing. We call this general
architecture the “IOVM” model (see Figure 4). The
IOVM model is a generalization of the hybrid VMM
architecture in that I/O devices can be allocated to
different service VMs specialized for the specific 1/O
function (e.g., network VM, storage VM, etc.).

Two major benefits of the IOVM model are the ability to
use unmodified device drivers within the IOVM and the
isolation of the physical device and its driver(s) from the
other guest OSs, applications, and hypervisor. The use of
unmodified drivers is possible because these drivers can
run in a separate OS environment, in contrast to a
monolithic hypervisor where new drivers are often written
for the VMM environment. The isolation of the device
and its driver protect the guest VMs from driver crashes,
that is, the IOVM may crash due to a driver failure
without severely affecting the guest OSs. A disadvantage
of the IOVM model is that there is additional overhead
incurred, due to additional communication and data
movement between the guest OS and the IOVM. This
performance penalty can be offset by paravirtualizing the
interface of the IOVM, thus minimizing the number of
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interactions. The Xen VMM has implemented this
architecture as “Isolated Driver Domains” [6], and
Microsoft is in the process of developing a version of this
architecture in their next generation of VMMs [7].

Direct assignment of I/O devices to IOVMs directly
facilitates this usage model and is becoming increasingly
important as VMMSs are transitioning to this architecture.
As we have seen, however, software by itself is not
capable of fully protecting the system from errant DMA
traffic between the I/O device and system memory while
at the same time eliminating all device-specific
functionality in the VMM. Hardware support on the
platform closes this gap, by allowing the device to be
safely assigned to an IOVM, thus allowing full protection
from errant DMA transfers.

Guest
. Apps
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Figure 4: IOVM software architecture

PLATFORM HARDWARE SUPPORT FOR
I/0 VIRTUALIZATION

To enforce the isolation, security, reliability, and
performance benefits of direct assignment, we need
efficient hardware mechanisms to constrain the operation
of I/0 devices. The primary I/O device accesses that
require this isolation are device transfers (DMAs) and
interrupts. CPU virtualization mechanisms are sufficient
to efficiently perform device discovery and schedule
device operations.

Accordingly, VT-d [12] provides the platform hardware
support for DMA and interrupt virtualization.

DMA Remapping

DMA remapping facilities have been implemented in a
variety of contexts in the past to facilitate different usages.
In workstations and server platforms, traditional I/O
memory management units (IOMMUs) have been
implemented in PCI root bridges to efficiently support

scatter/gather operations or I/O devices with limited DMA
addressability [17]. Other well-known examples of DMA
remapping facilities include the AGP Graphics Aperture
Remapping Table (GART) [18], the Translation and
Protection Table (TPT) defined in the Virtual Interface
Architecture [14], and subsequently influencing a similar
capability in the InfiniBand Architecture [16] and Remote
DMA (RDMA) over TCP/IP specifications [19]. DMA
remapping facilities have also been explored in the
context of NICs designed for low latency cluster
interconnects [15].

Traditional IOMMUSs typically support an aperture-based
architecture. All DMA requests that target a programmed
aperture address range in the system physical address
space are translated irrespective of the source of the
request. While this is useful for handling legacy device
limitations (such as limited DMA addressability or
scatter/gather capabilities), they are not adequate for I/O
virtualization usages that require full DMA isolation.

The VT-d architecture is a generalized IOMMU
architecture that enables system software to create
multiple DMA protection domains. A protection domain
is abstractly defined as an isolated environment to which a
subset of the host physical memory is allocated.
Depending on the software usage model, a DMA
protection domain may represent memory allocated to a
VM, or the DMA memory allocated by a guest-OS driver
running in a VM or as part of the VMM itself. The VT-d
architecture enables system software to assign one or more
I/0O devices to a protection domain. DMA isolation is
achieved by restricting access to a protection domain’s
physical memory from I/O devices not assigned to it,
through address-translation tables.

The 1/0 devices assigned to a protection domain can be
provided a view of memory that may be different than the
host view of physical memory. VT-d hardware treats the
address specified in a DMA request as a DMA virtual
address (DVA). Depending on the software usage model,
a DVA may be the Guest Physical Address (GPA) of the
VM to which the I/O device is assigned, or some
software-abstracted virtual I/O address (similar to CPU
linear addresses). VT-d hardware transforms the address
in a DMA request issued by an I/O device to its
corresponding Host Physical Address (HPA).

Figure 5 illustrates DMA address translation in a multi-
domain usage. I/O devices 1 and 2 are assigned to
protection domains 1 and 2, respectively, each with its on
view of the DMA address space.
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Figure 6 illustrates a PC platform configuration with VT-d
hardware implemented in the north-bridge component.
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Figure 6: Platform configuration with VT-d

Mapping Devices to Protection Domains

To support multiple protection domains, the DMA
remapping hardware must identify the device originating
each DMA request. The requester identifier of a device is
composed of its PCI Bus/Device/Function number
assigned by PCI configuration software and uniquely
identifies the hardware function that initiated the request.
Figure 7 illustrates the requester-id as defined by the PCI
specifications [20].

1
5 a7 32 o

Bus # Device # Function #

Figure 7: PCI requester identifier format

VT-d architecture defines the following data structures for
mapping I/O devices to protection domains (see Figure 8):

e Root-Entry Table: Each entry in the root-entry table
functions as the top-level structure to map devices for
a specific PCI bus. The bus-number portion of the
requester-id in DMA requests is used to index into the
root-entry table. Each present root entry includes a
pointer to a context-entry table.

e Context-Entry Table: Each entry in the context-entry
table maps a specific I/O device on a bus to the
protection domain to which it is assigned. The device
and function-number portion of the requester-id is
used to index into the context-entry table. Each
present context entry includes a pointer to the address
translation structures used to translate the address in
the DMA request.
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Figure 8: Device mapping structures

Address Translation

VT-d architecture defines a multi-level page-table
structure for DMA address translation (see Figure 9). The
multi-level page tables are similar to IA-32 processor
page-tables, enabling software to manage memory at 4 KB
or larger page granularity. Hardware implements the page-
walk logic and traverses these structures using the address
from the DMA request. The number of page-table levels
that must be traversed is specified through the context-
entry referencing the root of the page table. The page
directory and page-table entries specify independent read
and write permissions, and hardware computes the
cumulative read and write permissions encountered in a
page walk as the effective permissions for a DMA request.
The page-table and page-directory structures are always
4 KB in size, and larger page sizes (2 MB, 1 GB, etc.) are
enabled through super-page support.
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Interrupt Remapping

For proper device isolation in a virtualized system, the
interrupt requests generated by I/O devices must be
controlled by the VMM. In the existing interrupt
architecture for Intel platforms, a device may generate
either a legacy interrupt (which is routed through I/O
interrupt controllers) or may directly issue message
signaled interrupts (MSIs) [20]. MSIs are issued as DMA
write transactions to a pre-defined architectural address
range, and the interrupt attributes (such as vector,
destination processor, delivery mode, etc.) are encoded in
the address and data of the write request. Since the
interrupt attributes are encoded in the request issued by
devices, the existing interrupt architecture does not offer
interrupt isolation across protection domains.

The VT-d interrupt-remapping architecture addresses this
problem by redefining the interrupt-message format. The
new interrupt message continues to be a DMA write
request, but the write request itself contains only a
“message identifier” and not the actual interrupt attributes.
The write request, like any DMA request, specifies the
requester-id of the hardware function generating the
interrupt.

DMA write requests identified as interrupt requests by the
hardware are subject to interrupt remapping. The
requestor-id of interrupt requests is remapped through the
table structure. Each entry in the interrupt-remapping table
corresponds to a unique interrupt message identifier from
a device and includes all the necessary interrupt attributes
(such as destination processor, vector, delivery mode,
etc.). The architecture supports remapping interrupt
messages from all sources including I/O interrupt
controllers (IOAPICs), and all flavors of MSI and MSI-X
interrupts defined in the PCI specifications.

Software Usages of DMA and Interrupt
Remapping

The VT-d architecture enables DMA and interrupt
requests from an I/O device to be isolated to its assigned
protection domain. This capability makes possible a
number of usages:

e  Remapping for legacy guests: In this usage an I/O
device is assigned directly to a VM running a legacy
(virtualization unaware) environment. Since the guest
OS has the guest-physical view of memory in this
usage, the VMM programs the DMA remapping
structures for the I/0O device to support appropriate
GPA to HPA mappings. Similarly, the VMM may
program the interrupt-remapping structures to enable
the interrupt requests from the I/O device to target the
physical CPUs running the appropriate virtual CPUs
of the legacy VM.

e  Remapping for IOMMU-aware guests: An OS may
be capable of using DMA and interrupt remapping
hardware to improve its OS reliability or for handling
specific I/O-device limitations. When such an OS is
running within a VM, the VMM may expose virtual
(emulated or paravirtualized) remapping hardware to
the VM. The OS may create one or more protection
domains each with its own DMA Virtual Address
(DVA) space and program the virtual remapping
hardware structures to support DVA to Guest
Physical Address (GPA) mappings. The VMM must
virtualize the remapping hardware by intercepting
guest accesses to the virtual hardware and shadowing
the virtual remapping structures to provide the
physical hardware with structures for DVA to HPA
mappings. Similar page table shadowing techniques
are commonly used by the VMM for CPU MMU
virtualization.

Hardware Caching and Invalidation
Architecture

To improve DMA and interrupt-remapping performance,
the VT-d architecture allows hardware implementations to
cache frequently used remapping-structure entries.
Specifically, the following architectural caching constructs
are defined:

e Context Cache: Caches frequently used context
entries that map devices to protection domains.

e PDE (Page Directory Entry) Cache: Caches
frequently used page-directory entries encountered by
hardware during page walks.

e JOTLB (I/0 Translation Look-aside Buffer): Caches
frequently used effective translations (results of the
page walk).
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e Interrupt Entry Cache: Caches frequently used
interrupt-remapping table entries.

These caching structures are fully managed by the
hardware. When updating the remapping structures, the
software is responsible for maintaining the consistency of
these caches by invalidating any stale entries in the

caches. VT-d architecture defines the following
invalidation options:
e Synchronous  Invalidation:  The  synchronous

invalidation interface uses a set of memory-mapped
registers for software to request invalidations and to
poll for invalidation completions.

e Queued Invalidation: The queued-invalidation
interface uses a memory-resident command queue for
software to queue-invalidation requests. Software
synchronizes invalidation completions with hardware
by submitting an invalidation-wait command to the
command queue. Hardware guarantees that all
invalidation requests received before an invalidation-
wait command are completed before completing the
invalidation-wait command. Hardware signals the
invalidation-wait command completion either through
an interrupt or by coherently writing a software-
specified memory location. The queued-invalidation
interface enables usages where software can batch
invalidation requests.

Scaling Address Translation Caches

Caching of the remapping structures enables hardware to
minimize the DMA translation overhead that may
otherwise be incurred when accessing the memory-
resident translation structures. One of the challenges for
DMA-remapping hardware implementations is to
efficiently scale its hardware caching structures. Unlike
CPU TLBs that support accesses from a CPU that is
typically running one thread at a time, the DMA-
remapping caches handle simultaneous DMA accesses
from multiple devices, and often multiple DMA streams
from a device.

This difference makes sizing the IOTLBs in DMA-
remapping hardware implementations challenging,
especially when the hardware design is re-used across a
wide range of platform configurations. An approach to
scaling the IOTLBs is to enable I/O devices to participate
in DMA remapping by requesting translations for its own
memory accesses from the DMA-remapping hardware and
caching these translations locally on the I/O device in a
Device-IOTLB.

To facilitate scaling of address translation caches, PCI
Express* protocol extensions (referred to as Address
Translation Services (ATS)) [22] are being standardized
by the PCI Special Interest Group (PCI-SIG) [21]. ATS

consist of a set of PCI transactions that allow the
optimization of VT-d address translations. These
extensions enable I/O devices to request translations from
the root complex and for the root complex to return
responses for each translation request. I/O devices may
cache the returned translations in its local Device-IOTLBs
and indicate if a DMA request is using un-translated
address or translated address from its Device-IOTLB. To
support usages where software may dynamically modify
the translations, the ATS protocol extensions enable the
root complex to request invalidations of translations
cached in the Device-IOTLB of an I/O device, and for the
I/O devices to return responses indicating when an
invalidation request is completed.

VT-d architecture supports ATS protocol extensions and
enables software to control (through the device-mapping
structures) if an I/O device can issue these transactions.
For DMA requests indicating translated addresses from
allowed devices, VT-d hardware bypasses the DMA-
address translation.

I/0 devices may implement Device-IOTLBs and support
these protocol extensions to minimize performance
dependencies on the DMA-remapping caching resources
in the platform. However, to preserve the security,
isolation, and reliability benefits of DMA remapping,
device implementations must ensure that only translation
responses from the root complex cause entries to be
inserted into the Device IOTLB.

Handling Remapping Errors

Any errors or permission violations detected as part of
remapping a DMA request are treated as a remapping
fault. Unlike CPU page faults, which are restart-able at
instruction boundaries, DMA-remapping faults are not
restart-able due to the posted nature of PCI transactions.
Any DMA write request that generates a fault is blocked
by the remapping hardware, and the DMA read requests
return an error to the device in the read response.
Hardware logs detail DMA requests that cause remapping
faults and use a fault event (interrupt) to inform software
about such faults. For devices that explicitly request
translations, an error detected while processing the
translation request is not treated as a DMA-remapping
fault, but is merely conveyed to the device in the
translation response. This enables such devices to support
device-specific demand page faulting. Demand page
faulting is beneficial for devices (such as graphics
adapters) with large DMA footprints, enabling software to
demand pin the DMA buffers.

FUTURE HARDWARE SUPPORT

While VT-d enables the direct assignment of devices to
guest VMs, it does not directly facilitate the efficient
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sharing of devices across multiple guest VMs. Such
efficient sharing is not feasible without fundamental
changes in the way that devices present their resources to
the platform. Further work is being done in the PCI-SIG
[21] [22] to enhance the PCI Express* specifications to
enable devices to be shared.

Briefly, these extensions enable PCI Express devices to
support multiple virtual functions, each of which can be
discovered, configured, and managed. This allows the
direct assignment of a virtual function to a VM using
VT-d, thus allowing a single physical device to be
sharable among multiple VMs.

The importance and applicability of these sharable PCI
Express devices may be largely dependent upon the
performance requirements, usage model, and market
segment in which they may be deployed.

CONCLUSION

The virtualization of I/O resources is an important step
toward enabling a significant set of emerging usage
models in the data center, the enterprise, and the home.
VT-d support on Intel platforms provides the capability to
ensure improved isolation of I/O resources for greater
reliability, security, and availability.

Specifically, VT-d supports the remapping of /O DMA
transfers and device-generated interrupts. The architecture
of VT-d provides the flexibility to support multiple usage
models that may run un-modified, special-purpose, or
“virtualization aware” guest OSs. The VT-d hardware
capabilities for I/O virtualization complement the existing
Intel VT capability to virtualize processor and memory
resources. Together, this roadmap of VT technologies
offers a complete solution to provide full hardware
support for the virtualization of Intel platforms.

Ongoing and future developments within the virtualization
hardware and software communities will build upon VT-d
to ensure that the requirements for sharing, security,
performance, and scalability are being met. I/O devices
will become more aware of the existence of VT-d to
ensure efficient caching and consistency mechanisms to
enhance their performance. Given the protection provided
by VT-d, future I/O devices will emerge that are sharable
among multiple guest OSs. With VT-d, software
developers can develop and evolve their architectures that
provide fully protected sharing of I/O resources that are
highly available, provide high performance, and scale to
increasing I/0 demands.
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ABSTRACT

Xen* is an open source virtual machine monitor (VMM)
developed at the University of Cambridge to support
operating systems (OSs) that have been modified to run
on top of the monitor. Intel has extended the Xen VMM
to use Intel® Virtualization Technology” (VT) to support
unmodified guest OSs also. This was done for IA-32
Intel® Architecture processors as well as Itanium®
architecture processors.

In this paper we describe the changes that have been
made to Xen to enable this support. We also highlight
the optimizations that have been made to date to deliver
good virtualized performance.

INTRODUCTION

Xen is an open source virtual machine monitor (VMM)
that allows the hardware resources of a machine to be
virtualized and dynamically shared between OSs running
on top of it [1]. Each virtual machine (VM) is called a
Domain, in Xen terminology. Xen provides isolated
execution for each domain, preventing failures or
malicious activities in one domain from impacting
another domain. The Xen hypervisor and Domain0
(Dom0) are a required part of any Xen-based server.
Multiple user domains, called DomainU in Xen
terminology, can be created to run guest OSs.

Unlike the full virtualization solutions offered by the
IBM VM/370*, or VMware’s ESX" and Microsoft’s
Virtual PC product’, Xen began life as a VMM for guest
OSs that have been modified to run on the Xen
hypervisor. User applications within these OSs run as is,
ie., unmodified. This  technique is called

“paravirtualization,” and it delivers near native
performance for the guest OS, only if the guest OSs
source code can be modified.

Xen versions 1.0 and 2.0 use paravirtualization
techniques to support 32-bit platforms and Linux" guests.
They wuse the standard IA-32 protection and
segmentation  architecture for system resource
virtualization. The hypervisor runs in the highest
privilege level ring 0 and has full access to all memory
on the system. Guest OSs use privilege levels 1, 2, and 3
as they see fit. Segmentation is used to prevent the guest
OS from accessing the Xen address space.

Xen 3.0 is the first open-source VMM that uses Intel
Virtualization Technology (VT) to support unmodified
guest OSs as well as paravirtualized guest OSs. Xen 3.0
also added support for 64-bit platforms and 64-bit guests
[9]. Page-level protection is used to protect the 64-bit
hypervisor from the guest.

In this paper, we begin with a brief overview of Intel VT
and then we explain how we extended Xen to take
advantage of VT. We highlight key virtualization issues
for 1A-32, Intel® EM64T¢, and Itanium processors and
explain how they are addressed in Xen 3.0. Finally, we
highlight some of the changes that have been made to the
hypervisor and the device models to improve
performance.

INTEL® VIRTUALIZATION
TECHNOLOGY
Intel VT is a collection of processor technologies that

enables robust execution of unmodified guest OSs on
Intel VT-enhanced VMMs [2]. VT-x defines the
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extensions to the TA-32 Intel Architecture [3]. VT-i
defines the extensions to the Intel Itanium architecture

[4].

VT-x augments IA-32 with two new forms of CPU
operation: virtual machine extensions (VMX) root
operations and VMX non-root operations. The transition
from VMX root operation to VMX non-root operation is
called a VM entry. The transition from a VMX non-root
operation to VMX root operation is called a VM exit.

A virtual-machine control structure (VMCS) is defined
to manage VM entries and exits, and it controls the
behavior of instructions in a non-root operation. The
VMCS is logically divided into sections, two of which
are the guest-state area and the host-state area. These
areas contain fields corresponding to different
components of processor state. VM entries load
processor state from the guest-state area. VM exits save
processor state to the guest-state area and then load
processor state from the host-state area.

The VMM runs in root operation while the guests run in
VMX non-root operation. Both forms of operation
support all four privilege levels (i.e., rings 0, 1, 2, and
3). The VM-execution control fields in the VMCS allow
the VMM to control the behavior of some instructions in
VMX non-root operation and the events that will cause
VM exits. Instructions like CPUID, MOV from CR3,
RDMSR, and WRMSR will trigger VM exits
unconditionally to allow the VMM to control the
behavior of the guest.

VT-i expands the Itanium processor family (IPF) to
enable robust execution of VMs. A new processor status
register bit (PSR.vm) has been added to define a new
operating mode for the processor. The VMM runs with
this bit cleared while the guest OS runs with it set.
Privileged instructions, including non-privileged
instructions like thash, ttag and mov cupid that may
reveal the true operating state of the processor, trigger
virtualization faults when operating in this mode.

The PSR.vm bit also controls the number of virtual-
address bits that are available to software. When a VMM
is running with PSR.vm = 0, all implemented virtual-

address bits are available. When the guest OS is running
with PSR.vim = 1, the uppermost implemented virtual-
address bit is made unavailable to the guest. Instruction
or data fetches with any of these address bits set will
trigger unimplemented data/instruction address faults or
unimplemented instruction address traps. This provides
the VMM a dedicated address space that guest software
cannot access.

VT-i also defines the processor abstraction layer (PAL)
interfaces that can be used by the VMM to create and
manage VMs. A Virtual Processor Descriptor (VPD) is
defined to represent the resources of a virtual processor.
PAL procedures are defined to allow the VMM to
configure logical processors for virtualization operations
and to suspend or resume virtual processors. PAL run-
time services are defined to support performance-critical
VMM operations.

EXTENDING XEN* WITH INTEL VT

Xen 3.0 architecture (Figure 1) has a small hypervisor
kernel that deals with virtualizing the CPU, memory, and
critical I/O resources, such as the interrupt controller.
Dom0 is a paravirtualized Linux that has privileged
access to all I/O devices in the platform and is an
integral part of any Xen-based system. Xen 3.0 also
includes a control panel that controls the sharing of the
processor, memory, network, and block devices. Access
to the control interface is limited to Dom0O. Multiple user
domains, called DomainU (DomU) can be created to run
paravirtualized guest OSs. Dom0 and DomU OSs use
hypercalls to request services from the Xen hypervisor.

When Intel VT is used, fully virtualized domains can be
created to run unmodified guest OSs. These fully
virtualized domains are given the special name of HVMs
(hardware-based virtual machines). Xen presents to each
HVM guest a virtualized platform that resembles a
classic PC/server platform with a keyboard, mouse,
graphics display, disk, floppy, CD-ROM, etc. This
virtualized platform support is provided by the Virtual
I/O Devices module.

In the following sections we describe the extensions to
each of these Xen components.
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Figure 1: Xen 3.0 architecture

Control Panel

We have extended the control panel to support creating,
controlling, and destroying HVM domains. The user can
specify configuration parameters such as the guest
memory map and size, the virtualized disk location,
network configuration, etc.

The control panel loads the guest firmware into the
HVM domain and creates the device model thread
(explained later) that will run in DomO to service
input/output (I/O) requests from the HVM guest. The
control panel also configures the virtual devices seen by
the HVM guest, such as the interrupt binding and the
PCI configuration.

The HVM guest is then started, and control is passed to
the first instruction in the guest firmware. The HVM
guest executes at native speed until it encounters an
event that requires special handling by Xen.

Guest Firmware

The guest firmware (BIOS) provides the boot services
and run-time services required by the OS in the HVM.
This guest firmware does not see any real physical
devices. It operates on the virtual devices provided by
the device models.

For VT-x, we are re-using the open source Bochs BIOS
[5]. We extended the Bochs BIOS by adding Multi-
Processor Specification (MPS) tables [6], Advanced
Configuration and Power Interface (ACPI) tables [7],
including the Multiple APIC Description Table

(MADT). The BIOS and the early OS loader expect to
run in real mode. To create the environment needed by
these codes, we use VMXAssist to configure the VT-x
guest to execute in virtual-8086 mode. Instructions that
cannot be executed in this mode are intercepted and
emulated with a software emulator.

For VT-i, we developed a guest firmware using the
Intel® Platform Innovation Framework for Extensible
Firmware Interface (EFI). This guest firmware provides
all EFI boot services required by IPF guest OSs. It is
compatible with the Developer’s Interface Guide for 64-
bit Intel® Architecture-based Servers (DIG64) and
provides the System Abstraction Layer (SAL), ACPI 2.0,
and EFI 1.10 tables required by IPF guest OSs.

Processor Virtualization

The Virtual CPU module in Xen provides the abstraction
of a processor to the HVM guest. It manages the virtual
processor(s) and associated virtualization events when
the guest OS is executing. It saves the physical processor
state when the guest gives up a physical CPU, and
restores the guest state when it is rescheduled to run on a
physical processor.

For the IA-32 architecture, a VMCS structure is created
for each CPU in a HVM domain (Figure 2). The
execution control of the CPU in VMX mode is
configured as follows:

e Instructions such as CPUID, MOV from/to CR3,
MOV to CRO/CR4, RDMSR, WRMSR, HLT,
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INVLPG, MOV from CR8, MOV DR, and MWAIT
are intercepted as VM exits.

e  Exceptions/faults, such as page fault, are intercepted
as VM exits, and virtualized exceptions/faults are
injected on VM entry to guests.

e External interrupts unrelated to guests are
intercepted as VM exits, and virtualized interrupts
are injected on VM entry to the guests.

e Read shadows are created for the guest CRO, CR4,
and time stamp counter (TSC). Read accesses to
such registers will not cause VM exit, but will return
the shadow values.

VM Exit/Entry 1 VM Exit/Entry

Hypervisor
Read/Write

Hypervisor
Read/Write

Figure 2: VMCS

For the Itanium architecture, a Virtual Processor Block
(VPD) structure is created for each CPU in a HVM
domain. The VPD has similar functionality as the VMCS
in the TA-32 architecture. The virtualization control of
the CPU is configured as follows:

o Instructions such as MOV from/to RR, MOV
from/to CR, ITC/PTC, ITR/PTR, MOV from/to
PKR, MOV from/to IBR/DBR are intercepted as
virtualization faults.

e Instructions such as COVER, BSW are optimized to
execute without virtualization faults.

e Exceptions/faults are intercepted by the VMM, and
virtualized exceptions/faults are injected to the guest
on a VM resume.

e  External interrupts are intercepted by the VMM, and
virtualized external interrupts are injected to the
guest using the virtual external interrupt
optimization.

e Read shadows are created for the guest interruption
control registers, PSR, CPUID. Read accesses to
such registers will not cause virtualization fault, but
will return the shadow values.

e  Write shadows are created for the guest interruption
control registers. Write accesses to such registers
will not cause virtualization fault, but will write to
the shadow values.

An interesting question when designing Xen concerns
the processor features that are exposed to HVM guests.
Some VMMs present only a generic, minimally featured
processor to the guest. This allows the guest to migrate
easily to arbitrary platforms, but precludes the guest
from using new instructions or processor features that
may exist in the processor. For Xen, we are exporting
most CPUID bits to the guest. We clearly need to clear
the VMX bit [Leaf 1, ECX:5], or else the guest may
bring up another level of virtualization. Other bits to be
cleared include machine check architecture (MCA),
because MCA issues are handled by the hypervisor.
Today’s OSs also use model-specific registers to detect
the microcode version on the processor and to decide
whether they need to perform a microcode update. For
Xen, we decided to fake the update request, i.e., bump
the microcode version number without changing the
microcode itself.

Memory Virtualization

The virtual Memory Management Unit (MMU) module
in the Xen hypervisor presents the abstraction of a
hardware MMU to the HVM domain. HVM guests see
guest physical addresses (GPAs), and this module
translates GPAs to the appropriate machine physical
addresses (MPASs).

IA-32 Memory Virtualization
The virtual MMU module supports all page table
formats that can be used by the guest OS.

e ForIA-32

a. it supports 2-level page tables with 4 KB
page size for 32-bit guests.

e  For [A-32 Physical Address Extension (PAE)

a. it supports 2-level page tables with 4 KB
page sizes for 32-bit guests.

b. it supports 3-level page tables with 4 KB
and 2 MB page sizes for 32-bit PAE
guests.

e  For Intel EM64T

a. it supports 2-level page tables with 4 KB
page size for 32-bit guests.
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b. it supports 3-level page tables with 4 KB
and 2 MB page sizes for 32-bit PAE
guests.

c. it supports 4-level page tables with 4 KB
and 2 MB page sizes for 64-bit guests.

For the IA-32 architecture, this module maintains a
shadow page table for the guest (Figure 3). This is the
actual page table used by the processor during VMX
operation, containing page table entries (PTEs) with
machine page-frame numbers. Every time the guest
modifies its page mapping, either by changing the
content of a translation, creating a new translation, or
removing an existing translation, the virtual MMU
module will capture the modification and adjust the
shadow page tables accordingly. Since Xen already has
shadow page table code for paravirtualized guests, we
extended the code to support fully virtualization guests.
The resultant code handles paravirtualized and
unmodified guests in a unified fashion.

Guest Page Table Page Table
Page Directory
PTE:gfn —P
A
PDE.gfn <
. »
Virtual
CR3 » Guest View
Page Table
Shadow Page Table
Page Director
£ > PTE:mfn [—

PDE:mfn

\ 4

Xen Hypervisor

gfn: Guest Page Frame Number

mfn: Machine Page Frame Number

Figure 3: Shadow page table

From a performance point of view, the shadow page
table code is the most critical for overall performance.
The most rudimentary implementation includes the
construction of shadow page tables from scratch every
time the guest updates CR3 to request a TLB flush. This,
however, will incur significant overhead. If we can tell
which guest page table entries have been modified, we
just need to clean up the affected shadow entries,
allowing the existing shadow page tables to be reused.

The following algorithm is used to optimize shadow
page table management:

e  When allocating a shadow page upon page fault
from the guest, write protect the corresponding
guest page table page. This allows you to detect any
attempt to modify the guest page table. For this to
work, you need to find all translations that map the
guest page table page. There are several
optimizations for this as discussed below.

e Upon page fault against a guest page table page,
save a ‘“snapshot” of the page and give write
permission to the page. The page is then added to an
“out of sync” list with the information on such an
attempt (i.e., which address, etc.). Now the guest
can continue to update the page.

e  When the guest executes an operation that results in
the flush TLB operation, reflect all the entries on the
“out of sync list” to the shadow page table. By
comparing the snapshot and the current page in the
guest page table, you can update the shadow page
table efficiently by checking if the page frame
numbers in the guest page tables are valid (i.e.,
contained in the domain).
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Virtualization

Guest | Hypervisor
Per VP machine VHPT
Machine TLR
I TLB Miss =
—— (s
Guest memory| .;" el ~
e TC
ACCeSS
2, Lookup \'m-‘l"/r‘- ~ O
3 Not $outid & "‘-—--
.\TF Lookup oL % 2\ Insert T0R
software LB g
TR =
2 A\ -1 Tnsert TIB
Py el
- TC
~ o .
3B-3. Injec{ fault 5
i (Rl WMI0 -2, W0\ Mo
Emulation Y Emulation
 —
| Per VP software TLB

Figure 4: IPF TLB virtualization

The Itanium processor architecture defines Translation
Register (TR) entries that can be used to statically map a
range of virtual addresses to physical addresses.
Translation Cache (TC) entries are used for dynamic
mappings. Address translation entries can reside in either
the TLB or in a Virtual Hash Page Table (VHPT). On a
TLB miss, a hardware engine will walk the VHPT to
extract the translation entry for the referenced address
and insert the translation into the TLB.

Figure 4 illustrates the TLB virtualization logic in Xen.
We extended the Xen hypervisor to capture all TLB
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insertions and deletions initiated by a guest OS. This
information is used to maintain the address translation
for the guest. Two new data structures are added to Xen:

e The Machine VHPT is a per virtual CPU data
structure. It is maintained by the hypervisor and
tracks the translations for guest TR and TC entries
mapping normal memory. It is walked by the
hardware VHPT walker on a TLB miss.

The Itanium processor architecture defines two
formats for the VHPT. The short-format VHPT is
meant to be used by an OS to implement linear page
tables. The long-form VHPT has a larger foot print
but supports protection keys and collision chains.
We have extended the Xen hypervisor to use the
long-form VHPT.

e The guest software TLB structure is used to track
guest TRs and TCs mapping memory mapped 1/O
addresses or less than preferred page table entries.
Access to these addresses must be intercepted and
forwarded to the device model.

Region Identifier (RID) is an important component of
the Itanium architecture virtual memory management
system. It is used to uniquely identify a region of virtual
address. Per Itanium architecture specifications, RID
should have at least 18 bits and at most 24 bits. The
exact number of RID bits implemented by a processor
can be found by using the PAL_VM_SUMMARY call.
An address lookup will require matching the RID as well
as the virtual address.

Each IPF guest OS thinks it has unique ownership of the
RIDs. If you allow two VT-i domains to run on the same
processor with the same RID, you need to flush the
machine TLB whenever a domain is switched out. This
will have a significant negative impact on system
performance.

The solution we used for Xen is to partition the RIDs
between the domains. Specifically, we reserved several
high-order bits from the RID as the guest identifier. The
machine RID used for the guest is then a concatenation
of the guest ID and the RID managed by the guest itself.

Machine_rid=guest_rid + (guest_id << 18)

As an illustration, if we have a CPU that support a 24-bit
RID, the guest firmware inside the VT-i guest will report
only 18-bit RID to the guest. The actual 24-bit RID
installed into the machine will have the guest identifier
in the upper 6-bit.

We also need two more RIDs per domain for guest
physical mode emulation. The guest physical mode
accesses are emulated by using a virtual address with

special RIDs. This restricts the total number of IPF
guests to 63.

This is a reasonable solution when the number of
concurrent guests is limited and the guests are not
running millions of processes concurrently. A more
elaborate scheme is needed if this assumption is not true.

Device Virtualization

Figure 5 illustrates the device virtualization logic in Xen.
The Virtual I/O devices (device models) in DomO
provide the abstraction of a PC platform to the HVM
domain. Each HVM domain sees an abstraction of a PC
platform with a keyboard, mouse, real-time clock, 8259
programmable interrupt controller, 8254 programmable
interval timer, CMOS, IDE disk, floppy, CDROM, and
VGA/graphics.

To reduce the development effort, we reuse the device
emulation module from the open source QEMU project
[8]. Our basic design is to run an instance of the device
models in Dom0O per HVM domain. Performance critical
models like the Programmable Interrupt Timer (PIT) and
the Programmable Interrupt Controller (PIC), are moved
into the hypervisor.

Domain0 HVM
oS
A
: A
intercept
1/O done I/0 Request Resume
Hypervisor

Figure 5: I/0 Device virtualization

The primary function of the device model is to wait for
an I/O event from the HVM guest and dispatch it to the
appropriate device emulation model. Once the device
emulation model completes the I/O request, it will
respond back with the result. A shared memory between
the device model and the Xen hypervisor is used for
communication of I/O request and response.

The device model utilizes Xen’s event channel
mechanism and waits for events coming from the HVM
domain via an event channel, with appropriate timeouts
to support the internal timer mechanisms within these
emulators.
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I/O Port Accesses

We set up the I/O bitmap to intercept I/O port accesses
by the guest. At each such VM exit, we collect exit
qualification information such as port number, access
size, direction, string or not, REP prefixed or not, etc.
This information is packaged as an I/O request packet
and sent to the device model in Dom0.

Following is an example of an I/O request handling from
a HVM guest:

1. VM exit due to an I/O access.
2. Decode the instruction.

3. Make an I/O request packet (ioreq_t) describing the
event.

4. Send the event to the device model in DomO.

5. Wait for response for the I/O port and MMIO
operation from the device model.

6. Unblock the HVM domain.
7. VMRESUME back to the guest OS.

Although this design significantly reduced our
development efforts, almost all I/O operations require
domain switches to DomO to run the device model,
resulting in high CPU overhead and I/O latencies. To
give HVM domains better I/O performance, we also
ported Xen’s Virtual Block Device (VBD) and Virtual
Network Interface (VNIF) to HVM domains.

Memory-Mapped I/0 Handling

Most devices require memory-mapped I/O to access the
device registers. Critical interrupt controllers, such as
I/0 APIC, also require memory-mapped I/O access. We
intercept these MMIO accesses as page faults.

On each VM exit due to page fault, you need to do the
following:

e Check the PTE to see if the guest page-frame
belongs to the MMIO range.

e If so, decode the instruction and send an I/O request
packet to the device model in Dom0.

e  Otherwise, hand the event to the shadow page code
for handling.

The Itanium processor family supports memory-mapped
I/O only. It implements the above logic in the page fault
handler.

Interrupts Handling

The real local APICs and I/O APICs are owned and
controlled by the Xen hypervisor. All external interrupts
will cause VM exits. Interrupts owned by the hypervisor
(e.g., the local APIC timer) are handled inside the

hypervisor. Otherwise the handler in DomO is used if the
interrupt is not used by the hypervisor. This way the
HVM domain does not handle real external interrupts.

The HVM guests only see virtualized external interrupts.
The device models can trigger a virtual external interrupt
by sending an event to the interrupt controller (PIC or
APIC) device model. The interrupt controller device
model then injects a virtual external interrupt to the
HVM guest on the next VM entry.

Virtual Device Drivers

The VBD and VNIF are based on a split driver pair
where the front-end driver runs inside a guest domain
while the backend driver runs inside DomO or an I/O
VM. To port these drivers to HVM domains, we have to
solve two major challenges:

1. Define a way to allow the hypervisor to access data
inside the guest, based on a guest virtual address.

We solved this problem by defining a
copy_from_guest() hypercall that will walk the
guest’s page table and map the resulting physical
pages into the hypervisor address space.

2. Define a way to signal Xen events to the virtual
drivers. This must be done in a way that is
consistent with the guest OSs device driver
infrastructure.

We solved this problem by implementing the driver
as a fake PCI device driver with its own interrupt
vector. This vector is communicated to the
hypervisor via a hypercall. Subsequently, the
hypervisor will use this vector to signal an event to
the virtual device driver.

The send performance of the VNIF ported this way
approximates that of the VNIF running in
paravirtualized DomU. The receive throughput is lower.
We are continuing our investigation.

PERFORMANCE TUNING VT-X GUESTS

In this section we describe the performance tuning
exercise done to date for VT-x guests. The classic
approach is to run a synthetic workload inside an HVM
domain and compare the performance against the same
workload running inside an identically configured
paravirtualized domain. But to understand why the
domain operates the way it does, we have to extend tools
like Xentrace and Xenoprof to support HVM domains
also.

Xentrace is a tool that can be used to trace events in the
hypervisor. It can be used to count the occurrence of key
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events and their handling time. We extended this tool to
trace VT-x specific information such as VM exits,
recording the exit cause and the handling time.

Xenoprof is a port of OProfile to the Xen environment.
It is a tool that uses hardware performance counters to
track clock cycle count, instruction retirements, TLB
misses, and cache misses. Each time a counter fires,
Xenoprof samples the program counter, thus allowing a
profile to be built for the program hotspots. The original
Xenoprof supports paravirtualized guests only. We
extended this tool to support HVM domains.

A typical tuning experiment proceeds as follows:

1. Run a workload and use Xentrace to track the VM
exit events occurring during the run.

2. Run a workload and use Xenoprof to profile the
hotspots in the hypervisor.

We observed the bulk of the exits is caused by I/O
instruction or shadow page table operations. 1/O
instructions have the longest handling time, requiring a
context switch to Dom(. At one stage of our tuning
experiment, 40% of the hypervisor time was spent in the
shadow code.

Based on the above findings, we focused on tuning the
I/O handler code and improving the shadow page
handling.

e From the Xentrace result, we observed that the
majority of the guest I/O accesses are to the PIC
ports. This is because the guest timer handler needs
regular access to PIC ports. By moving the PIC

model to the hypervisor, we dramatically reduced
the PIC handling time. Kernel build performance
improved 14% and the CPU2k benchmark improved
by 7%.

The original QEMU IDE model handles IDE DMA
operations in a synchronous fashion. When a guest
starts an IDE DMA operation, the QEMU model
will wait for the host to complete the DMA request.
We added a new thread to handle DMA operations
in an asynchronous fashion. This change increased
guest kernel build performance by 8%.

The original QEMU NIC model is implemented
using a polling loop. We changed the code to an
event driven design that will wait on the packet file
descriptors.  This  change improved SCP
performance by 10—40 times.

The original QEMU VGA model emulated a
graphics card. When the guest updates the screen,
each video memory write causes a VM exit, and
pixel data have to be forwarded to a VGA model in
Dom0O. To speed up graphics performance, we
implemented a shared memory area between the
QEMU model and the HVM guest. Guest video
memory write will no longer cause a VM exit. The
VGA model will update the screen periodically
using data in the shared memory area. This
improved XWindow performance dramatically by
5-1000 times.
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Figure 6: Performance comparison of paravirtualized vs. VT-x domain

BENCHMARK PERFORMANCE

Figure 6 compares the system performance results
reported by various benchmarks when running in an
identically configured paravirtualized domain and a VT-
x domain. The performance of the same benchmark in a
native environment is used as a reference. The data are
collected on an Intel® S3E2340 platform, with
2.3 GHz/800 MHz FSB dual-core Intel® Xeon®
processor, 4 GB of DDR2 533 MHz memory, a 160 GB
Seagate SATA disk and an Intel® E100 Ethernet
controller. RHEL4U1 is used as the OS in Dom0O, DomU,
and VT-x domains. Dom0 is configured with two virtual
CPUs and 512 MB of memory. DomU and the VT-x
domains are configured with a single virtual CPU with
512 M of memory and a 20 GB physical partition as its
virtual disk.

CURRENT STATUS

As of this writing, Xen is under active development by
Intel and various partners in the community. Readers
interested in the latest status should consult the xen-
devel* or xen-user* mailing list. Novell and RedHat are
incorporating Xen into their upcoming releases. Virtual

Iron and XenSource are developing products that will
leverage Xen and Intel Virtualization Technology.
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ABSTRACT

Intel’s Embedded IT (EIT) strategy focuses on defining
a set of usages aimed at benefiting IT departments and
home PC customer support by providing advanced and
remote capabilities for provisioning, manageability,
diagnostics, and remediation of the client (desktop and
mobile) platform. EIT leverages key platform
technologies supported on Intel® vPro  technology
platforms and select digital home platforms, including
Intel® Virtualization Technology” (VT), Intel® Active
Management Technology® (AMT), and dual-core
processors to deliver an innovative framework on which
these capabilities may be implemented and enhanced.

One of these EIT usages enabled through the use of Intel
VT is the Client Isolation and Recovery (CIR) usage
model that emphasizes isolating manageability and
security services in a virtual manageability appliance. IT
departments benefit from this ability to isolate key
services from end-user access while still maintaining the
same level of flexibility and performance for end-user
services. Additionally, the strategy anticipates that the
manageability appliance will provide a rich environment
for innovation for software vendors. The CIR usage
model provides the ability to remotely manage the client
PC during times when the primary operating
environment is unavailable.

The other key usage models defined by EIT include
Embedded PC Health, End-point Access Control,

Outbreak Containment, and Agent Integrity and
Assurance. The capabilities of these models are
enhanced by the presence of Intel VT via isolation of the
execution environments required by the IT manager
compared to those exposed to the end user. In this paper
we discuss how Intel VT enables a virtualized
environment for a host of provisioning manageability
and diagnostic applications for the IT professional.

INTRODUCTION

Intel® microprocessors and chipsets that support Intel
Virtualization Technology (VT) make it feasible to run
multiple operating systems (OSs) concurrently [1]. This
enables the execution of multiple distinct protected
execution environments that run in parallel. One such
environment, the services or manageability partition,
provides an isolated, controlled, and protected
environment to support Embedded IT (EIT) on the
platform.

EIT is Intel’s strategy of embedding capabilities on the
platform that enhance the overall manageability,
security, and maintainability of the platform. The usages
that define EIT in the business or office environment
create a compelling value proposition for the use of
virtualization technology on the platform. The
challenges faced in the home computing environment
present an opportunity to explore some of the key
differentiators between the business and home
computing environments.
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The Intel® Lightweight Virtual Machine Monitor
(LVMM) is a Virtual Machine Monitor (VMM) that
partitions a client platform into two execution
environments, using Intel VT, known as VT-x [2]. An
execution environment is referred to as a virtual machine
(VM) or a partition. One partition is the main user
partition, and it can run a shrink-wrapped OS such as
Windows XP'. The second partition is a services
partition that runs a headless OS in an isolated execution
environment. The user partition owns all the devices on
the platform except for the network interface controllers.
The latter are owned by the services partition, providing
an ability to monitor and/or filter network traffic.
Management applications that run in the services
partition provide a remote console the ability to
administer the client system.

In this paper we first present an overview of EIT and the
capabilities that are enabled through the use of Intel VT.
Next, we discuss the implications of using EIT in the
home environment and follow that by an explanation of
the VMM solution that we implemented for client
virtualization. Finally, we conclude with a discussion of
the implication of EIT on performance in the mobile
environment.

EIT IN THE OFFICE

Enterprise IT departments are being asked to secure and
manage an increasingly heterogeneous enterprise
computing environment with less and less resources. IT
departments face the need to satisfy multiple end-user
client usage models and support requirements.
Additionally, the IT manager faces a substantial increase
in attacks to mission-critical applications and services
with for hire attacks becoming more prevalent. As the
enterprise increases in size, the scalability of existing
manageability solutions is becoming a serious issue.
Manageability solutions that require human intervention
to discover, diagnose, and remediate system problems
cannot scale to meet the requirements of large enterprise
computing [4, 5]. One solution to these problems is to
rely on the client platform’s capability to secure,
discover, diagnose, and remediate itself. In order for this
to occur, manageability and security features need to be
“embedded” into the client platform.

EIT Usage Models

Based on the issues IT departments face in managing
their assets we came up with a set of usages that provide
the capabilities required to address these issues. In this
section we describe these usages and discuss how they
address the challenges.

Client Isolation and Recovery

Among the challenges IT departments face today is the
need to satisfy multiple end-user client usage models and
support requirements. In response to these greatly varied
requirements, the end user may even be granted
“Administrator” rights on the client PC to install the
custom software and hardware required to perform a
specific job. Unfortunately, in this scenario, the end user
leverages this access to install additional, non-IT
validated software and hardware or disable IT security
services. This results in unstable and unsecured PC
configurations threatening the overall enterprise
environment. Even though this additional un-validated
software and hardware causes problems, end users still
expect IT to support them when the client PC services
and data stored on the PC become unreliable and
unavailable, regardless of what the end-user Service
Level of Agreement stipulates.

IT departments benefit from the ability to isolate key
manageability and security services from end-user access
while still maintaining the same level of flexibility and
performance for end-user services. The Digital Office
Embedded IT platform strategy emphasizes isolating
manageability and security services to a virtual
manageability appliance based on Intel VT via the CIR
usage model. Additionally, the strategy anticipates that
the manageability appliance will provide a rich
environment for manageability and security vendors to
innovate their product offerings. The CIR usage model
provides the ability to remotely manage the client PC
during times when the primary operating environment is
unavailable. IT needs this “out-of-band” management
capability in the client PCs to enable support when the
end user most desires it.

The user of a CIR-enabled platform is a corporate user.
The user is aware of the primary operating environment
referred to as the User OS (the User Partition). IT
management software runs isolated from the user’s OS in
its own appliance-like virtual Service Partition. In fact,
the end user has no knowledge or awareness that the
virtual Service Partition exists. Within the Service
Partition a Service OS is used to provide an environment
for IT manageability services to do the following:

e Disable malicious code or user actions.

e Prevent invalid/unsecured client configurations from
adversely affecting resources on the production
network.

e  Patch or repair infected clients.

e Prevent situations when a worm or user deletes
critical OS files.
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Below are use cases of a CIR-enabled system. They are
stated as problems from the customer’s (either end-user
or IT department) point of view.

e  Virus detection and containment.

e  Malicious code or the user can disable features such
as Intrusion Detection, Firewall Capabilities, and
Asset Management.

e Content access enforcement differs based on
environment and location.

e Clients that have an invalid or unsecured
configuration can adversely affect other clients on a
production network.

e Infected clients cannot be patched or repaired.

e A worm or the user deleted critical OS files.

Endpoint Access Control

The Endpoint Access Control (EAC) usage, also known
as Network Access Control, is a major feature of the
Digital Office initiative. In the EAC, usage client access
to an enterprise is contingent on the client platform being
in an acceptable state. The enterprise determines the
parameters of acceptability expressed in the form of an
access policy. The policy is interpreted by a Policy
Decision Point (PDP), which in response controls Policy
Enforcement Points (PEPs) that respond by controlling
access. Access controls can include any of the following:

e Unrestricted access.
e  Conditional access based on traffic filtering.

e Restricted access where only specific resources are
accessible.

EAC follows a methodology that can be broken down
into the following general steps:

e  (Collection—monitoring, reading and storage of
security measurements of the client system.

e  Reporting—formatting collected measurements for
consumption by a PDP.

e  Evaluation—interpretation of reports and
organizational policies.

e Enforcement—applies access control rules.

e  Remediation—applies configuration rules designed to
bring the platform into compliance.

The EIT strategy emphasizes distribution of PDP
functionality to an Intel VT Service Partition through
delegation. EAC policies relating to the evaluation of
measurements is provisioned to a Service Partition-
hosted PDP process. This process may evaluate
measurements directly and forward a summary to the
enterprise PDP, or measurements may be forwarded
unmodified. The PDP response is interpreted by the
Service Partition-hosted PDP process, and it maps the
result to a format and structure that is meaningful to the
client platform. See Figure 1 for the EAC architectural
diagram.

The EIT strategy places a strong emphasis on locating
enforcement mechanisms inside the client platform while
continuing to extend control interfaces to the enterprise
network. Protection of enforcement mechanisms from
user applications is achieved through Intel VT to create a
Service Partition. User applications and OSs function
within a single User Partition. Partitioning of Host and
Management environments provide isolation of EAC
enforcement mechanisms and ensures that threats
originating from the host environment will not defeat the
goals of enterprise-controlled EAC.

The Service Partition is a collection point for host traffic
destined for enterprise networks. Traffic filters that
implement EAC enforcement policies are applied by a
firewall contained in the Service Partition. Use of
hardware-based filters, such as those implemented in the
chipset, is under the control of the firewall process in the
Service OS running in the Service Partition.

The Service Partition is an endpoint of communication
for the platform. When connecting over an entrusted
communication layer, a Virtual Private Network (VPN)
must be constructed to establish a trustworthy
connection to the enterprise network. VPN terminology
broadly refers to any channel security protocol that
provides data integrity or data confidentiality. A VPN
therefore can be constructed at any layer in a network
protocol stack. The client side of the VPN that is used
for EAC originates within the Service Partition (and not
the User Partition). The keys used to authenticate the
endpoint and to protect channel data are managed by the
Service Partition. Use of hardware-based
encryption/decryption of network traffic is controlled by
a VPN management process in the Service Partition.
Even if packets are encrypted/decrypted in a hardware
component, the logical endpoint of communication is
still the VPN process.
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Figure 1: End point access control architecture

Outbreak Containment

Outbreak Containment (OC) provides the capability to
contain the threat once an outbreak is detected. In a
scenario where the client is infected, the client may be
switched to a private network to enable remediation. In
more serious threat scenarios, the client may be powered
off to protect it from the network. In a known threat
scenario, the client is updated with a patch to protect it
against the outbreak.

The OC process starts when an outbreak is declared and
enabled from the Management Console. The process is
enabled by configuring OC filters that enable deep
packet inspection for monitoring network traffic. The
OC Filter Manager analyzes the collected data to assess
the client health and generates a report for appropriate
actions. The report can be either sent to a centralized
Intrusion Prevention System (IPS), a decision-making
system with a database for further analysis (Figure 2).
The IPS will analyze the threat situation aggregating data
from all clients. The Management Console gets the
threat report from the database. If the report indicates a
threat, an IT technician initiates steps to protect against
the threat. In such a situation, the client is isolated from
the network and a trusted out-of-band (OOB) channel is
used to patch the client against the threat from network.

Figure 2: Outbreak containment applied at firewall

Embedded PC Health

Embedded PC Health (EPCH) usage reduces the client
PC lifecycle costs by providing embedded asset
management, provisioning, self-diagnostic, self-repair,
and self-optimization capabilities within the Intel®
platform. This OS-independent framework, based on
AMT, utilizes platform-specific knowledge from Intel’s
processor, chipset and NIC. For details on AMT the
reader is referred to [4].

This framework complements existing activities of
system  vendors  services  organizations, and
manageability framework providers by adding persistent,
secure, and reliable self-managing agents that support
these autonomic frameworks. These programmable
agents offer Independent Software Vendors and Original
Equipment Manufacturers (OEMs) the ability to
differentiate their offerings while benefiting from
standardized capabilities and interfaces. They are
accessible in an OOB mode, allowing for reconnaissance
and management actions even if a PC has not yet been
provisioned with an OS, or if the OS is dysfunctional.

The following is a summary of the main objectives of the
EPCH:

e Deployable: Utilize currently deployed protocols
and services in the IT environment. Minimize the
need to develop and deploy new protocols and
services.

e Highly available: Provide remote management
capabilities regardless of the operational state of the
PC hardware or OS.

e OS-independence: Provide a base set of platform
management functions and interfaces regardless of
the OS type or version installed on the PC.

o  Tamper-resistant. Prevent the end user from
removing or disabling the remote management
service.

Security Implications

The addition of virtualization, service partition, and
management processors to address security and
reliability goals may seem at first counter productive due
to increased overall complexity. Complexity implies
greater opportunity for vulnerabilities to remain hidden
and the threat of new attacks to continue.

The good news is EIT adds complexity where it is
needed; it creates safer execution environments and
improves the ability to detect and prevent attacks.
Among these improvements is boot verification. A
technique relied upon by malware is to silently install
attack code into core OS files and in boot code. Each
time the system boots, the malware is reinserted and
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reinvoked. Anti-virus scanners are helpful, but can be
spoofed by compromised OS code that lies about its
existence.

In EIT systems, only code that is approved by IT or its
manufacturer can be loaded. If attack code is successful
in inserting itself into the system, the EIT verified boot
procedure will detect the modification and apply an
appropriate remediation action that can include failing to
load the attack code or booting a safe-mode environment
that hasn’t been compromised.

Even legitimate code contains vulnerabilities that can be
exploited by attackers. For example, a network driver is
always subject to attacks on the networking protocols. If
an attacker is successful in exploiting a vulnerability, the
executable code in memory could become compromised.
As systems become more reliable, they reboot less often
making active attacks to memory more profitable to
attackers. EIT is countering this threat by monitoring
memory pages that should not change or should change
in a prescribed way. Monitoring agents serve as integrity
sentinels that notify the VMM whenever an invalid page
access is attempted. The VMM can respond by blocking
such accesses. Integrity Agents are themselves protected
by a VM boundary where direct access between
partitions is not allowed.

Should an attack be successful resulting in compromised
EIT services, the VMM can respond by placing the
platform into a more secure state. This can be achieved
by alerting a management console, blocking I/O, and
causing one or more VMs to cease operating. The latter
is usually applied as a last resort if other corrective
action fails and when a convenient time (for the user)
can be identified. Automated and semi-automated
dismantling of execution environments is analogous to
boot verification; the core principle being that the system
is always able to operate securely.

A fundamental tenet of EIT security mechanisms is the
ability to create isolated execution environments that are
less susceptible to attack. Intel VT and LaGrande
Technology (LT) are instrumental in creating such
environments. LaGrande Technology can be used to
create a trusted environment even when most other parts
of the system become compromised including memory,
disk, and I/O. From this vantage point, it is possible to
construct an environment from any remaining
uncompromised  components. By  incorporating
remediation capabilities into each primitive environment,
actions can be taken that are most appropriate to the
severity of the attack or failure [3].

EIT IN THE HOME ENVIRONMENT

Home IT, EIT for the home space, shares many common
traits with the office EIT challenges and solutions. Like
office EIT users, home users are experiencing an
increasing number of attacks and spyware that degrade
their experience or compromise their personal
information. Home PC support organizations also spend
millions of dollars, and users spend hours on the phone
to diagnose and correct issues with their platforms. In
many cases, both the time and monetary costs of support
can be reduced using the same basic architecture as the
office EIT solution, which allows the support
organization to connect to the platform and diagnose
problem even if the primary operating environment is
unavailable. They both share a common VMM
infrastructure, network isolation, and application model.
The major differences are found in the connectivity
model, privacy requirements, and absence of AMT.

The connectivity model differs from the enterprise
model in that the managed platform is always located
across the open Internet from the service provider and is
highly likely to be located behind a NAT firewall. The
NAT firewall presents challenges that are overcome in a
couple of different ways, which are described later.

Privacy requirements in the home differ considerably
from the enterprise environments. In the United States,
corporate IT has complete access to a platform and all of
the data stored within. This means that no permission
from the user is required before IT administrators are
able to access and maintain the system, access stored
data, etc. In the home space, it is especially important for
users to maintain control over how and when their
platform and data are accessed by the IT service
provider. The Home IT architecture ensures that the user
is always the initiator of all service provider accesses,
has visibility into all actions performed by the remote
administrator, and has the right to restrict access to
sensitive data.

Architectural Implications

The Home IT architecture is similar to that of Office
EIT. The platform is virtualized using the LVMM and
split into two VMs: the User OS (UOS) and Service OS
(SOS). The SOS owns all PCI-based network devices,
such as integrated Ethernet adapters, and virtualizes the
devices into the UOS. The UOS owns all other platform
devices, such as USB controllers, video chipsets, audio
chipsets, and storage devices. A description of the
LVMM is provided in the Client VMM section of this

paper.
The SOS contains the Home IT control applications. The
control applications work with agents in the UOS to
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carry out manageability activities. The control
applications use heartbeats to monitor the operation of
agents in the UOS. If agents are not found to be running,
a control application will signal the UOS to restart them.

The control applications communicate with the IT
service provider using Web services. To request
services, the control applications use Simple Object
Access Protocol (SOAP) messages to the service
provider. The applications accept commands from the
service provider via a Web Services for Management
(WS-MAN) interface. Each command is authenticated
and checked for proper authentication before being
routed to the proper control application for processing.
Commands that require data from, or actions to be
carried out in the UOS, are proxied via VMM channels
to agents in the UOS, which report their status back to
the SOS control applications. Figure 3 describes the
architecture of Home IT systems.

Mgmt
Console
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uos LVMM Comm SOS
Assistance Request Web Services
Interface
Command
Home IT Service Router /
\ Authorization

Remote Diags Remote Diagnostics
Proxy Command Handler
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Figure 3: Home IT systems architecture

Connectivity Model

The primary Home IT connectivity model assumes that
the platform will be located behind a broadband gateway
router that implements a NAT firewall. In this
configuration, the service provider is unable to directly
connect to the SOS control applications as would be the
case in the enterprise LAN configuration. The Home IT
architecture includes two connection methods that can
accommodate SP protocol requirements.

The first connection method is compatible with all
broadband routers with NAT functionality. With this

method, the service provider maintains a rendezvous
server to receive incoming requests from customers.
When the platform user requests assistance, the SOS
control application connects to the rendezvous server
and establishes a mutually authenticated Transport Layer
Security (TLS) channel. Once the user’s request has
been sent to the service provider, the SOS processes
WS-MAN commands over the channel. Service
providers connect to the home platform via the
rendezvous server, which proxies the commands and
results between the management console and the SOS
control application.

The second connection method requires the user’s
broadband router to support the UPnP* Forum’s Internet
Gateway Device (IGD) interface, but adds the flexibility
of service-provider-initiated connections if necessary.
For this method, the service provider maintains a
registration server to receive requests from customers.
When the platform user requests assistance, the SOS
control application selects a random TCP port and uses
the UPnP IGD interface to create a port mapping in the
broadband router. The port mapping allows a connection
from a specific external source to pass through the
broadband router to a specific address and port on the
internal network. The SOS control application then
makes a Web services call to the registration server over
a mutually authenticated TLS connection. The call
submits the home network’s WAN IP and mapped port,
along with the user’s problem statement and basic
system configuration information, to the service
provider. When a technician becomes available to assist
the user, the management console obtains a waiting help
request from the registration server and makes a
mutually authenticated TLS connection to the user with
the supplied WAN parameters. At this point, the
administrator has the same capabilities as with the
previous connection method. The difference is that
multiple connections from the service provider to the
SOS control apps can be created if necessary without
involving the rendezvous server.

Privacy Considerations

In most of the world, the home environment requires a
higher level of user privacy than the corporate
environment. Where the corporate IT typically has
complete access to a platform and its data for any
reason, the home environment should afford the service
provider the minimum necessary access to process user
requests. This can be accomplished via a combination of
policy and technical means.

Policy methods of protection require the service provider
to create the Home IT software in such a way that it does
not violate the user’s rights. For instance, the software
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should not communicate information about the user or
platform to the service provider without the consent of
the user. This includes user activity information and
personal files. Personal files include user-created
documents and anything in regions of the file system
marked private by the user. Application information in
the registry not directly connected to the proper
configuration and operation of the program should also
be out of reach of the service provider.

Technical methods of protection include encrypted or
removable media for personal data, and user-specified
file system filters enforced by the SOS control
applications. Encrypted media is a simple solution that
prevents service providers from gaining access to data
by making it unintelligible, even if it is accessed by the
service provider. Unfortunately, it has a number of key
management complexities that could make it frustrating
to the user. For instance, if the user forgets the
encryption password or loses the encryption token, such
as a smartcard, then the data become unreadable for the
user unless there is an offline backup.

User-specified file system filters are a simple mechanism
that can be enforced by the SOS control application’s
WS-MAN implementation. For this method, the user
creates a list of file system locations that are off-limits to
the Home IT agents in the UOS. The WS-MAN
implementation then applies that filter to incoming
commands from the service provider that either deny
requests that include those file system locations, or
filters the results to exclude those areas.

Authentication and Authorization

It is important to make sure that all parties and
commands are properly authenticated and have the
appropriate authorizations. The Home IT reference
implementation uses mutually authenticated TLS and
WS-security mechanisms to authenticate users. It
employs access control lists in conjunction with WS-
security mechanisms to enforce authorization
constraints.

Authentication ~ of  communicating  parties  is
accomplished via mutually authenticated TLS. When the
SOS control applications for a platform are provisioned,
they are given a unique TLS credential and one or more
TLS root certificates to which the service provider
components must be associated. On connection, the SOS
control agent confirms that the remote party’s certificate
is issued by a valid root, and the service provider
confirms that the SOS credential is valid and likely
confirms that the user’s account is in good standing.
Since both parties possess a TLS credential, either one
may act in the role of TLS “server” for establishing
connections. If the only connection method supported by

a service provider uses the rendezvous server, as
described above, an alternative method of SOS
authentication to the service provider exists. In this case,
unilateral TLS authentication of the rendezvous server
by the SOS control application can be used with a
unique access token in the SOS. The SOS control
application is authenticated via a challenge response
exchange within the TLS tunnel. This reduces the Public
Key Infrastructure (PKI) requirements of the service
provider at the cost of connection flexibility.

The Home IT reference implementation uses an
authorization mechanism based on WS-security with
public key cryptography. For this mechanism, each
administrator holds an authentication key pair used to
sigh WS-MAN commands. The SOS control application
confirms the signature on the command and then checks
an Access Control List (ACL), which includes the file
system privacy filters described previously, that
determines whether or not the command is permitted for
that administrator. When the authorization model is fully
implemented, the administrator does not have to sign
each message, as the public key in the TLS client
certificate shows the identity of the command issuer.

To make administration of permissions for a large
number of administrators fairly easy, the Home IT
authorization mechanism supports administrator groups
and delegations. Administration groups allow the service
provider to define administrator roles and permissions
for each. The authorization mechanism then assigns one
or more roles to the individual administrators.
Administrators include WS-security tokens in the WS-
MAN commands to assert their roles and associated
permissions.

Delegation is supported in the authorization Home IT
reference implementation to allow for situations where
administrators may need to issue one or more commands
that would normally be outside their permissions. In this
case, a second administrator with the necessary
permission issues a security token to the administrator
handling the customer issue that grants the specific
permission for a limited time. The administrator can then
use that token to perform the additional action. It is up to
the service provider policy to ensure that only
appropriate delegations are used.

The combination of roles and delegation enable a
number of useful scenarios for the service provider. For
instance, the service provider can create a role for an
automated triage component on the rendezvous server.
The triage component would be capable of performing
system inventory queries and possibly triggering routine
operations such as virus or spyware scans, but would not
be able to perform actions that modify the platform.
Once the triage operations are complete, the case would
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be passed to an administrator with the appropriate
permissions to perform further diagnosis and repairs if
necessary.

Another scenario involves multiple classes of
administrator. In this case, the typical administrator has
the permissions necessary to carry out common fixes, but
not actions that are more “dangerous,” including certain
registry or driver modifications. If a more restricted
action is necessary, the administrator must obtain a
delegation of permission from a higher class of
administrator, usually after the second administrator has
reviewed the action for correctness.

CLIENT VIRTUAL MACHINE
MONITORS

The Intel® LVMM architecture was designed with
several goals in mind: maximize performance, have low
complexity, maintain user experience, and provide an
isolated execution environment for management
applications that are always accessible and active.

High Performance

The Intel LVMM architecture was designed to maximize
performance. As a result, the VMM itself virtualizes
only the minimal set of devices required for allowing
two distinct execution environments to execute
concurrently, e.g., interrupt controllers and system
timers. The LVMM allows the user partition direct
access to most of the devices and therefore does not
intercept I/O accesses made to those devices. This
minimizes the overhead incurred by the LVMM on the
user partition.

The network traffic of the user partition is handled by
the services partition. The architecture depicted in
Figure 4 shows that the network traffic flows through a
physical NIC driver in the services partition, a bridge
driver that routes the packets between the services
partition network stack and the user partition network
stack. In the user partition, a virtual NIC driver is
responsible for sending all outgoing packets from the
user partition to the bridge driver. The bridge driver
forwards them to the physical NIC driver which in turn
sends on the wire. Incoming packets are forwarded by
the physical NIC driver to the bridge driver. The bridge
driver forwards the incoming packets to the virtual NIC
driver which in turn forwards them up the user partition
network stack. This networking architecture provides a
higher virtualization abstraction level. It performs better
than a virtualization scheme that exposes a NIC device
model to the user partition. In this scheme all the user
partition accesses to the NIC device need to be
intercepted and emulated.

Client VMM Architecture

. Mgmt App Services side

Mgmt App User side

Filter Driver

All /O passed
through to the
User Partition
except for NIC

Figure 4: Client VMM architecture

The services partition has been modified to be aware of
virtualization (paravirtualized). For example, the
services partition interrupt handling is performed using a
generic interrupt controller that is greatly simplified
compared to a standard interrupt controller (e.g.,
Programmable Interrupt Controller a.k.a. 8259). The
paravirtualization of the services partition simplifies the
interaction with LVMM and saves unnecessary context
transitions between them.

Unmodified User Experience

An important goal for the LVMM was to preserve the
same user experience as that of a platform without the
LVMM. The following are design decisions that were
made in order to achieve this goal.

The design of the networking architecture guarantees
that it is transparent to the end user and that the NICs are
controlled by the services partition. All the functionality
of the NICs controlled by the services partition, are
exposed to the user partition. The virtual NIC driver in
the user partition acts as a proxy for the physical NIC
driver executing in the services partition. The bridge
driver in the services partition provides the relay for
packet data and control information between the virtual
NIC driver and the physical NIC driver.

The ACPI policy decisions for configuration and power
management operations of the platform are owned by the
user partition. Any sleep state transition requested by the
user partition is honored by the LVMM and services
partition. For example, if the end user wants to transition
the platform into “stand by” mode (sleep state S3) to
preserve battery life, then the LVMM will eventually
forward the request to the underlying platform. The user
experience is preserved with respect to system power
management, system thermal management, battery life,
and sleep state usage models.
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Isolated Execution Environment

In order to keep the partitions isolated from each other,
there is a need to protect their physical memory from
being tampered with by another partition. Memory
accesses are performed by the CPU (e.g., any move to
memory instruction) and are performed by devices
through Direct Memory Access (DMA) operations.
DMA allows a device with appropriate hardware to
directly access system memory for data transfer without
the intervention of the CPU.

The LVMM and the services partition have to be
protected from memory accesses performed by user
partition code. The LVMM needs to retain control over
the physical memory, and thus over the processor’s
address-translation mechanism. We employ VT-x to
prevent intentional or unintentional memory accesses
from the user partition that may compromise the services
partition or the LVMM.

The LVMM maintains an alternative page-table
hierarchy that effectively caches translations derived
from the hierarchy maintained by the OSs running in the
user and services partitions. VT-x provides the necessary
hooks for the LVMM to keep the alternative page-table
hierarchy consistent with the OSs original page-table
hierarchy. Such a hook is the trap on CR3 change. CR3
points to the base of the page-table hierarchy. Each time
the OS switches to a different page-table hierarchy (i.e.,
changes the CR3 value), then the LVMM gets notified
and switches to an alternative page-table hierarchy that
matches the new OS page-table hierarchy. Since the
LVMM controls the actual page tables, it can prevent a
situation in which one partition has access to another
partition’s or the LVMM’s physical memory. The
LVMM prevents the existence of virtual to physical
translations that map physical pages that do not belong
to the partition.

The LVMM and the services partition have to be
protected also from DMA bus mastering devices mapped
to the user partition. These DMA-capable devices can
access the entire system memory and can intentionally or
unintentionally access (read/write) memory pages
hosting the LVMM and services partition code and data
structures. Such accesses could compromise IT secrets
or render the platform useless by memory corruption.
We employ Intel VT for Directed I/O (VT-d) to prevent
such DMA-based attacks.

VT-d allows two views of the system memory: Guest
Physical Address (GPA) and Host Physical Address
(HPA). The LVMM keeps the HPA view which is the
same as the system physical address space. The user and
services partitions are provided their respective GPA
views. The LVMM maintains shadow page tables to
translate GPA to HPA for accesses from the CPU.

Similarly, using VT-d DMA remapping engines and
corresponding translation tables, the LVMM maintains
GPA-to-HPA mapping for all DMA-capable 1/O devices.
Figure 5 illustrates this usage model.
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Figure 5: VT-d usage model in the client VMM
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The mapping is performed as follows:

= All services partition memory pages are added to
one domain such that only DMA devices mapped to
services partition (NICs) can access these pages.

= All remaining pages (except LVMM and BIOS
reserved) are added to the user partition domain,
and all devices except those mapped to services
partition can access these pages (e.g., 1GFX,
PCI/PCle add-on cards etc.).

= The LVMM and BIOS reserved regions are
protected from DMA accesses by virtue of being
absent from the VT-d translation page tables.

The aforementioned device-to-domain mapping has the
following benefits:

= J/O devices mapped to one domain can’t access the
memory of another domain. For example PCI/PCle
add-on cards in user partitions can’t access the
LVMM or the services partition.

= Device drivers in the services and user partitions run
without any changes to comprehend GPA-to-HPA
mapping. This translation is transparently performed
by VT-d hardware when the device issues an I/O
request using GPA.

If a device misbehaves by trying to access an address
outside of the mapped domain, the VT-d hardware
generates a fault. This fault is captured by LVMM and is
indicated to the services partition. An optional
management application in the services partition can
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process these faults by taking appropriate actions such as
displaying an error message or initiating a platform
reboot, depending on the severity of the fault.

Always Accessible and Active

Management applications in the services partition are
guaranteed connectivity with the external network
allowing the platform to be managed even when the user
partition has been isolated. The NICs are controlled by
the services partition, and any action that the user
partition attempts to make that can compromise the
connectivity of the management applications is blocked.
For example, if an action on the user partition disables
the NIC, then it will get an indication that the NIC is
disabled, although the real NIC remains enabled for use
by the management applications.

This allows the services partition to be always accessible
and reachable by a remote management console, so that
management actions can be initiated.

Moreover, VT-x allows the services partition to run in
parallel to the user partition. This means that the services
partition is always active, and any diagnostics it runs can
always be made available.

DISCUSSION

Intel LVMM vs. General-Purpose VMM

The LVMM is a custom VMM that was tailored for
specific EIT usage models for the enterprise. General-
purpose VMMs allow the user to create VMs that all run
on the same platform. Examples of such general-purpose
VMMs are VMware GSX " and Microsoft’s Virtual PC”.

The main differences between the LVMM and a general-
purpose VMM are as follows:

e Number of partitions: With a general-purpose
VMM, the user can create and run multiple user
partitions. In the case of the LVMM, only one user
partition and a services partition are supported.

e Partition configuration: With a general-purpose
VMM, the user can configure the execution
environment of the partition. For example, the user
can determine how much physical memory is
allocated for the partition, and which OS to install
on it. In the case of the LVMM, the execution
environment of the user partition is the same as
before the LVMM was installed on the system.

e Performance: It can be expected that with a general-
purpose VMM, the performance overheads will be
higher than with the LVMM. This is due to the fact
that devices might not be directly assigned to the

partition, and the VMM might need to emulate some
devices (for use by multiple partitions).

e User experience: With a general-purpose VMM, the
user experience is not preserved as it is with the
LVMM. For example, if the end user wants to
transition the platform into “stand by” mode (sleep
state S3) to preserve battery life, then the LVMM
will eventually forward the request to the underlying
platform. A general-purpose VMM does not allow
the user to directly control the platform. The power
management actions are contained within the
partition itself.

Mobile Performance Implications

The Intel LVMM architecture minimizes the impact on
mobile battery life because, except for the network
interface, the user partition owns all of the devices on the
platform. A native system is a PC not virtualized, and
running a single OS. Power tests executed in Intel’s lab
show the LVMM battery life within 95% of a native
system when running local applications on the mobile
machine. The LVMM achieves this by allowing the UOS
to dictate the power management state of the platform.

The user partition runs an OS that complies with the
Advanced Configuration and Power Interface (ACPI)
specification. When the UOS requests the system to go
to a certain S-state, the following occurs:

1. The LVMM intercepts the command.

2. The LVLMM sends the appropriate command back
to the UOS so the UOS thinks the request has been
executed.

3. The LVMM checks the SOS to see if there is any
activity occurring.

a. If yes, then the LVMM delays forwarding the
S-state command to the platform.

b. If no, then the S-state is forwarded to the
platform, and the platform is placed in a lower
power management state.

c. If the UOS “wakes up” before the S-state
command is executed at the platform level, then
the LVMM will not change the platform power
setting.

The SOS partition to support CIR, EAC, Embedded PC
Health, OC, Security, and EIT in the home are all
valuable usage models; however, when executed on a
mobile machine, these usage models increase the number
of interrupts on the system and impact battery life.
Worse case, a mobile system running LVMM can use
60% of the battery life compared to a native system. In
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this scenario intensive network traffic is occurring non-
stop over a few hours.

Intel’s LVMM architects and developers are working to
improve the battery life by minimizing polling and
interrupts, and optimizing memory footprint and
caching. The mobile architecture team has also been
educating ISVs on how mobile power management
works and what they can do to ensure their software runs
more efficiently to achieve better battery life.

CONCLUSION

As the usage models for virtualizations evolve, and
platforms are enhanced with more capabilities, the
LVMM may extend its capabilities in the following
directions:

e Multiple services partitions—The current services
partition suits the EIT manageability requirements.
Other services partitions may offer other usage
models such as VOIP.

o Standard VMM API-As more VMMs emerge in the
market, there will be a need to standardize the API
provided by the VMMs, so that various applications
will be able to run on different VMMs.

Intel VT  capabilities embedded in Intel’s
microprocessors and chipsets has enabled new
capabilities in client systems (both desktop and mobile).
In this paper we discussed how Intel VT working in
concert with AMT and LT enables the design of novel
solutions for embedding IT capabilities on the client
platform.
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ABSTRACT

Intel® Virtualization Technology® delivers improved
computing benefits for home users, business users, and IT
managers alike. This paper describes the unique
requirements that embedded systems and communications
infrastructure ~ equipment  place on  virtualized
environments and shows how Intel is working with a
number of third parties to extend the benefits of Intel
Virtualization Technology to these market segments.
Bounded real-time performance can be maintained while
using virtualization to consolidate systems; system uptime
can be increased by enabling software failover without
redundant hardware; and software migration can be
performed without bringing down the application.
Virtualization also allows legacy applications to co-exist
with new applications by executing both software
environments in parallel, and it provides the means for
applications to take advantage of multi-core processors
without re-architecting for multi-threaded execution.

INTRODUCTION

As in the desktop, mobile, or IT server domains,
embedded systems and communications infrastructure
equipment can also realize several benefits from
virtualizing the hardware execution environment, so that
multiple operating systems (OSs) can share the common
resources of the hardware platform. These benefits may be
realized in terms of cost reduction (either by reducing
capital costs or operational costs), in terms of increased
performance and functionality, or in terms of increased
system reliability and security. There are also several
different ‘“usage models” (mechanisms by which

virtualization can be used) which provide these benefits.
In this paper we survey several of these models within
embedded and communication systems.

Regardless of the mechanism by which virtualization is
used, one commonality between usage models is that it is
always necessary for an additional layer of software to
exist that schedules the operating systems which share the
hardware platform, manages the resources assigned to
each OS, and saves/restores state when context switching
between the OSs. In this way each OS executes within a
“virtual machine” (VM) rather than on a physical
machine. This additional layer of software, the Virtual
Machine Monitor (VMM), manages the execution of OSs
in much the same way that OSs manage the execution of
applications.

Although the existence of a VMM is common to all usage
models, we shall see that the architecture of these VMMs
is tailored to the constraints of the market segments they
address, and that different design decisions must be made
to optimize the VMM for the specific requirements of
each market segment. It is not only the VMM that is
tailored to different market segments, but also the OSs
that execute within the VMs that must be tailored to the
requirements of these market segments. Whereas a
General Purpose-Operating System (GPOS) such as
Linux*, Microsoft Windows or Microsoft Windows
Server addresses the requirements of desktop or IT server
environments, a different class of OS—the Real-Time
Operating System (RTOS)—is required to address the
requirements of embedded and communications systems.
As we shall see, providing specific real-time behaviors in
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a virtualized environment becomes an overriding factor in
embedded system design.

EMBEDDED VMM DESIGN
CONSIDERATIONS

Embedded systems have requirements that make software
design for these systems different than software design for
a server or desktop environment. These requirements
come from many factors, including the closed nature of
the systems and the real-time workloads that often run on
these systems. The design requirements of these devices
impact the design of VMMs that are targeted to this
environment. Although there are some similarities in the
requirements of many embedded systems, even within the
embedded systems market segments, different vertical
market segments have different requirements. Before Intel
released processors with Intel Virtualization Technology
(Intel VT), the complexity and costs involved in
developing a VMM for different embedded systems
market segments was extremely high. With Intel VT,
however, the unique requirements of embedded systems
can be inexpensively met by targeted products like those
highlighted in this paper.

In this paper, we highlight three design considerations for
VMMs for an embedded system. These design
considerations include the unique isolation requirements,
the prevalence of static VMs, and support for real-time
workloads.

Unique Isolation Requirements

One difference between the requirements of an embedded
VMM and a general-purpose VMM affects how well VMs
are isolated from one another. Most embedded systems
are closed systems, where all of the software is either
written by or installed by a single vendor, and where end
users do not have the flexibility to run their own software.
In some cases this can reduce the isolation requirements
that exist in general-purpose VMMs. In embedded
systems, this reduced isolation often increases
performance or increases the predictability of
performance. In other cases such as security-critical
applications, the isolation requirements are increased
rather than reduced, often to the point of requiring formal
analysis and certification.

There are two examples of optimizations supported by
embedded VMMs that capitalize on reduced isolation
requirements. First, many real-time OSs run without
paging [1]. Page walks make it difficult for real-time
systems to predict the performance of code and meet real-
time guarantees efficiently. They can also result in a
reduction in overall performance. In an Intel VT-enabled
system, running guests with paging disabled reduces the
isolation of that guest—the guest can read and write all of

physical memory, including that of devices or other
guests. This is a tradeoff that would not be acceptable in a
general-purpose environment, but may be preferred in
some embedded environments. Second, I/O performance
can be critical to the success of an embedded system. This
has caused some embedded VMM vendors to allow VMs
to have direct access to Direct Memory Access (DMA)-
capable devices. This increases performance, but would
allow a malicious application or device driver to use the
device to read and write the memory of the other guest
OSs on the system. Again, in environments where the
software environment is fixed, this tradeoff might be
acceptable.

Even though some embedded environments will accept
reduced isolation between guests, there are exceptions
with other embedded environments. Specifically, security-
critical and safety-critical environments like those
supported by LynuxWorks would not allow these types of
tradeoffs [2]. Again, Intel VT reduces the cost of
producing a VMM so that the development of targeted
VMMs with different design tradeoffs is possible.

Static Virtual Machines

Many embedded systems are designed with the knowledge
of exactly what workloads will be run at all times. They
are also designed knowing exactly what hardware will be
available on the system. This allows designers to make
design-time choices about how to allocate hardware to the
tasks running in the workload. As such, when using an
embedded OS it is typical for the designer to statically
allocate specific cores and specific regions of memory to
processing tasks. This reduces the emphasis on dynamic
scheduling and dynamic memory management that is often
important in a GPOS. Although scheduling multiple tasks
that are running on the same core is still important,
especially in an RTOS, deciding which cores will run
which particular tasks is less important.

In a virtualized environment, the VMM is responsible for
performing  processor  scheduling and  memory
management for the guest OSs just as the OS is
responsible for processor scheduling and memory
management for applications. Therefore, many of the
requirements that apply to OSs in an embedded
environment also apply to VMMs in an embedded
environment. With this in mind, VMMs can be designed
so that system designers can make static configuration
choices at design time with respect to how resources are
allocated to VMs. This changes the design of VMMs for
embedded environments in two ways. First, the design of
the scheduler is simplified since the designer will likely
statically map tasks to processor cores manually. The
scheduler must still schedule between VMs running on the
same core, and must do so using different scheduling
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policies than would be used in desktop or IT data center
domains, but scheduling between cores is simplified.
Second, memory management is designed more for
configurability than for dynamic reallocation. VMMs rely
on the designer to specify which memory ranges should be
given to each VM. This simplifies the design of memory
managers within the VMM, but increases the complexity
of configuring the VMM.

Real-time System Support

Many embedded systems are required to support real-time
workloads. One of the reasons why GPOSs such as
Microsoft Windows cannot provide real-time control is
due to the limitations of the scheduler. The scheduler in
this case is the entity which determines how much time a
specific process or thread is allowed to spend on a given
processor. Microsoft Windows uses a quantum-based,
preemptive priority scheduling algorithm. This basically
means that threads with equal priority are scheduled round
robin and threads with higher priority are serviced above
threads with a lower priority. Linux uses a priority-based
scheduling algorithm as well. An RTOS, however, often
schedules tasks using a strict priority scheduler [3]. A
priority scheduler will let higher priority tasks run for as
long as they have work to do, whereas a general-purpose
scheduler tries to guarantee that no task can prevent
another from progressing.

Supporting real-time workloads in a virtualized
environment is a challenge. A VMM does not typically
have visibility into the individual tasks running in an
RTOS, nor does it have knowledge about their priority.
The solutions that embedded VMM vendors are using
today is to isolate RTOSs alone on a processor core, or to
only allow the RTOS to share a core with a GPOS and
give the RTOS strict priority over the GPOS.

There are also differences between a real-time
environment and a general-purpose environment in the
way interrupts are handled. In many embedded
applications, interrupts generated by external hardware
have to be serviced within a specific time frame. GPOSs
do not necessarily have this capability built in as they can
frequently turn off interrupt processing for an unbounded
amount of time. This kind of behavior is unacceptable for
applications that require real-time control.

For real-time interrupt handling, Intel VT plays a key role.
With Intel VT, the system can be configured such that
when a guest disables interrupts, only the delivery of
interrupts to itself is disabled and not the delivery to other
guests. Therefore, if a GPOS guest were to disable
interrupts, and an interrupt for a real-time device were to
be asserted, the VMM could still decide to interrupt an
RTOS that required small, predictable interrupt latencies.
On the other hand, if an interrupt targeted for the GPOS

would occur while the RTOS is executing a critical task,
the VMM should delay delivery of the interrupt until the
RTOS has finished execution of the time-critical task to
maintain determinism.

Many embedded systems also require strict prioritization
of I/O traffic between code running at different priority
levels [4]. For example, if multiple VMs are to access a
network device, the application may require some quality
of service (QoS) guarantees be enforced between the
guests. These guarantees may come in the form of
bandwidth or latency guarantees. Such requirements are
not typically found in a general-purpose system. This
complicates the design of the infrastructure used to share
devices between VMs.

Embedded systems have unique design criteria that have a
large impact on how VMMs are designed for such
systems. Intel VT reduces the cost of producing a VMM
such that targeting an individual embedded environment is
a possibility. It allows VMM vendors to focus on how
they meet the requirements of their market segment
without dealing as much with the complexities of
virtualizing system hardware.

VIRTUALIZATION IN INDUSTRIAL
CONTROL

Many industrial control systems feature highly visual
human interfaces that depict the process under control,
which may be a medical device, an industrial plant, an
assembly line, etc. These displays may also involve
rapidly changing data, or they may include interfaces to
network-accessible ~ databases to access schematic
diagrams or diagnostic and maintenance procedures. Such
systems therefore benefit from the ubiquity and richness
of GPOSs such as Microsoft Windows and the
computational performance of powerful CPUs. Yet they
also require strict real-time control to ensure that robotic
machines assemble parts with exacting precision, move
gantries and X-ray machines to exact locations, operate
switches and actuators at precise times, or perform
functions for exact durations. Many require closed-loop
feedback control systems: for example, if a sensor detects
that a machine has reached a specific point, that sensor
sends a signal that must be acted upon by the control
software within a timeframe that is measured in
microseconds in order that the machine can be halted in
that exact position without variance.

As we noted above, GPOSs such as Microsoft Windows
are not suitable for performing this level of real-time
control because they are designed to share processor
resources fairly between running processes, thereby
preventing “starvation” of some processes. Traditional
industrial control systems therefore typically separate their
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processing and control functions into a Master Station
component that implements the human computer interface,
database interface, and other non-real-time management
functions, and separate Remote Terminal Units (RTUs)
which are small, rugged computers that implement the
real-time control functions, traditionally using separate
Programmable Logic Controllers for that purpose. These
RTUs contain the sensors and actuators to detect and
control the operating environment, along with sufficient
computing performance to react to environmental changes
and control commands extremely quickly, and to execute
the communications protocol stack to exchange data with
the Master Station. RTUs frequently must also operate
within extreme temperature, humidity, vibration, or other
environmental conditions that are more challenging for the
electronics than for the mechanical components. These
environmental conditions restrict the choice of computing
components that can be employed, or they increase the
cost of those components, particularly if ample
performance headroom is desired to support future
functionality. Therefore, for reasons of cost reduction and
the desire for a common, scalable infrastructure upon
which greater functionality can be layered, trends in
industrial control are toward a consolidated platform that
can provide the required separation of the real-time
control functionality from the non-real-time functions [5].
In this way RTUs can be simplified, while the Master
Station provides real-time control that can be given
absolute priority so that signals can be operated upon
within strictly defined bounded timeframes, while still
providing the rich graphical environment, databases, and
device support of a GPOS.

Scheduler and Interrupt Latencies for
Virtualized Solutions in Industrial Control

Although the graphical user interface of a GPOS such as
Microsoft Windows or Linux combined with XWindows
meets the requirements for control of medical equipment
or industrial equipment, the applications’ response times
are often not acceptable. The average interrupt latency
provided by a GPOS may indeed be within acceptable
limits (on the order of 5-20 microseconds), but the worst-
case latency must be designed for, and this may be orders
of magnitude too long in a GPOS.

The main reasons why GPOSs are not suitable are due to
the policies of the scheduler and the design of the kernel.
The scheduler is the entity that determines how much time
a specific task/process/thread is allowed to spend on a
given processor. Modern GPOS schedulers allow users to
provide an element of application scheduling control.
Both Windows and Linux OSs provide such features.
Still, even when equipped with these kinds of features, the
scheduling algorithms utilized by GPOSs do not provide
sufficient real-time control.

The scheduler behavior has an immediate effect on
interrupt handling. When controlling a critical process,
interrupts generated by the equipment under control must
be serviced within a very specific and bounded time
frame. GPOSs do not have this capability, as high priority
tasks/processes or threads can take priority. This behavior
is unacceptable for applications that require real-time
control. The design of the OS kernel may also include
critical sections of code that must execute atomically, and
therefore interrupts must be disabled during these critical
sections, thereby causing the worst-case latency to
increase by the length of the longest critical section in the
OS.

Today there are different solutions available to provide
this element of real-time control. Some solutions provide a
real-time kernel and run the GPOS and graphical user
interface within a complete thread. An API is defined that
allows the GPOS to interact with the real-time kernel. If
the requirement for thread scheduling exists, an
application within the GPOS would utilize the thread
mechanism offered by the real-time kernel.

Another approach is to run a small real-time kernel along
with the GPOS. Both OSs share the CPU, memory, and
interrupt controller. However, each version of the kernel
has its own context (descriptor tables, memory
management etc.). The real-time kernel determines when
specific processes have to be executed to maintain
determinism, and interrupt delivery is also controlled so
that it does not affect the behavior of the system. If an
interrupt occurs during the execution of a real-time task,
the real-time kernel will not necessarily execute the
interrupt service routine if it is associated with the GPOS.
Instead it will continue execution of the real-time task and
on completion it will hand over control to the GPOS,
which will then deal with the interrupt.

Designing in determinism in a GPOS this way can be very
complex. The OS source may not be available: with this in
mind, some assumptions must be made in order to predict
the behavior of the general-purpose kernel.

Commercial Virtualization Solutions for
Industrial Control Applications

Commercial solutions exist that meet the stringent latency
constraints of real-time control while still providing the
rich and ubiquitous development framework of Microsoft
Windows. Products such as TenAsys Corporation’s
INtime" employ the hardware capabilities of Intel’s
processors with Intel VT to provide extremely low
latencies (worst-case measured as low as 3 microseconds)
and real-time capabilities for Microsoft Windows, while
allowing Visual Studio” to be used for development in
both the Windows environment and the INtime
environment. This enables developers to create and
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deploy sophisticated real-time applications without trying
to force a GPOS or device driver to achieve real-time
performance.

VIRTUALIZATION IN
COMMUNICATIONS NETWORKS

Communication Usage Models

As Intel Corporation and other vendors migrate towards
multi-core  processors, communications equipment
manufacturers are changing their programming paradigms
to take advantage of these additional cores.
Communications equipment tends to utilize highly
specialized software that has been optimized and validated
to execute as sequential logic. Thus, it is not easily ported
to a multi-core platform. By eliminating the need for
equipment manufacturers to refactor their software for
multi-threaded execution, Intel VT makes this migration
simpler. Equipment manufacturers can instead execute
multiple instances of their single-threaded software, each
within a separate VM, each processing a portion of the
total workload. A suitably architected VMM provides the
software infrastructure necessary to distribute the
workload between VMs. Examples of multi-core
migration include multiple Home Location Registers in a
cellular network; or splitting workloads between intrusion
detection systems.

Single Threaded Multi-Instanced
APP APP J APP
— 7
0s > 0S J 0s
—_— Y J

VMM
Uni-Core J
—_—

Multi-Core

Figure 1: Virtualized vs. non-virtualized environment

Consolidation is common across all market segments, but
offers unique benefits in communication market segments.
Telecommunications Equipment Manufacturers could
utilize a VMM to consolidate multiple instances of an
older legacy single threaded application on a multi-core
platform, avoiding the need to spend expensive R&D
cycles on modifying legacy code to take advantage of
multi-core architectures (see Figure 1). Much of the
communication equipment processing is split between

Data Plane, Control Plane, and Management Plane
processing. Each plane has different processing
requirements, memory latency and  bandwidth
requirements, and network I/O requirements. By using
Intel VT and a real-time VMM, a manufacturer can
consolidate these different planes onto fewer processing
elements. This reduces equipment and operational costs,
and these savings allow the equipment manufacturers as
well as their customers (the service providers) to remain
competitive. An example of such a consolidation is in the
Mobile Wireless business where a system for determining
the current location of a mobile unit, called a Home
Location Register (HLR), exists. Many of these systems
are proprietary in nature, and restricted to 32-bit
addressing. Using Intel VT, more than one HLR can be
collocated onto a single system. The VMM allows for the
splitting of workloads to multiple HLRs, and allows for a
HLR database to be greater than 4 GB in size.

A unique requirement of communication systems is their
extremely high reliability. Communication systems may
be required to be available to process calls 99.999% of the
time. This corresponds to less than five minutes per year
of downtime, which includes all scheduled maintenance,
software and hardware upgrades, and system corrective
actions. In comparison, we may spend five minutes per
day brushing our teeth, so communication systems permit
approximately 1/300" the maintenance that we perform on
our teeth. Due to the implications on software design,
today only high-end communication systems can provide
this level of reliability. With Intel VT, communication
systems can provide greater availability without the
traditional software infrastructure costs. Many of these
reliability issues arise from the customized nature of the
communication software. Intel VT provides for software
fault isolation on all levels of communication systems.
This is achieved by allowing Active and Standby instances
of the executing software, each within its own VM. In the
event of a software failure, the Standby instance will
continue execution and assume Active status, while the
failed instance is restarted by the VMM. With this
capability, the cost of a software fault, which has
traditionally been protected against via redundant
hardware, is eliminated.

In addition to redundancy, the ability to perform live
upgrades of software is accomplished by providing
redundant hardware components. As indicated in Figure 2,
a Standby partition could be used for either hot upgrades
or fault tolerance. With Intel VT, the need for redundant
hardware is eliminated. Now simply upgrading the
standby instance, restarting it, and designating it the
Active instance accomplishes the software upgrade. In the
event the new software fails, the previous software version
is still available to fall back on.
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Figure 2: Hot upgradeability and fault tolerance

Workload migration is a more common feature of
virtualized enterprise servers; however, it also has
applicability to the communications market segment. For
instance, in many Voice over Internet Protocol (VoIP)
implementations, there is a device called a Soft Switch.
This switch handles all aspects of call establishment and
management. This switch has a set level of capacity, and
once exceeded must be replaced or augmented with a new
switch. The process of configuring the new switch is very
time consuming due to its manual nature. Intel VT
simplifies this process by allowing for the migration of a
complete switch instance from one hardware platform to
another. In addition, expanding a network can be
simplified by first performing all configuration in a
controlled lab environment and then pushing that
configuration to the live switch, thus reducing the risks
associated with expansion. Using a test harness and traffic
patterns from the live environment, an expansion switch
can be fully configured and tested in the lab prior to
deployment in the field. Once the expansion switch
configuration has been tested, and a migration strategy put
into place, the live upgrade can proceed. This migration is
shown in Figure 3, where the expansion switch has been
added into the network, and a Region, from the installed
switch, is being migrated to the expansion switch. This
makes for a simpler management model than existing
solutions.
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Multi-Core J Multi-Core J
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Figure 3: Virtual machine migration

Communication-Oriented Operating Systems

More so than any other market segment, the
communications market segment contains many
customized home grown OSs. Many times these systems
are developed with a specific product in mind and don’t
lend themselves well to maintainability either due to
complexity or lack of original knowledge. Virtualization
allows a company to take advantage of this valuable
intellectual property while still moving forward with new
technology. By providing an environment within which
the proprietary OS can operate, Intel VT allows new
development to occur on general-purpose or modern OSs,
while providing a link back to the proprietary OS. Intel
VT offers the first step in providing support for these
legacy OSs. It provides migration to advanced hardware
technologies such as multi-core, without requiring multi-
processor support within the OS. It also eliminates the
need for modification of the OS, and it improves
performance by eliminating the need for binary
translation. With this capability, the proprietary
technology is utilized for the purpose it was intended, and
it is saved from costly revalidation and software
development efforts.

Sharing vs. Assigning I/0 Devices

The communications market segment demands high I/O
performance from the hardware/software solution. Cost is
always a factor in the design, and obtaining the most
performance per watt is a driving fact for every design. In
virtualized solutions, two methods exist for providing
access to high-performance I/O, namely Shared I/O and
Direct Assignment models (i.e., driver domains).

In Shared I/O the VMM (or its host OS) provides access
to an I/O device by multiplexing that access through
emulation. The guest OSs are presented with a virtual
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device through which they communicate. The VMM then
multiplexes the access from those virtual devices to the
real I/O device below. The Shared I/O mechanism results
in a performance loss due to the introduction of a
multiplexing and emulation layer; yet provides for the
most flexibility in migration. Due to this performance
impact, shared I/O in communication systems is limited to
non-performance critical tasks, such as the management
plane.

In Direct I/O Assignment, the VM is assigned an I/O
device exclusively. Intel VT for Directed I/O (Intel VT-d)
addresses this requirement, and today this assignment
occurs on the PCI bus within commercial VMMs
architected to address this need. The VMM hides access
to PCI devices that are not assigned to a particular guest
OS.

Technical challenges exist for Direct I/O Assignment. The
biggest challenge comes with those devices that perform
DMA operations. Since a guest OS is unaware that it has
been moved to a location in memory above its known
starting point, it will provide addresses to DMA devices
that may reside outside its memory range. To overcome
this problem, it is necessary for either the VMM to remap
these memory accesses or for hardware to dynamically do
so. In the case where the VMM remaps addresses, this
either will require that the guest OS be aware of the fact
that it will be relocated into a new memory location, or
that the VMM restrict the relocation accordingly. In the
case where the hardware remaps DMA addresses (as with
Intel VT-d), it is necessary that the VMM program the
hardware with the VM base address, and that VM’s device
assignments. Direct /O Assignment provides an order of
magnitude performance improvement over Shared I/O, at
the expense of VM dynamic migration ability. This
performance improvement is mandatory for all high
throughput interfaces in communications equipment and
thus the tradeoff is warranted.

Partitioning the Platform for Better
Communication Performance

When designing for general-purpose architectures,
communication systems designers are often forced into a
paradox: They want to leverage GPOSs, various operator
interface options, and other general-purpose software, but
the networking performance provided by GPOSs is less
than acceptable. Virtualization can be used to solve this
paradox by creating one partition that executes a minimal
OS containing just what is needed to run the performance-
critical parts of the application and provide direct access
to networking devices, while another partition runs a
GPOS that executes those parts of the system that are not
performance-critical, such as operator interfaces or
management agents for configuration, monitoring, and

statistics and alarm reporting. Intel has prototyped an
application running on such a system and found that it
outperforms the same application running on a GPOS on
the same hardware by 24%.

Commercial Virtualization Solutions for
Communication Networks

Commercial products such as Jaluna OSware offer
solutions that are optimized to meet the stringent demands
of communications equipment. OSware provides a robust
platform that offers the key ingredients: Direct and Shared
I/0, hard real-time guarantees, bounded interrupt latencies
(measured at 21 microseconds), efficient memory
virtualization, and the ability to execute both commercial
as well as proprietary OSs without requiring them to be
modified. Figure 4 shows that OSware provides identical
network I/O performance of benchmark applications on
RedHat Enterprise Linux* when executing in virtualized
and non-virtualized environments.
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Figure 4: Virtualized vs. native OS networking
performance

VIRTUALIZATION IN SAFETY-
CRITICAL APPLICATIONS

The US government is migrating its Department of
Defense, Department of Energy, and Homeland Security
infrastructures from proprietary systems developed solely
for government specifications to commercial off-the-shelf
(COTS)-based systems with incremental security and
reliability requirements. It is easy to imagine that the
efficiencies and cost savings resulting from migrating to
COTS systems would easily run into the billions of
dollars, but the real benefits lie beyond that. Rapid
deployment of new technologies allows the US armed
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forces to retain the technological superiority so vital to
their military and intelligence actions. Modern COTS-
based systems permit increasingly sophisticated security
methods to be employed to safeguard data while
permitting the sharing of data that has proven very
difficult across different proprietary architectures of the
past. Safety-critical systems are also found in many other
non-governmental applications where human life is at
stake, such as aerospace (flight control systems).

A major challenge in migrating to COTS architectures is
ensuring the security of both the hardware and software
elements. The Federal Aviation Administration (FAA) has
established criteria for certifying software for safety-
critical aviation systems, and likewise the National
Institute of Standards and Technology (NIST) and the
National Security Agency (NSA) have established a
common criteria for evaluation of technology products for
security-critical systems. An enabling architecture known
as Multiple Independent Levels of Security (MILS) is in
the process of dramatically reducing the size and
complexity of security-critical code, thus allowing faster
and more cost-effective development and evaluation.

The MILS architecture defines four conceptual layers of
separation:

. separation kernel and hardware
. middleware services

. trusted applications

. distributed communications

Our focus in this discussion is mainly on the MILS
separation kernel. The separation kernel must be
mathematically verified and evaluated. This practically
limits kernel size to less than 5,000 lines of code. Also,
the separation kernel must be completely isolated from
other layers of software including OS services, which
themselves must also be separated from other middleware
components.

Intel VT is ideally suited to meet these separation kernel
requirements. Figure 5 illustrates how Intel’s family of
virtualization technologies provides the foundation for an
implementation of the MILS architecture.

Benefits of Intel Virtualization Technology

In summary, the benefits of Intel VT are these:

. It provides the separate root ring structure
necessary for isolation of separation kernel from
non-separation kernel services.

. Just as we would not expect a minivan to do the
same job as a pickup truck, we cannot expect a
desktop-oriented OS or a desktop-oriented VMM

to operate within the constraints of embedded,
communications or safety-critical environments,
and still provide the functionality,
configurability, separation, or performance of
solutions that have been architected specifically
for those attributes.

. It simplifies VMM design keeping the separation
kernel code very small and thus making it
possible to build a mathematically verifiable
separation kernel.

. It simplifies the migration of single-threaded
legacy software to multi-core processors by
allowing virtualization of unmodified OSs. This
gives end customers an option to simultaneously
run multiple instances of non-SMP OSs.

. Intel VT-d allows for direct access to assigned
devices. Separation of network interfaces is an
essential component of system security. Intel’s
family of virtualization technologies will be
extended to allow efficient sharing of physical
I/O devices among VMs without requiring a
“service” partition that has access to all network
traffic, thus allowing the directing of network
traffic to the specific guest OS and application
for which it is intended.

. Intel VT also supports the use of a Trusted
Platform Module (TPM) to provide the ability to
authenticate both the VMM and the guest OSs
and applications, to ensure that their image on
disk has not been tampered with between
reboots. The TPM is a microcontroller that stores
keys, passwords, and digital certificates.
Microcontrollers that adhere to the TPM
specification as defined by the Trusted
Computing Group [6] are available from a
number of manufacturers.

Commercial Virtualization Solutions for
Safety-Critical Applications

Safety-critical systems and security-critical systems are
being developed using Intel VT by companies such as
LynuxWorks, which provides its LynxOS® RTOS and
LynxOS-178" safety-critical RTOS and corresponding
development tools. Intel and LynuxWorks are working
together to demonstrate the MILS architecture shown in
Figure 5 using Intel® Core” Duo processors. The
LynuxWorks separation kernel has been developed to be
mathematically verifiable, and it utilizes Intel VT and
Intel® EM64T? technologies to support virtualization and
both 32-bit and 64-bit operating modes. It provides SMP
support and is architected to take full advantage of Intel®
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multi-core processors and their various platform-
enhancing technologies.

CONCLUSION

We have shown that virtualization has many varied uses in
embedded systems, communications infrastructure, and

4
4

CEETERERETT

Nan Root Mode
Root .Mode
ﬂ Separation ke_r:*iel (Build on Intel® VT -{uund_atl__on);
: | -

Cores G i

Physical
Memory

Assigned
Devices

safety- and  security-critical  environments.  The
requirements of these domains are however quite different
from one another and from the more familiar desktop,
mobile, and IT data center environments. These
requirements dictate that different architectural and design
tradeoffs be made within the VMM and the guest OSs
executing within the VMs.
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Figure 5: Example of MILS architecture with Intel Virtualization Technology
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ABSTRACT

We present how an enterprise IT organization sees
virtualization in the enterprise and how it can be applied.
We look at key enterprise services and applications used
within Intel’s IT department and examine the issues
associated with virtualizing servers within the context of
those services. We demonstrate that virtual machine (VM)
isolation does not extend to performance isolation as we
show how applications running in separate VMs can
significantly interfere with each other. Enterprise services
depend on host characteristics like available cycles,
platform configurations, and on proximity to other
services. We define a taxonomy of these dependencies
derived from our study. Next, we describe uses of Intel®”
Virtualization Technology® (Intel® VT) that we are
investigating. The ability to run multiple operating
systems (OSs) is of great interest in our design
environment where highly specialized tools are tied
closely to OS versions. The ability to checkpoint, suspend,
resume, and migrate VMs is very useful when we run long
simulations. The ability to allocate VMs at the location of
choice opens up other possible use cases, such as network
monitoring, security monitoring, and content distribution.
We see this capability also enabling safe yet realistic
experimentation, as a way to extend virtualization into
clients. Finally, we present a real case study applying
virtualization to enterprise IT  problems. This
virtualization program achieved higher server utilization,
made it easier to manage datacenter assets, and reduced
the consumption of datacenter resources (floor space,
power, etc.), as well as simplified server releases through
standardization.

INTRODUCTION

Virtualization is touted as a new and upcoming trend in
computing. Simply stated, virtualization is a technology to
run multiple independent virtual operating systems (OSs)
on a single physical computer. It is not a particularly new
idea in the enterprise, having been implemented in the
1960s on IBM mainframes [1].

A number of characteristics of virtualization make it a
much discussed topic of conversation today. One is the
potential to better use compute resources, allowing an
enterprise to maximize its investment in hardware. In an
average datacenter, the majority of the infrastructure
resources are used about 25% of the time. Virtualizing a
large deployment of older systems on fewer highly
scalable, highly reliable, modern, enterprise-class servers
significantly reduces hardware costs for infrastructure
services. Multiple hardware and software solutions are
available on the market and ready to provide a secure,
easily managed platform to deploy, manage, and remotely
control VMs.

Virtualization offers so much more than just server
consolidation. Intel’s IT organization has been studying
other uses of virtualization that can add tremendous value
to an enterprise. Virtualization features such as the ability
to suspend, resume, checkpoint, and migrate running VMs
is extremely useful in dealing with long running jobs. If a
VM with a long running job checkpoints its state and then
the physical machine it is on fails for some reason, the job
can be restarted from where it left off, along with the VM,
rather than being restarted from the beginning.
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A key difference of virtualization today and the
mainframe age is the ability to allocate a VM at the
location of a service’s choice. This notion of Distributed
Virtual Machines (DVMs) opens a whole host of possible
uses, such as network monitoring, security policy
validation, and content distribution. It enables enterprises
to create such things as virtual secure enclaves and do safe
yet realistic testing of large scale, even planetary scale,
services. This idea is useful and compelling enough to
power the PlanetLab testbed [2], which is slated to
become a core part of a next-generation Internet project
called GENI [3].

Virtualization, while a viable technology today, is not
without issues. Allocating VMs for enterprise services is
not as simple as finding the first available host. Services
have dependencies on network topology and other
services. Also, VMs, while offering many types of
isolation, do not offer complete performance isolation.
VMs can interfere with each other.

This paper examines the virtualization of physical host
machines, enterprise services, and multi-site instantiation
of virtual environments. First, we introduce the difficulty
of virtualizing enterprise service host machines. Second,
we discuss use cases that can give IT organizations many
new options in supporting their company’s business units.
Third, we review a case study of server virtualization for a
business group at Intel and the process they followed from
project inception through implementation. We conclude
the paper with a discussion of our results and a description
of future work.

CHALLENGES OF VIRTUALIZATION IN
THE ENTERPRISE

For batch-oriented tasks, provisioning VMs and getting
predictable performance appears to be relatively
straightforward. This seemly simple task can be difficult if
VMs interfere significantly with each other. When we
introduce virtualization with enterprise services like the
Domain Name System (DNS) [4], VM provisioning
becomes more complex, especially as the location of the
physical machine hosting the VM becomes important. In
this section, we describe the challenges of server
virtualization in an enterprise context.

Studying the Issues of Virtualization in the
Enterprise

Our approach to studying the issues of virtualization in the
enterprise had two parts. First, we looked at how VMs
running on the same physical host could affect each other,
particularly when different applications were running on
the VMs. Second, we looked at key enterprise services

and investigated how these services would fare in a virtual
environment.

This is how we studied virtual machine interference:

e We obtained baseline performance (a control) of an
application running on one VM.

e We attempted to optimally degrade the performance
of one of two VMs running on the host, typically by
attempting to use some shared resource.

e  We documented and analyzed the results.

Once we had studied how individual VMs interact on one
physical host, we looked at how VMs would interact in an
enterprise. We first looked at the services that are the most
critical and generate the most volume on the Intel Wide
Area Network (WAN). Our goal was to examine those
applications for performance bottlenecks and platform
dependencies that would be problematic when servers for
those applications and services would be virtualized. In
addition, we also looked for five additional applications
commonly used within Intel. For all of these services and
applications, we searched for information on the Web and
talked to IT personnel who are expert at running them in
Intel’s IT environment, looking for the issues mentioned
previously.

VM Interference

VM, as a technology, offer many advantages to users and
administrators. Security isolation prevents a malicious
application from accessing data or altering running code.
Fault isolation prevents one misbehaving application from
bringing down the whole system—rather than rebooting
the box, one can simply reboot the VM. Environment
isolation allows multiple OSs to run on the same machine,
accommodating legacy applications and cutting-edge
software alike.

While VMs offer these forms of isolation, we have
observed that modern VM environments [4, 5] do not
really provide performance isolation. While in theory, the
virtual machine manager (VMM, also known as the
hypervisor) “slices” resources and allocates shares to
different VMs, there are still ways in which the behavior
of one VM can adversely affect the performance of
another. Furthermore, the isolation that VMs provide
limits visibility of an application in a VM into the cause(s)
of performance anomalies that occur in a virtualized
environment. Contemporary platforms with Intel VT,
however, provide mechanisms that we can use to detect
and classify performance interference, which can then be
used for a number of purposes:

e As input to the local scheduler, which can alter its
behavior (e.g., change quanta or ordering) to
ameliorate the effects of the interference.
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e As input to a global scheduler, or orchestration
engine, which uses the information to rearrange the
placement of VMs to minimize interference and
improve performance.

e As “metering” data, so that systems that charge for
usage (e.g., free-market allocation systems such as
HP Labs’ T ycoon* [6], grid computing pay-per-cycle
or “cycle-rental” schemes, etc.) can more accurately
charge/credit users for the resources they
consume/provide.

Our research to date has shown that shared state in
resources under contention can indeed dramatically affect
the performance of a VM, beyond the expected
performance degradation that is due to simple time-slicing
of the resource.

The first type of interference we studied was the
interference within the processor’s L2 cache and to server
state (disk head position, cache state, etc.). We designed
experiments to quantify these types of interference by
running “benchmark” workloads against other VMs with
code designed to be explicitly pessimistic in terms of
interference to that particular benchmark. Our results
show that in each case, there can be a non-negligible
effect on the benchmark’s performance.

For the cache experiment, we wrote code to continuously
write to a large (bigger than the L2 cache) array in one
VM to show how this would interfere with a memory-
intensive application in another VM. We looked at the
Freebench test suite [7] because it was freely available and
had been used in other VMM performance testing [8]. We
selected Freebench’s analyzer benchmark as an
application. The analyzer’s performance is limited by the
memory subsystem, making it a good candidate for cache
interference. It runs a deterministic computation, so we
used time-to-completion as our measurement of
performance.

Our experiments compared the runtime of the program
versus another VM executing a simple spinloop. Because
of this, the slowdown seen can be attributed directly to
cache interference (i.e., its degradation is due to more than
simply sharing half the CPU with another VM). We ran
our experiment on several types of Intel” platforms, with
varying configurations. A typical run is shown in Figure 1.
As the amount of cache used by our interference-
generating application increases, the slowdown in
application performance increases. That a dirty cache
slows down an application’s execution is not surprising;
however, the application and its OS are completely
unaware that the cache is being dirtied, and because they
are running on a VM, typical techniques (e.g., OS task
scheduling) are unavailable. With Intel VT features, we
are able to determine the interference and provide that

information to higher-level constructs (e.g., the hypervisor
scheduler, or a global orchestration system) as mentioned
above.
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Figure 1: Performance degradation as cache is
increasingly dirtied

We also ran tests for storage interference. The simplest
example entailed two VMs accessing the same disk
device, to most easily demonstrate head-position and disk-
cache state (outside the VM). Our results (as in the CPU
cache case that we compared against a simple spinloop
VM) showed similar amounts of additional degradation—
between 50% and 90% depending on the nature of the
disk access (sequential/random and character/block).

Virtualization and Service Dependencies

To get the list of critical network services, we consulted
with Intel IT’s WAN engineers. They reported the
following are the five most critical network services:

e Exchange*

e DNS

e  Active Directory*

e  Chip design associated file transfers
e  Web proxy traffic

In addition, we studied the following internal applications:
e Internet Information Server (IIS")

e Apache Web server’

e SQL server

e Oracle

e Sendmail”

We looked at a number of service orchestrators also. We
looked at how Oracle orchestrates its operations, as well
as the IBM/Auremia director*, the HP Workload
Manager, the 3-DNS’ and Big IP" load balancers from
F5, and Microsoft’s Visual Studio 2005". To do this, we
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looked at documentation as well as talked to operational
experts within Intel’s IT organization. In addition, we
found that some services and applications like DNS,
Sendmail, and Active Directory, have some mechanisms
that perform orchestration functions.

We found that service platform dependencies fall into the
following categories:

e  Network

e  Host/System
e  Storage

e Services

We next discuss these dependencies and emphasize the
aspects that are typically not covered by service
orchestrators. At the end of each section, we describe
constraints that need to be specified by orchestrators to
deal with these dependencies, since these would be
additional concerns with provisioning VMs for those
services.

Network

We found that services had a number of network
dependencies that are not typically dealt with by service
orchestrators. Often these dependencies rely on network
topology specifics. One example is the Web proxy service
offered by Intel IT. This service proxies Web traffic
between systems on the internal Intel network and the
Internet and reduces network traffic by caching Web
pages already fetched. The proxy service maintainers
require that a directly connected proxy (with direct access
to the Internet) has a high bandwidth network path to the
Internet. For fairly large Intel sites with low bandwidth
links to the Intel® WAN, Intel® IT deploys a proxy server
locally and chains this proxy server to another. While
some orchestration specification languages like JSDL [9]
allow conditions to be set on network bandwidth, they do
not address network topology.

Intel’s DNS service relies on multiple network
connections from a site for deployment. Intel sites with
only one connection to the Intel” internal WAN have DNS
servers deployed to them. Multiple and reliable network
connectivity is a dependency for the DNS service.

DNS also monitors query latencies and uses them to
generate basic orchestration functionality. It records the
time it takes to process queries for a domain and uses the
name servers for that domain that respond the fastest. In
this case, network latency is a significant contributor to
how the DNS service behaves and partitions work.

Some services want to see a specific number of network
interfaces on the platform. Some deployments of the
Oracle database system require three network interfaces.

One of the network interfaces is used for heartbeat
information between servers and requires low latency.
Other services assume that they have a network interface
(or at a minimum, an IP address on an interface) that can
be directly reached at a particular port. This applies to
services that use well known ports, such as Web servers
like Apache or Microsoft IIS. While Web servers can do
virtual hosting, they assume that a standard HTTP port is
directly reachable, and in a virtualized environment, this
implies that there is an IP address per each VM that runs a
Web server. For each IP address, it is assumed that there
is a MAC address associated with that interface, and that
there is a way to route packets to each VM.

We define network constraints that we need to manage as
follows:

e Minimum bandwidth between server hosting service
and particular points.

e Topology and availability requirements, in particular
minimum availability and/or a minimum number of
paths from a server’s location to other locations.

e  Minimum or a specific number of network interfaces.
e  Maximum latency between server and other servers.
Host

We found two notable host dependencies that are not
covered by orchestration service specifications. The first
is a dependency on a fixed amount of CPU resources. A
commonly used mail forwarding program called Sendmail
depends on the notion of load average to decide whether
to queue up mail or whether to reject mail connections. In
a virtual environment where resources are shared equally
among VMs, an application cannot be certain whether it
will receive the same amount of CPU resources since
other VMs may be assigned to the same physical host it
runs on. Thus, using load average is not an accurate
indicator of the available resources.

The second host dependency is non-pageable memory.
The Exchange mail service relies on having a significant
amount of memory that cannot be paged out for good
performance. While orchestrators allow you to specify
how much memory a job or service may require, there do
not seem to be options for non-pageable memory.

Service Affinity/Proximity Requirements

One key service dependency that is not always captured in
orchestrators is affinity or proximity to other services. A
good example is Exchange and Active Directory.
Exchange requires fast responses from Active Directory.
Operationally, an Active Directory server should be on the
same segment as an Exchange server. Deviations from
this configuration have proven disastrous operationally.
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An additional aspect of service dependency is the need for
a maximum time to complete a service’s basic
transactions. DNS operations personnel recommend that
DNS queries must be resolved within one second in order
to prevent applications that rely on DNS from hanging.

Storage

Some applications rely on specific platform features. For
example, some versions of Oracle require that Oracle
write directly to disk blocks. Other applications, such as
Active Directory, require large disk-write caches.

OTHER USE CASES FOR VIRTUAL
MACHINES IN THE ENTERPRISE

Virtualization is typically discussed in the context of
datacenters, where multiple VMs are loaded onto a single
host to increase server utilization or reduce the cost of
buying new hardware. We cover this use case extensively
in an upcoming section. Virtualization enables other
capabilities that can be extremely useful to enterprises.
We now discuss enterprise use cases for virtualization that
go beyond the usual examples of increased utilization,
which are being investigated by Intel’s IT organization.
We start with ways to enhance the operation and
efficiency of large-scale computation. We then talk about
distributing virtualization, and how the ability to allocate
VMS in the location of choice opens up new applications
and paradigms for service deployment.

Enhancing Standardization

While a completely homogeneous computing environment
would yield obvious efficiencies, it is generally not
realistic. Intel’s design environment supports a huge
variety of software tools for a diverse roster of design
teams, some of whom joined Intel as a result of
acquisitions. The design environment employs laptop PCs,
dedicated compute servers, and everything in between.

In this complex environment, virtualization could achieve
many of the efficiencies of homogeneity. A software tool
could be bundled with its own specialized virtual
computing environment. When a new version of this
bundle is standardized, it could be quickly pushed out to
all sites on top of VMMs without requiring expensive and
time-consuming OS upgrades. This is especially helpful to
small sites which often lack sufficient staff, and sometimes
lack even all the required computing platforms, to
implement a never-ending stream of company-wide
directives.

Making it easy and inexpensive to push out new standard
images to all sites not only reduces costs, but accelerates
innovation, because it frees a small team to develop
specialized expertise in a product and to support it
worldwide instead of relying on generalists dispersed

across many teams. It enables the leveraging of good ideas
and fixes from any of these specialized groups, because
these fixes and ideas can be quickly and easily applied
everywhere.

Legacy Operation

Closely related to the standardization issue is an inevitable
heterogeneity across time. OSs and microprocessor
architectures evolve, and they sometimes even die. Yet
important legacy software tools that depend on particular
OS versions are often useful far into the future. It is
expensive and sometimes insecure to maintain special-
purpose “classic” configurations. In addition, tools that
run on them can’t ride Moore’s Law to ever better
performance.

If snapshots of such classic configurations were
encapsulated as VMs, then they could be inexpensively
“revived” whenever and wherever needed and on
enhanced hardware, resulting in the associated tool being
executed faster.

This strategy would also be useful for any application that
is run only occasionally, especially if it needs to or is
expected to run on a dedicated server. For example,
during a downtime, whether planned or unplanned, a
temporary mail forwarding server could be activated at
some unaffected site. This approach reduces not only
costs, but also the risk that an infrequently used
application has fallen behind and is now incompatible
with changes in the computing environment. Such
incompatibilities are typically discovered at the worst
possible time, that is, at the exact moment when the
application is needed.

Checkpointing

A grand reliability goal is to guarantee to users that no job
will ever fail to complete for external reasons, such as a
machine reboot, a power outage, a disk crash, or even a
catastrophic failure such as an earthquake. An important
enabling technology that would be immediately useful is
the automatic checkpointing of a VM.

It should be possible to schedule a periodic saving of the
VM state that could be used to go back in time and replay
history from that archived moment, but without the
externally induced failure. Less frequently, redundant
copies of the state could be stored away remotely, at a rate
correlated with the probability of various risks which grow
with the duration of the task. For example, a simulation of
the earth’s climate that required a year of calendar time to
complete would almost certainly be disrupted during that
year by some external event. It could be argued that the
more sophisticated the application, the more likely its
developers are to have already built in checkpointing
mechanisms. But even if we ignore the fact that many real
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applications  disregard  checkpointing  altogether,
application-level  checkpointing  mechanisms can’t
reasonably be expected to cope with catastrophic failures.
Where should the application save its own state to protect
against fire and flood?

Checkpointing could obviate the need for engineers to
submit redundant jobs as insurance. Today, the longer or
more critical a task, the more likely it is to run multiple
instances of the same job, causing the actual resource
utilization for a computing task to be much larger than the
resource requirements for an individual job might
indicate. With VMs and checkpointing, a single job would
only need to be run once because it could be resumed
elsewhere, even if there were an external failure.
Likewise, if a machine must be rebooted for OS patches, a
planned site-wide downtime, or simply as an attempt to
put it back into a good state, the tasks running on it could
be terminated easily enough and resumed on some other
machine. This eliminates the need to prevent long jobs
from being submitted days in advance of such
maintenance and the temptation to postpone prudent
maintenance because of the speed bump it throws into
user schedules.

In the long-term, a VM could support some analog of
apoptosis (programmed cell death), killing itself when it
detects errors. A daemon could automatically roll back
(terminate and then reincarnate elsewhere) any VM that
hasn’t recently enough provided proof that it is healthy.

An issue that needs to be investigated is how to deal with
external (non-virtual) state elements, such as the actual
current calendar time and ongoing network
communications, that can’t be checkpointed. Another key
issue concerns licensing. Some software applications
require a license for physical CPU, while others require a
license per actively running copy. The issues of program
state and licensing need to be answered when deploying
VM checkpointing in the enterprise.

Performance Isolation

When choosing a shared computing resource, such as a
server on which to run a VNC [10] session, it’s difficult to
predict the impact of contention. The longer the task, the
greater the chance that some other user may consume an
unfair share of the resource and degrade one’s own
effectiveness. Although using VM checkpointing could
enable the victims to pick up and move to “greener
pastures,” it would be better to prevent a “tragedy of the
commons.” If we can ration real-world computing
resources by configuring the parameters (memory size,
processor speed, disk access speed, etc.) of each VM
assigned to a task, then limits on consumption would be
inherent to the resource capacity of the VM that task is
running in. A number of VMMs are capable of allocating

computing resources and of performing a measure of
performance isolation. While we have shown in a previous
section that VMs can significantly interfere with each
other, particularly through the interactions of shared
resources like the cache, there are other resources like
CPU cycles and memory that can be allocated in a way
that significantly isolates the performance effects of tasks
from each other.

Distributed Virtual Machines

The ability to allocate VMs at the location of choice is a
capability we call Distributed Virtual Machines (DVM).
DVMs enable a whole host of possible applications and
servers. Throughout this section, we use the terms
distributed virtualization, overlays, and distributed virtual
machines, interchangeably. We view DVM as the
methodology of choice for realizing robust,
computationally rich, networked virtualization and for
implementing overlays.

The Origins and Impact of DVM

One of the earliest and most successful implementations
of DVMs is PlanetLab [2]. PlanetLab is a world-wide
overlay network with over 689 nodes at 334 locations
around the world. Designed to be a testbed and
deployment platform for researchers to study planetary-
scale distributed systems and services, PlanetLab has
distributed virtualization at its core. Researchers allocate a
“slice,” a set of VMs, at the locations of their choice.
Using VMs allows the researchers to develop and deploy
innovative new services that do not interfere with each
other on the same physical hosts. Using this model of
computing, several innovative services with content
distribution [11] and network measurement [12] were
developed and deployed. These types of applications, and
the way that PlanetLab was designed for the safe
development and deployment of services, have
implications for the way that DVM can be used by
enterprises.

Network Monitoring

A global organization has many Internet users scattered
across the planet. Some are Intel customers, some are
suppliers, and some are employees. Employees can be
within Intel’s firewalls or working remotely from home or
from customer sites located anywhere on the globe.
Services that are utilized include Web sites such as Intel’s
corporate presence at www.intel.com, various e-commerce
applications, and VPN connectivity back into Intel. This
requirement for global access can result in Intel’s Network
Operation Center (NOC) receiving complaints about
performance from any spot on the planet to any one of
Intel’s many DMZ zones. For example, the NOC might
get a call from a user in China saying that the response for
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an e-commerce application is very poor. Is the problem
local to China? Is the problem local to the Internet
connection in question? Is the problem Internet-wide? The
NOC needs tools to be able to answer those questions.

A key question is where to monitor. The typical DMZ
firewall model lends itself to monitoring the DMZ systems
from within the DMZ. This ends up creating a monitoring
model with limited scope that does not address problems
with transit from anywhere in the world to the DMZ. An
alternative would be an approach that examined Web logs
for performance problems [13] or looked at traffic flow
data using Cisco NetFlow™ [14]. Because of our traffic
volume and the fact that we didn’t have Web servers at all
of our Internet DMZs, we ruled out this option. It would
be extremely useful to be able to proactively monitor for
performance problems all around the world using active
measurements. Active measurements from regions in the
world could be taken from commercial services like
Keynote” [15] or from hosts in datacenters strategically
placed around the world. Using commercial services
would limit the kind of applications we could run to
monitor the DMZs and it could be fairly expensive.
Deploying our own hosts in the locations around the world
from where we want to monitor would permit much more
flexibility, but would be even more expensive.

DVM presents a relatively inexpensive and flexible
platform for global-scale monitoring, but poses challenges
with software distribution and application management.

Security Monitoring

The traditional, closed network control model has
disadvantages in protecting the enterprise networks from
distributed network attacks because of data inaccuracy,
inability to perform overall impact analysis, and lack of
data correlation from distributed sources in large
networks. As more and more enterprises move towards
relatively “open” perimeters (sometimes without realizing
it as through unauthorized wireless access points and VPN
connectivity) and distributed network environments in
order to meet business demands, the associated
provisioning and management cost will consequently
increase, as will the complexity. The IT infrastructure
needs to be able to provision security requests quickly and
be pre-positioned and ready for such requests. The notion
of trusted and un-trusted network zones is fast changing in
today's enterprise network. Enterprise networks are no
longer a simple 2-trust level like they were a few years
ago with “internal trusted” and “external un-trusted”
zones. The requirement for protecting the resources at the
service level is becoming more a reality, and the
infrastructure to support this is at best expensive and
difficult to justify from an IT security standpoint. Also,
simply implementing network and service-level security
such as firewalls, IPS, anti-virus, and a whole slew of

defenses is not sufficient. In order to ensure these complex
network and service-level security enforcements are
functioning as desired, an automated and proactive
security monitoring system is becoming more essential for
enterprises. Proactive network security monitoring is
required to validate the security implementations,
patching, and provisioning of software to ensure it is not
vulnerable to the most recent threats and to avoid costly
network downtimes, security incidents, denial of service
attacks, and worm and malware attacks, all of which
impact productivity and service availability. In addition,
regulatory and legal compliance requirements, such as the
U.S. HIPAA, Sarbanes Oxley regulations and European
privacy laws, are getting more strict for all types of
enterprises to ensure they are following the rules to protect
their assets, resources, and information.

Vulnerability scanning for the enterprise network to
ensure compliance to minimum security specifications and
auditing of network security policy to ensure it is
implemented per the documented enterprise security
policy are examples of add-on security monitoring that the
enterprise IT would like to deploy extensively but which
is limited due to the static nature of deploying these
applications. Using the DVM approach, the ability to
create instances/clones of systems that would be able to
generate the required security monitoring functions would
be extremely simplified. In addition, it would help create
multiple views for network security assessments and
monitoring. For example, in order to assess the
effectiveness of network security implementations, such as
firewalls, IPS, authentication/authorization, and other
security enforcements, enterprises would have to perform
the network security assessments/audits/scans from
various parts of the network, such as from within the
DMZ/internal network and from the external connected
network. This would not only help validate the overall
picture of the security posture for the network but also
ascertain whether the implemented controls are sufficient.
With DVM and the ability to “suspend, copy and resume”
a VM, network security becomes relatively simple and
cost effective. Another advantage of being able to
inexpensively create multiple instances of the network
security monitoring system would be to increase the
speeds and parallelism of the results. Network security
monitoring is then transformed from an infrequent and
expensive annual or quarterly audit to a proactive one that
can identify and fix security vulnerabilities as soon as they
appear on the network.

The DVM approach to network security monitoring as
discussed above would help reduce the cost of
provisioning these relatively complex
auditing/monitoring/scanning applications as compared to
the traditional method of static provisioning of standalone
security monitoring systems. Using the DVM approach
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would reduce the capital costs of the hardware and the
cost of the provisioning tasks required to maintain
physical systems for these functions. Operational costs for
network security operational staff would also be reduced
as network staff would be able to leverage the network for
simplicity of “on-demand” VMs for the network security
monitoring functions. Using the classical server/operating
system/application model, and not the DVM model, it is
almost impossible to monitor to the level required to be
proactive enough to identify security gaps before they are
widely exploited.

Content Delivery

A content delivery overlay provides a common service to
various applications such as distributed file storage and
sharing. Each overlay node maintains a small overlay
routing table for finding the destination with the shortest
path length of complexity O(logn), where n is the network
size. But these overlay search algorithms make the
underlying network transparent to the overlay and only
find the shortest search path in terms of the number of
virtual hops in the overlay.

Safe Yet Realistic Experimentation

A challenging aspect of enterprise environments is the
difficulty of testing and introducing new or innovative
services into an established infrastructure. Changes are
strictly controlled because changes in the computing
environment can negatively affect critical enterprise
services. This is particularly true when introducing new
services to an already running physical host. The new
service or application may require system libraries and
other software that could potentially break existing
services if introduced. Moreover, usage loads introduced
by new services on existing infrastructure (both network
and CPU) can potentially starve existing services. Thus,
the traditional enterprise approach is to bundle new
hardware with each new service. Deploying new hardware
for each additional service severely slows the introduction
of new services, adds to the Total Cost of Ownership
(TCO), and further complicates change control. Testing of
new services is often done in isolated lab environments,
where realistic conditions are difficult, if not impossible,
to replicate.

Alternatively, the ability to create VMs that are effectively
isolated from each other and share resources fairly
resolves these problems. The fundamental idea here is to
decouple the introduction of new services from the
deployment of new hardware. New services can be
deployed on existing hardware by allocating VMs in the
preferred service locations. The VM isolation shields
existing services from library conflicts with new services,
which are sequestered in their own individual VMs.
Deploying new services on existing servers also speeds

the development and testing of new services, in a realistic,
closer-to-production environment without impacting
existing services and without requiring installation of new
hardware.

Virtual Enclaves

Within large and complex enterprises, there is a need to
separate mission-critical environments from the rest of the
organization. Critical areas like manufacturing should be
immune to worms and malware that might proliferate in
the rest of the organization, and access to these critical
areas needs to be restricted to those individuals who need
it. Fundamentally, these critical areas require their own
separate enclave. The traditional approach to building
these enclaves is to use dedicated hardware, as shown in
Figure 2. This approach has several drawbacks. Deploying
the entire infrastructure needed to make the enclaves self-
sustaining (such as DNS servers) is time-consuming and
expensive. If the infrastructure in one of the enclaves goes
down, there is no easy way of getting more resources,
short of either repairing the down nodes or installing new
equipment.

Standard Enclave Configuration

= K1
= 0000

o
j=g) =

Figure 2: Enclaves currently need to be implemented
with physical partitioning and hardware firewalls

The use of DVMs combined with overlay routing
technology provides an innovative new way of deploying
these enclaves. The VMs required by each service can be
joined together with a secure overlay. The overlay isolates
and controls access to the VMs as shown in Figures 2 and
3.
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Enclaves in a Secure Overlay Networl
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Figure 3: A secure overlay network connects
distributed virtual machines

This approach has several benefits. If there is sufficient
capacity, no new machines need be deployed. These new
virtual enclaves can be deployed in a dynamic manner at a
greatly reduced cost. If network segments go down,
overlays can route around the problems. If hosts go down,
VMs can be moved or allocated on other physical hosts.

Extending Virtualization into Clients

The computational, network, and storage resources of
mobile devices (laptops and handheld devices) in an
enterprise typically have low utilization and are not
available for use by enterprise applications or services that
could best utilize them. We envision an environment
where the OS with which a mobile user interacts, is one of
many OSs that run over VMMs. While the mobile user is
interacting with the device, a VM dispatch service can
request that the device’s VMM create VMs for a variety
of tasks, as displayed in Figure 4. These tasks can range
from doing computations to running services like file
systems, content distribution, and other services like
Voice over IP (VoIP). This work can be transparent to the
end user and done in the background.

Virtual Machine Manager creates VMs for a variety of tasks
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Figure 4: Dispatching DVMs to mobile devices

This architecture extending virtualization into clients and
dispatching work via VMs to mobile devices has
significant advantages over the current situation in most
enterprises. Enterprises typically have low utilization of
their mobile resources. Our proposed architecture enables
better utilization and can potentially add enormous
amounts of shared resources to an enterprise. It also has
advantages when it comes to management of systems and
services. Having a VMM underneath the OS visible to a
user makes it easier to restart or rebuild the users’ OS.
Services can take advantage of the location of mobile
devices and dispatch service instances in VMs that are
close to their designated clients. This frees a service from
having to manage network parameters such as delay and
throughput to a central site. The service is also easier to
maintain in the face of node outages because work can be
moved between mobile devices.

The similarities between overlay networks and ad hoc
networks, along with the technical merits that each
introduce through their integration, motivated our interest
to investigate and implement an alternative architecture of
overlays on wireless mesh networks, called OverMesh
[16]. Integrating overlays and wireless mesh enables
OverMesh to be flexible enough to serve many
networking purposes.

While OverMesh is similar to current ad hoc, sensor
networking, and peer to peer computing systems, it is also
architecturally distinct from these systems. These are the
differentiating properties of OverMesh:

e Infrastructure-free: a peer-to-peer edge/access system
is suggested over current hierarchical physical
formations.
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e Network virtualization: based principally on a
distributed virtual machine overlay strategy.

e Emergent control and manageability: utilize learning
and statistical inference techniques to off-load
human-dependency on operational management and
provisioning.

e Cooperative and adaptive end-to-end control: tighter
layer integration and automation of application-to-
network control and management through cross-layer
facilities.

OverMesh can be applied to a variety of wireless mesh
networks. At its current stage, we chose to realize it on
one of the mesh networks that is being actively
standardized—the IEEE 802.11s WLAN mesh network
[17]. The PlanetLab service architecture [18] was
customized and integrated with the WLAN mesh network

to manage the DMV-based overlays. We believe that the
implemented OverMesh platform will provide a unique
testbed for developing a wide variety of services and
applications on wireless mesh networks.

An IT Overlay

To experiment with, test, and deploy services using
DVMs, Intel’s IT department has created the IT Overlay.
We envision it as an overlay network that will include
hosts within Intel and eventually extend to hosts residing
outside of Intel’s firewalled perimeter, as shown in Figure
5. Systems hosting VMs have been deployed at five sites
within Intel, with more to be added as use of the IT
Overlay increases. Intel is also part of the PlanetLab
consortium, and Intel IT hosts two PlanetLab sites. Intel
has deployed a monitoring service that takes advantage of
the distributed nature of PlanetLab.

IT hosted

Internet

Planetl.ab
PlanetLab sisdag
> § B8

H%
8
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(“' e
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External
connectivity

Internal
connectivity

Figure 5: The IT Overlay inside and outside of Intel’s firewalls

The internal portion of the IT Overlay will be modeled
after PlanetLab. Services will be able to make requests to
a central authority that will dispatch VMs to run
applications and experiments. We intend to use the
interfaces and APIs created by PlanetLab to dispatch
VMs, although the Overlay uses Xen* [5] domains for
VMs rather than the VServers [19] implementation. We
envision running security, network monitoring, and
content distribution applications on the IT Overlay and

opening it up as a testbed and deployment vehicle for
DVM-enabled services.

A CASE STUDY OF SERVER
VIRTUALIZATION USING VMWARE

Here is a brief history leading up to the discussion and
decision to implement server virtualization for a
manufacturing support group at Intel. This organization’s
server population grew 65% over the last three years with
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2006 projections meeting or exceeding this trend. As this
organization grew and acquired servers, many of these
acquisitions were waterfalled servers being released by
other Intel business units. The initial costs made this type
of acquisition financially attractive but as we move
forward four years, most of these servers have reached
their end of life. Another factor is that the primary
datacenter for this group is projected to reach complete
build out in 12-18 months with no plans to expand. The
challenge for the organization was to continue supporting
the server growth and replace aging hardware with limited
datacenter space while maintaining the same high level of
customer support.

This group partnered with a forward-thinking IT group to
evaluate, plan, and implement a virtual server
environment. In this case study, we walk you through the
steps, lessons, hurdles, and successes of this effort. The
covered topics include software evaluation, candidate
evaluation, hardware design, host hardware setup, virtual
server setup, server testing procedures, and initial results.

There are multiple factors to consider when evaluating
and selecting server virtualization software. Our team
carefully reviewed leading technology products and
evaluated different system design options. The two most
popular virtualization architectures were host-based
virtualization (Microsoft Virtual Server 2005"; VMware
GSX 3.1 Microsoft Virtual PC 2004"; VMware
Workstation 5.0") and full virtualization (VMware ESX
2.5%.

Host-based virtualization requires the installation of a
base OS first and then a VMM to be responsible for the
execution of all VMs. In addition to the VMM
application, the OS can execute other applications (e.g.,
Anti-Virus, Backup). The downsides to this type of
architecture are a heavy performance penalty, high system
resources utilization by host system management,
additional work to support host maintenance and
management, and the upkeep of host security.

The full virtualization design starts off with the
installation of a mini kernel (a hypervisor optimized for
virtualization) on the physical server. This kernel uses
minimal system resources since it focuses only on tasks
required for virtualization, and it does not run unnecessary
processes or applications. The hypervisor provides full
hardware virtualization and distributes the necessary
system resources to all VMs. Each VM contains its own
OS and cannot distinguish it is running on virtualized
hardware. This architecture is ideal for consolidating high-
end datacenter solutions.

The decision process to determine the proper
virtualization architecture is a critical and time-consuming
task. Our team researched benchmarking results of

multiple virtualization products and analyzed the cost and
supportability options. We prioritized our list of
requirements and rated the various software options. We
evaluated four products against our requirements and
scored their performance. Our requirements included
performance, manageability, supportability, stability,
security, and a wide range of capabilities. Table 1 is an
example of how we did our comparison: (utilizing
fictitious data).

Table 1: Product evaluation scorecard example

Product Product Product Product Product
requirements I C

1. Performance 10 8 10 T

2. Manageability 6 10 3 8

3. Supportability 8 10 4 10

4. Stability 7 4 8 3

(WM uptime)

5. Capabilities 9 8 7 4

6. Security 10 3 7 4

Total: 50 45 39 36

After evaluating the scores, we selected a full
virtualization software solution for our virtual server
environment.

When virtualizing a datacenter, the project’s success is
directly dependent on choosing the appropriate
candidates. We approached this step by defining our
virtualization strategy for this business unit. First, we
divided their server environment into four categories:

Ideal candidates

Candidates

Potential candidates

e Not a candidate

To categorize each server, we started by collecting data on
performance, system utilization, end-of-service timelines,
business area, and application specifics. Once the
selection criteria data were collected, we mapped our
servers against the selection criteria to determine in which
virtualization category a server belonged. Once
categorized, our team focused on 75 candidates and
worked with the business unit to evaluate application
specifics and machine load analysis. With our
performance evaluations and customer input, we
assembled the server requirements:

e CPU consumption

e Required memory

Disk I/O intensity
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e Network requirements
e  OS configuration

We used these data when evaluating different hardware
platforms for our virtualization environment.

To maximize Return on Investment (ROI), number of
virtual systems, and performance, this team’s final choice
for the virtual host servers was the 4-way Dual-Core Intel®
Xeon® processor 7040” 3.0 GHz-2 MB L2 cache system
with 16 G of RAM, 2 x 2 Gb, 64-bit/133 MHz PCI-X-to-
Fiber Channel Host Bus Adapters and three Network
Dual-Port PCI-X 1000T Gigabit Server Adapters.

The hardware selected for this virtual environment is
based on an Intel IT standardized platform. The team
focused on designing a robust virtual infrastructure
without introducing single points of failure. This design
would address our customer’s primary concern with
consolidation of multiple applications to a single physical
machine.

The team agreed on an environment that would be
immune to hardware failure and power interruptions while
possessing the ability to load-balance. The consolidated
applications would reside on host servers containing dual
power supplies, mirrored hard drives, and teamed network
interface cards. The centralized storage solution selected
is a multi-terabyte storage area network (SAN) with full
fault-tolerant capabilities. Connections to the host servers
were made possible through two 2 Gb fiber channel
switches configured with redundant paths. This design
enables load-balancing, as all VM files reside in a central
location and access is possible by each host. Figure 6
shows the details of this design.

Virtual Environment Layout
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Figure 6: Layout of virtual environment detailing the
built-in redundancy

Utilizing an available software feature, VMs can be
migrated to another physical host. This migration is done
in an active state and causes no server downtime while
applications continue to operate uninterrupted. End users
are unaware of such migrations. We use this tool to aid in
managing downtimes, load-balancing, and other resource
alignment needs.

After reviewing multiple virtualization case studies, the
team agreed on a 20:1 consolidation ratio limit of VMs to
a single physical system. Our initial design consists of 4
physical machines with 15 virtual guests configured on
each. This will incorporate 60 ideal candidates targeted
for consolidation while reserving resources for potential
migrations. In case of physical server failure, the VMs on
the failed host would migrate to the 3 remaining hosts as
seen in Figure 7. This will permit 5 additional VMs to
migrate to each host, respectively, maintaining the 20:1
consolidation and 100% availability.
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Virtual Server Failover
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Figure 7: Demonstration of failover when a host
system fails

It was easy to justify this project because we were up
against several looming obstacles. First, the hardware in
use was aged and being purged from our current
supportability model. Replacement of this hardware on a
one-for-one basis was very costly. Second, the datacenter
is constrained by space and power. We needed a solution
that would free up physical space in the computing
environment. By replacing out-dated servers with virtual
servers, we not only saved ~40% on hardware upgrade
costs but more importantly extended the capacity of our
datacenter. This basic ROI did not investigate costs
associated with power, network, AC, etc. Figure 8 shows
our first-year ROI.

Return on Invesiment Worksheet

Rack &
Storage

Total Cost

Component

Qiy Hardware  Sofiware
Costs Costs

oo | wonwo | om0 i | sasimon|

Virtualization 1 $50,000.00 $50,000.00
Software
(approximate cost)
Hardware - (servers, | 1 | $243,000.00 $500.00 | $244,000.00

SAN, switches)

First Year Return on Invesiment

$432,000.00

Figure 8: Our first-year ROI calculation (software
costs are approximations)

As the approval, purchasing, and installation of the actual
virtualization island was in process, the team utilized a
validation environment to begin building server
configurations and testing potential candidate servers. To

do this, we established an overall test, validation, and
implementation plan for our “Ideal Candidate” servers.
We notified the owners of these machines of the timeline
for testing and identified our criteria for a successful test.

The technical team defined and created a “gold build”
server definition (based on the data collected during
server classification).

As the testing timeline progressed, server owners were
notified three weeks prior to their servers being created.
This notification included a detailed timeline for the next
five weeks and the requirements for completing a
virtualization test. Two weeks before testing began, the
server owners met with the virtualization team to discuss
special requests, variations from the gold build
configuration, and to approve VM resource allocation.
After this meeting, the technical team provisioned the new
servers and kept them in a “power off” status. The server
owners then had to prepare their test plan, success criteria,
and migration strategy during these two weeks. The test
plan had to include a regression test for any application
installed on the server to ensure it executed properly,
along with the server functions. Two days prior to the start
of virtual server testing, test plans, success criteria, and
migration plans were reviewed and approved. Once all
requirements were met, the servers were released to the
testing team to build their applications, copy data, and
configure the server with all required software and
application information. The test team did all OS and
application testing in a two-week period and met with the
virtualization team at the end of the two weeks. When all
success criteria had been met, the server was shut down.
Once the final hardware landed in the datacenter, the
server configurations were moved to the production
hardware, restarted, and each test group did a quick
validation to ensure the server was in the state it was shut
down in.

That was when the virtualization team turned over the
“keys” to the server owner and the owners executed their
migration plan and moved the physical machine contents
to the VM. When the final migration was complete, the
physical machines were powered off and removed from
the datacenter within 30 days.

RESULTS

When this Intel® business group set out to upgrade its
computing environment, the expected results were to have
an equal environment to the existing one. After the server
virtualization was completed, the expected ROI was
realized along with additional benefits such as datacenter
floor space, power, cooling, and network relief as well as
easier manageability for the IT support team. This
installation also built a solid production platform to begin
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deploying enterprise services and monitoring capabilities
through provisioning of virtual servers for these purposes.

CONCLUSION

In this paper, we explored the issues of implementing
virtualization in the enterprise. We analyzed IT services
and looked at how those services would be impacted in a
virtualized environment.

We looked at several use cases being currently
investigated by Intel’s IT department. The DVM concept
provides a new way of looking at deploying services, and
it enables a further use case that we are exploring with our
OverMesh implementation and the IT Overlay.

We presented a case study of virtualization of a datacenter
in which the VMware ESX Server was used that allowed
us to consolidate 20 or even more servers onto a single
physical server reducing hardware, electrical, cooling, and
administrative costs. Our solution provides robust
resource controls for different types of applications, and
we can control the levels and limits of CPU, networking,
memory, and disk I/O allocated to and used by each
virtual system.

Utilizing the virtual environment, IT can quickly create
new servers; and virtual servers can be deployed in 30
minutes vs. 60 days to purchase and deploy a physical
server. We achieved our goals to minimize our physical
footprint in the datacenter, lower our administrative costs,
improve our network uptime, and deploy new servers and
applications faster. According to Thomas Bittman,
research vice president and distinguished analyst at
Gartner Inc., “integration of virtualization technology with
the operating system is a natural evolutionary step for the
x86 platform.”

ACKNOWLEDGMENTS

We acknowledge our reviewers Dev Pillai, Mani
Janakiram, Greg Priem, Joe Whittle, Nicolas Robins,
Vivekananthan Sanjeepan, Robert Adams, George
Clement, Raju Nallapa. We also acknowledge the work of
Rita Wouhaybi, Gang Ding, Winson Chan, Hong Li,
Manish Dave, Claris Castillo, and Stacy Purcell in
investigating enterprise uses of Distributed Virtual
Machine Technology.

REFERENCES

[1] Goldberg, R., “Survey of virtual machine research,”
IEEE Computer Magazine, 7:34—45, June 1974.

[2] L. Peterson, T. Anderson, D. Culler, and T. Roscoe,
“A Blueprint for Introducing Disruptive Technology
into the Internet,” in Proceedings of HotNets I,
Princeton, NJ, October 2002.

[3] http://www.geni.org*

[4] Waldspurger, C. “Memory Resource management in
VMware ESX Server,” in Proceedings of the
Symposium on Operating Systems Design and
Implementation (OSDI ’02), December 2002.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Hegebar, L. Pratt, A. Warfield, “Xen and the
Art of Virtualization,” in Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP).
October 2003.

[6] Lai, K., Huberman, B., and Fine, L., “Tycoon: A
Distributed Market-based Resource Allocation
System,” in CoRR: Distributed, Parallel, and Cluster
Computing, 2004.

[7] P. Rundberg and Fredrik Warg, “Freebench v1.03,” at
http://www.freebench.org/*

[8] Clark, B., T. Deshane, E. Dow, S. Evanchik, M.
Finlayson, J. Herne, and J. Matthews, “Xen and the
Art of Repeated Research,” in Proceedings of the
USENIX Annual Technical Conference, Boston, July
2004.

[9] JSDL Version 1.0 recommendation, at
http://www.ggf.org/documents/GFD.56.pdf*

[10] 1. Dilley, et al., “Globally Distributed Content
Delivery,” in [EEE Internet Computing,
September/October 2002, pp. 50-58.

[11] Tristan Richardson, Quentin Stafford-Fraser,
Kenneth R. Wood, and Andy Hopper, “Virtual
Network Computing,” IEEE Internet Computing,
Vol.2 No.1, Jan/Feb 1998, pp. 33-38.

[12] N. Spring, D. Wetherall, T. Anderson, “Scriptroute:
A Public Internet Measurement Facility,” USENIX
Symposium on Internet Technologies and Systems,
2003.

[13] Cindy Bickerstaff, Ken True, Charles Smothers,
Tod Oace, Jeff Sedayao, and Clinton Wong, “Don’t
Just Talk About the Weather—Manage It! A System for
Measuring, Monitoring, and Managing Internet
Performance and Connectivity,” in First Conference
on Network Administration (NETA ‘99), Santa Clara,
1999.

[14] Cisco Corporation. Netflow, at
http://www.cisco.com/warp/public/732/Tech/nmp/netfl
ow/index.shtml*

[15] Keynote. http://www.keynote.com/*

[16] J. Vicente, S. Rungta, G. Ding, D. Krishnaswamy,
W. Chan, and K. Miao, “OverMesh: Network Centric
Computing,” under submission to /EEE

Virtualization in the Enterprise

240



Intel Technology Journal, Volume 10, Issue 3, 2006

Communications Magazine, Emerging Technologies
Series, 2006.

[17] IEEE 802.11s ESS Mesh Network working group
at http://grouper.ieee.org/groups/802/11*

[18] Andy Bavier, Mic Bowman, Brent Chun, Scott
Karlin, Steve Muir, Larry Petersen, Timothy Roscoe,
Tammo Spalink, Make Wawrzoniak, “Operation
System Support for Planetary-Scale Network Service,”
in Proceedings of NSDI *04: First Symposium on
Networked Systems Design and Implementation, San
Francisco, March 2004.

[19] Linux VServers at http://www.linux-VServer.org*

AUTHORS’ BIOGRAPHIES

Patrick W. Fabian is the business operations manager for
Intel’s Enabling Technologies and Solutions group in the
Technology Manufacturing Engineering organization. He
works closely with IT to support his organization’s
infrastructure and server environment. Patrick holds a B.S.
degree in Industrial Management and Computer Science
from California University of Pennsylvania. He has over
25 years of IT experience, joining Intel in 1996 as an SAP
developer. Along with developing key enterprise
applications, his career at Intel includes managing SAP,
Web, Teradata ETL, Microstrategy development teams
and the infrastructure team responsible for Intel’s
enterprise data warehouse. His e-mail is patrick.fabian at
Intel.com.

Julia Palmer is a senior systems engineer with
Information Technology. She joined Intel in 1997 as an
Automation Engineer for Fab 18 in Israel. Currently, Julia
is leading multiple infrastructure projects for Storage,
UNIX*, and Virtualization in the Manufacturing
Computing organization. She holds an M.S. degree in
Computer Science from Belarusian State University of
Informatics and Radioelectronics. Her e-mail is
julia.palmer at intel.com.

Justin B. Richardson is a Microsoft Certified Systems
Engineer currently working for IT Manufacturing
Computing Global Solutions. He joined Intel in 1996 and
has used his expertise of server infrastructure and mass-
storage solutions to support several manufacturing
environments. His current virtualization projects are
enabling server consolidation in a large-scale datacenter.
His e-mail is justin.b.richardson at intel.com.

Mic Bowman is a principal engineer within Intel’s
System Technology Laboratory and principal investigator
for the Distributed Virtual Machines Strategic Research
Project. Bowman received his B.S. degree from the
University of Montana, and his M.S. and Ph.D degrees in
Computer Science from the University of Arizona. He

joined Intel’s Personal Information Management group in
1999. While at Intel, he developed personal information
retrieval applications, context-based communication
systems, and middleware services for mobile applications.
Prior to joining Intel he worked at Transarc Corp. where
he led research teams that developed distributed search
services for the Web, distributed file systems, and naming
systems. His e-mail is mic.bowman at intel.com.

Paul Brett joined Intel UK in 2000 as part of Intel’s
Online Services group. He is currently working in
Hillsboro, Oregon, focusing on Distributed Systems
Management tools for developing, deploying and
accessing planetary-scale services. From 1988 to 2000,
Brett worked on the design and implementation of
dependable systems for air traffic control. He is a graduate
of the UK’s Open University, where he earned a First
Class Honours degree in Systems Engineering of
software-based systems. His e-mail is paul.brett at
intel.com.

Rob Knauerhase is a staff research engineer with Intel
Labs. His professional interests include machine
virtualization, Internet technologies, distributed systems,
system software, and information privacy in the digital
world. Knauerhase received an M.S. degree in Computer
Science from the University of Illinois at Urbana-
Champaign, and a B.S. degree in Engineering from Case
Western Reserve University. He holds 14 issued patents,
with more than 60 patents pending. He is a senior member
of the IEEE and the IEEE Computer Society. His e-mail is
knauer at jf.intel.com.

Jeff Sedayao is a staff research engineer in Intel’s IT
Research Group. He focuses on IT uses of virtualization,
including applying PlanetLab and PlanetLab developed
technologies to enterprise IT problems. Jeff has
participated in IETF working groups, published papers on
policy, network measurement, network and system
administration, and authored the O’Reilly and Associates
book, Cisco I0S Access Lists. His e-mail is jeff.sedayao at
intel.com.

John Vicente, a senior principal engineer, is the director
of Information Technology Research and chair of the IT
Research Committee. John joined Intel in 1993 and has 22
years of experience spanning R&D, architecture, and
engineering in the field of networking and distributed
systems. John has co-authored numerous publications in
the field of networking and has patent applications filed in
internetworking and software systems. He is currently a
Ph.D. candidate at Columbia University’s COMET Group
in New York City. John received his M.S.E.E. degree
from the University of Southern California, Los Angeles,
CA in 1991 and his B.S.E.E. degree from Northeastern
University, Boston, MA in 1986. His e-mail is
john.vicente at intel.com.

Virtualization in the Enterprise

241



Intel Technology Journal, Volume 10, Issue 3, 2006

Cheng-Chee Koh is a senior systems engineer in Intel’s
Engineering Computing Group at Santa Clara, California.
She received her B.A. degree in Mathematics and her
M.S. degree in Computer Science from Indiana
University, Bloomington. Her current interests include
messaging, interactive computing, information security,
and virtualization. Cheng-Chee has been with Intel for 13
years. Her e-mail address is cheng-chee.koh at intel.com.

Sanjay Rungta is a principal engineer with Intel’s
Information Services and Technology group. He received
his B.S.E.E. degree from Western New England College
and his M.S. degree from Purdue University in 1991 and
1993, respectively. He is the lead architect and designer
for the Local Area Network for Intel. He has over 13 years
of network engineering experience with three years of
experience in Internet Web hosting. He holds one United
States patent and three pending in the area of Network
Engineering. His e-mail is sanjay.rungta at intel.com.

4 Intel® Virtualization Technology requires a computer
system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and, for some uses, certain
platform  software enabled for it. = Functionality,
performance or other benefits will vary depending on
hardware and software configurations and may require a
BIOS update. Software applications may not be
compatible with all operating systems. Please check with
your application vendor.

® Intel® processor numbers are not a measure of
performance. Processor numbers differentiate features
within each processor family, not across different
processor families. See
www.intel.com/products/processor_number for details.

Copyright © Intel Corporation 2006. All rights reserved.
Intel and Xeon are registered trademarks of Intel
Corporation or its subsidiaries in the United States and

other countries.

* Other names and brands may be claimed as the property
of others.

This document contains information on products in the
design phase of development. The information here is
subject to change without notice. Do not finalize a design
with this information. Contact your local Intel sales office
or your distributor to obtain the latest specifications and
before placing your product order.

INFORMATION IN THIS DOCUMENT IS PROVIDED
IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS

DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S
TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING  LIABILITY OR  WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications and product
descriptions at any time, without notice.

This publication was downloaded from
http://developer.intel.comy/.

Legal notices at

http://www.intel.com/sites/corporate/tradmarx.htm.

Virtualization in the Enterprise

242



Intel Technology Journal, Volume 10, Issue 3, 2006

Redefining Server Performance Characterization for
Virtualization Benchmarking

Jeffrey P. Casazza, Digital Enterprise Group, Intel Corporation
Michael Greenfield, Software and Solutions Group, Intel Corporation
Kan Shi, Digital Enterprise Group, Intel Corporation

Index words: virtualization, benchmark, server consolidation

ABSTRACT

Virtualization will dramatically change enterprise system
deployments and is being driven by innovation across a
broad set of platform technologies. All of this attention
has created a broad interest in comparing different
products. One challenge is that there are no established
performance methodologies to measure virtualization
performance. Today’s existing server benchmarks cannot
be easily used as-is by an end user to generate clear and
relevant results. This paper presents a workload
methodology to help the reader -characterize the
performance of servers exploiting virtualization
technologies to consolidate multiple physical servers. It
presents an example benchmark using applications often
found in typical virtualization deployments. The existence
and exploitation of a standard methodology is a key to
accelerating continued improvement of virtualization
technologies.

INTRODUCTION

Virtualization has been part of the datacenter since the
1960s when it was exploited across mainframe systems
[1]. Virtualization is experiencing a renaissance as this
technology is finding its way to high-volume servers. To
the IT technologist, virtualization brings the promise of
solving several datacenter problems. Virtualization can
reduce costs by consolidating older servers. It helps
organizations become more nimble through fast
provisioning of virtual servers. It improves equipment
utilization and the end-user experience by enabling
dynamic load balancing and improved disaster recovery
capabilities. These benefits provide a strong motivation
for accelerating server virtualization deployments.

Virtualization provides an abstraction of hardware
resources enabling multiple instantiations of operating
systems (OSs) to run simultaneously on a single physical

platform. The abstraction provides isolation between the
separate running partitions to prevent individual faults
from affecting the entire system. The virtualization of the
hardware also means that different OSs can be supported
on a single platform simultaneously—even older OSs.
Consolidating several physical servers that have
workloads  with non-overlapping peak utilization
requirements over time allows better hardware utilization
than if these were carried out on separate systems. These
benefits are attractive in environments with legacy servers
that, though important to the business, cannot justify the
porting and validation activity to a newer OS [2].

In this paper we present a methodology and an example
for characterizing the performance of servers using
virtualization to consolidate multiple physical servers. We
provide a general overview of two key virtualization usage
models. We also briefly look at how contemporary
methods can be applied to virtualization. We discuss the
challenges generated by the virtualization abstraction
layer and consolidation, and we present a systematic
approach to performance measurement. Finally. an
example workload, called vConsolidate, is defined to
further clarify the methodology.

ENTERPRISE VIRTUALIZATION USAGE
MODELS

The value virtualization brings to datacenters depends on
what problems it can solve for the IT technologist. These
are defined to be virtualization’s usage models.
Virtualization usage models today are focused on legacy
consolidation, flexible provisioning, test/development,
dynamic load balancing, and disaster recovery. As the
technology penetrates the mainstream datacenter, new
usage models will likely emerge.
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The performance discipline ' presented in this paper
provides a basic framework fitting multiple usage models.
However, we focus specifically on two usage models due
to their historic appeal to datacenter managers: legacy
consolidation and flexible provisioning

Legacy consolidation refers to transferring application and
OS stacks from multiple servers to a fewer number of
(typically more powerful) servers. The old “legacy”
servers are often running older OSs because upgrading to
a newer version has some manpower impacts. For
example, a legacy application may need some porting
work, but the resources to do this cannot be justified. In
this paper an old (legacy) server is classified to be 3+
years old. The utilization level of these legacy systems is
often quite low, 5-15%. Such low utilization of an older
platform means that a contemporary server could provide
the processing capability for running many multiples of
the legacy applications simultaneously. Market research
indicates that legacy consolidation projects with
virtualization tend to mix different application types on
the new consolidated server; however, IT managers are
avoiding mixing OS types [3]. The final consolidated
server typically has some mixture of Web servers, e-mail
servers, database servers, and/or other types of
applications running simultaneously, but all are running
the same type of OS (e.g., Linux or Windows") and often
the same version of the OS [3].

Flexible provisioning is essentially forward-looking
consolidation. As new servers are requested from the IT
department, rather than deploying a new physical server
for each request, the deployment is a virtual slice of an
existing server. For example, if a two-processor server is
needed to support a new Web server application, perhaps
two virtual processors of a multi-processor server are
deployed in support of the request. This drives up the
utilization of the servers, thereby improving efficiency.
The virtual provisioning is often much faster, as hardware
may already exist to support the request, eliminating the
procurement cycle.

These two usage models, legacy consolidation and
flexible provisioning, constitute the main driver behind
the adoption of virtualization in mainstream datacenters.
The focus of this methodology is to measure the
performance of virtual servers in a way that is related to
these two usage models. Other usage models, like test and
development, are also popular but not addressed in this

paper.

" A structured and consistent set of methods and processes
that are accurate and repeatable.

Having the wusage model defined is important for
developing a relevant performance benchmark. The usage
model provides boundary conditions to the testing. For
example, the usage model indicates what types of
applications should be used, whether the application and
OS stacks are heterogeneous or homogeneous, what is the
configuration of a typical system-under-test (SUT), and
what is the appropriate size and number of the virtual
machines (VM).

VIRTUALIZATION PERFORMANCE
CHARACTERIZATION CHALLENGES

A question that may come to mind is “Why can’t existing
performance characterization methods be exploited?”
Users already have many accepted methods and tools to
characterize servers. Some of these include load
generators (e.g., LoadRunner’) and a myriad of industry
standard (e.g., SPEC", TPC") and proprietary workloads
(e.g., SAP-SD 2 Tier*, MMB3*, R6iNotes*). There are
several challenges presented in virtualization performance
characterization including consolidation, virtualization,
and implementation considerations. These limit the use of
existing methods.

Consolidation Characterization Challenges

We need to differentiate between consolidation and
virtualization challenges, as both introduce complexity
into performance measurement and tuning. Virtualization
facilitates creating multiple VMs on one physical
machine. Consolidation relates to running multiple
workloads on the system at the same time.

A challenge with consolidation characterization is the
mixture of different workloads. If you consolidate a set of
heterogeneous workload environments, consider that each
will have a different set of requirements and metrics and
that depending upon the users’ specific requirements, the
relative priority of each will vary across users, time, and
other dimensions.

Another consolidation challenge relates to resource
profiles. The non-steady state resource profile of the
individual servers will look quite different from that of
the consolidated system [4]. It is simplest to measure
performance when all measurements are conducted in a
time window after all workloads are in a steady state.
While this may be nice for a benchmark, it fails to
represent many real-world usage models. Consider the
following examples:

e  Most e-mail servers have distinct periods where the
demands upon them vary a great deal. For example,
the system may be idle until a wave of people arrive
at work and log in, download their e-mail, and make
other demands on the server. Conversely, the
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demands on the server would decrease as people
finish up for the day.

e A Web store that supported a worldwide customer
base could be busy 24x7 and reach a steady state as
opposed to some service that was provided to people
in one locale.

e Some workloads have seasonal variations, end-of-
month closings, holiday duty cycles, and other
modifications that may differ greatly from normal
operations.

Consider two examples of a consolidated e-mail server:
Web store server, and a customer relationship
management (CRM) server. In the first scenario, Figure 1,
we see that none of these is ever run in a steady state. If
these are the actual profiles of the consolidated server, it
would be prudent to examine peak resource requirements
when superimposed at one instant of time to determine
how well the overall system is performing.

— Email Server
— WW Web Store

100% 1 ——CRM Server

75% A

50% -

System Utilization

25% A

0% . . . ! . . .
0:00 300 600 9:00 12:00 1500 18:00 21:00 0:00
Time of Day

Figure 1: System resource profile for workloads that
are not operating in a steady state

In the second example, Figure 2, we see three server
utilization profiles that all reach a steady state. If we were
to examine the performance of the consolidated system
and did our study at some point after 15 hours of running,
we would see a much simpler profile of the workloads in a
steady state. While the second workload is easier to test
and tune, it may not reflect the actual end-user resource
profile.
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Figure 2: System profile for workloads that are
operating in a steady state

Virtualization Characterization Challenges

Whatever performance tools, methods, and processes are
used for the characterization, tuning and simulation of
server-based workloads they are likely to continue to be
relevant in a virtualized environment. As much as we
would like to have a single benchmark (or a small set of
benchmarks) to describe server performance, there is
nothing as good as the actual end-user workload (what
they do today and how that will change over time) to
employ in developing a performance and projection
discipline. This will also be true for virtualization
performance, since no single workload will characterize
all user requirements. Consider some different user
requirements which may include the following:

e A threshold minimum throughput must be maintained
over time.

e Some margin must be available for peak workload
requirements or for future expansion.

e The server provides some service and the response
time to any specific request or set of requests cannot
exceed some specified quality-of-service threshold.

We can better understand some of the new challenges that
are introduced in the context of virtualization when we
consider the requirements for and how a system will be
used. For our example, server environments are associated
with the consolidation of existing (often legacy) systems
and the virtual partitioning of an existing platform for new
server deployments. The diversity of what is being
consolidated requires that no one workload or
environment can be used as a general proxy for (most)
others. Consider the diversity of essential components
(and how poorly one workload would serve as a proxy for
another):
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One OS as a proxy for all others (e.g., Windows " to
represent Linux )

One usage model or vertical to represent another
(Linpack to represent MMB3)

Listed below are some of the other new challenges
virtualization adds:

There are many different options on how a platform
will be partitioned and how resources can be
allocated, each  dramatically affecting the
performance of each and how they interact with each
other. These are further compounded depending upon
what the goals are: for example, absolute
performance, minimum performance thresholds,
power consumption, TCO, or other optimization
criteria.

There are different strategies that can be used to
evaluate a system, including response time,
throughput, percentage utilization, and others. These
may be exploited simultaneously across separate
workloads running across different VMs in a single
performance discipline.

Implementation Challenges

As different software stacks are combined inside a set of
VMs, there are considerations that may affect precision
and repeatability of the results. Often these are tied to the
specific implementation of the virtualization abstraction
layer and underlying platform. Though by no means an
exhaustive list, such issues could include the following:

VM clock accuracy/precision: Since there are several
VMs running on a single platform, there is a variety
of approaches to how the virtual clock is mapped to
the physical platforms’ clock, and any of these can
cause clock skew. Since most benchmarks will
compute a performance metric based upon the always
assumed correct system clock, any changes in the
clock behavior could lead to errors in computing the
delivered performance. Such issues, as well as ways
to minimize this possibility, are further explored in
VMware [5].

While an extensive set of system performance
monitors are available under most native operating
systems (OSs), most virtualization monitors provide
only the most basic performance monitoring
capabilities. This is sure to improve over time, but the
combination of the environment getting more
complicated  from  both  consolidation and
virtualization and the nascent state of performance
monitoring conspire to increase the difficulty to
comprehend and productively tune the system.

All virtualization implementations introduce an
additional level of abstraction and not unexpectedly,
additional overhead. This makes appropriate system
configuration even more important than it is for
unvirtualized environments, since resource limitations
usually drive up the context switching rates, perhaps
at multiple levels of abstraction. Being more generous
with memory and I/O capacity when setting up the
system initial configuration in a virtualized
environment can offer an even larger return in
performance and price/performance than non-
virtualized environments. As a simple example, a
reduction in page fault activity after adding some
RAM in a virtualized environment is likely to pay an
even larger dividend than in the pre-virtualized
environment.

Many unvirtualized server benchmarks will have a
range of observed performance. When multiple
workloads are consolidated on a platform and hosted
in VM, this likely adds more variation, particularly if
any of the constituent workloads can impact each
other or are tested before they are running in a steady
state. Readers are encouraged to run their
experiments as many times as iS necessary to
understand the performance profile and variation
from run to run.

Obtaining consistent and predictable performance
results assumes that scheduling across VMs is
equitable and consistent. It is possible in a
virtualization benchmark that the scheduler is not
providing what appears to be an equitable distribution
of compute and I/O resources across the VMs. For
example, if you had N identical copies of a particular
workload with the same virtualization monitor
configurations, you would expect each to get 1/Nth of
the resources available on the system. It is suggested
that performance analysts inspect the system during
benchmarking to ensure that expected resource
profiles are observed.

Some virtualization monitors will give you various
options to map physical CPUs to virtual CPUs and to
create affinity between certain sets or to allow a more
general pool of resources to be shared amongst all
VMs. Virtualization monitors may also permit the
setting of weights or CPU percentage to each
workload. The higher the workload’s weight, the
more it will be scheduled to use CPU resources. How
to set these depends upon user requirements. For
example, is it desirable to ensure that some CPUs are
dedicated to certain workloads, or do you want the
flexibility for the VM to allocate CPUs based upon
dynamic workload changes in real-time? Is one of the
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workloads more important than others and therefore
should a bigger weight be assigned to it?

When consolidating multiple workloads on a single
physical platform, a number of physical devices need to
be shared between VMs. Some platforms and
virtualization monitors provide different options on how
to map the physical devices to virtualized devices. Some
physical devices can be assigned solely to a specific
workload or just shared between a set of VMs. It depends
on customer requirements to set the options. For example,
customers can decide to assign a NIC to a Web-bound
workload exclusively, and all other more compute bound
workloads will share another NIC.

VIRTUALIZATION PERFORMANCE
DISCIPLINE

The following is a performance discipline to develop a
consolidated virtualization benchmark. The steps are
serial in nature and provide a framework to help ensure a
reasonable result.

Select workloads, performance metrics, thresholds, and
weight factors.

We start with a complete definition of what work needs to
be serviced, how we will measure how well the system is
meeting the requirement, and if there are any minimum
requirements. Weight factors are developed to ensure that
resources are allocated in a manner that favors the most
demanding workloads.

Sizing the platform and selecting the initial configuration.

Once the requirements are comprehended, initial selection
of what platform, configuration, and virtualization
technologies (hardware and/or software virtualization,
choice of VM implementation, etc.) will be made and how
the system will be set up will be decided. The initial
platform capabilities can be approached in (at least) two
ways. One approach is to start with a platform with clearly
more resources (CPU, RAM, network, disk) in every
dimension and iteratively reduce them until the right
balance is achieved. Alternatively, you can start with a
configuration that is too low and add resources until the
desired balance is achieved. The former is much quicker
and the latter is less expensive.

Define aggregation strategy (how the performance of the
constituent workloads will map to an overall performance
metric).

This step allows the user to assign and refine the priorities
of the different workloads and results that the system-
under-test (SUT) will deliver. By assigning weights that
are most representative of the user-specific requirements,
user perceived improvements can be achieved as opposed

to random shifts of resources and workload impact that
cannot be comprehended and exploited. It is also during
this step that you must consider the repeatability for each
workload and whether you will observe and measure it in
a transient or a steady state and compensate for
interactions between the constituent workloads.

Develop and iteratively refine the mapping of workloads-
to-VMs and VMs-to-platform resources.

There are many resource decisions that will dramatically
affect how well the system responds by workload. A
baseline mapping of these resource decisions would
include how to map workloads to VMs and how to relate
VMs to system resources (cores, /O, etc.). Some
adjustments to the workloads may be motivated by some
of the resource decisions made here.

Tune each workload as if it was not virtualized and
establish a baseline, then iteratively refine it (optional

step).

It is assumed that each workload is well understood in
terms of having a performance discipline and that all
tuning steps are fully exploited. This almost always is the
best starting point for characterization and optimization of
the consolidated virtualized environment. Where the two
workloads that are being consolidated have mutually
exclusive configuration requirements, it may be best to
use either some blending of both or use the one that
affects the most heavily weighted workload.

Measure the performance and aggregate it into a
performance result.

A comparison to defined thresholds to see if the overall
result is valid is conducted, and then the performance of
each workload is assessed and aggregated into a single
metric.

Identify bottlenecks and attempt to shift resources,
augment configuration, and optimize components as
needed to drive continuous improvement.

This step focuses on identifying bottlenecks, making
configuration  adjustments, and  making  other
modifications that help drive improvements in the
aggregated performance result for the entire system. It
should be noted that there may be limitations in the
performance monitoring tools available in a virtualized
environment.

Iterate as needed.

This better reflects the tuning and optimization that are
usually part of any measurement process, and the focus
here is influenced by the difference between the
requirement and measured result and the resources
available.
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VCONSOLIDATE EXAMPLE

While there is no one proxy benchmark for all
virtualization deployments, it is highly desirable to have
one since it provides a basis of comparison and a basis for
a consistent approach to measure and continuously
improve. We will arbitrarily define a benchmark called
vConsolidate. There are as many possible workloads as
there are servers. No two users (or usages) are exactly
alike, so we need to make reasonable representative
approximations. The purpose of this section is to illustrate
how to build up a performance discipline in a virtualized
environment with one viable example; and to show the
reader how they can do this with component choices that
are aligned with their respective environment. The reader
should look at this as a basis that can be progressively
refined.

In Figure 3, we present a high-level view of the system
running vConsolidate. At the base, we have the physical
platform, then a virtualization monitor, and some multiple
number of VMs, each running a designated workload. We
have also defined an aggregation strategy that helps us
consolidate workloads, define the performance metric(s)
and tell how measurements will be taken.

| Workload 1 | | Workload 2 |— | Workload K |
VM1 VM2 - VM K
N Tmf=71 I IREY Jmf=1 [ ] CN - Jmf=1 [ J

| Virtualization Abstraction |

Physical Platform

s EE O] X E e

Figure 3: vConsolidate concept

We will construct a hypothetical example to illustrate the
performance discipline discussed above. In this example,
we select the following environments for consolidation:
Web servers, e-mail servers, and database servers. For this
example, we model the system by having some multiple of
each running and designate the weights of each as
Weight[i]. All the weights are fixed numbers pre-defined
by the workload. Each workload can be run on the system
before and after any virtualization layer is included, and
we can compare the virtualized performance of each
workload with a baseline measured without virtualization
on a pre-defined standard machine. This serves as a useful
tool for calibrating subsequent results. We replicate these
workloads as needed based upon a set of usage model

requirements. Then, we calculate the ratio of
virtualized/baseline as the relative performance of each
workload. The performance of the virtualized environment
would be

N

Weight[i]*WorkloadPerf[i]
=1

where WorkloadPerf[i] is the relative performance of the
i’th workload

Here is an example:

e The consolidation workload consists of one Web
server, one e-mail server, and one data base server.

e To mimic the real-world scenario, one idle VM is
also running on the physical system. In that VM, no
real workload is running. We do not take any score
from this idle VM.

e The weight factors are 35% for the one Web server,
20% for the e-mail server, and 45% for the database
server. This would correspond to a weight vector of
(0.35, 0.20, 0.45).

e After testing each workload individually in a non-
virtualized pre-defined standard machine with a
specific configuration, we can get the baseline of each
workload.

e At this stage, we define how the workloads were
mapped into VMs, how the VMs were mapped to the
underlying physical platform, and how resources were
allocated amongst each. This is not defined by the
workload. The wuser chooses the best VM
configuration settings to do the measurements.

e Each of the workload components has a well-defined
performance metric and a known, unvirtualized
baseline result. The observed result for the
virtualization of each of the component workloads is
normalized to this known baseline. The resulting
benchmark metric is the combination of all of the
normalized workload component results. As an
example, the performance results ratio vector
WorkloadPerf[i] could look like (1.8, 1.5, 2.3)2. The
rollup result for the performance of the virtualized
system would be

* The reader is reminded that these are ratios to some
predefined (different and likely older) standard system and
are likely to be greater than 1.0.
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N
Weight[i]*WorkloadPerf[i]
I=1
or
(0.35,0.20, 0.45) * (1.8, 1.5,2.3) = 1.965

This calculation is illustrated in Figure 4. The result
becomes most useful when comparing different
configurations. For example, the same consolidated
set of workloads can be compared across different
platforms or against two different virtualization
monitors, or it can be used to compare two different
sets of configuration settings.

1.965 Final Score
+
/ +| \
063 0.30 1.035 Weighted Score
}co.as Ixn.z I %045
18 15 23 Relative Score
Td\v by baseline %W by haseline I
Baselines 5
1000 Web Trans/s 1800 Transls 3000 Mailsis 2300 Transis Raw Score
2000 Mail Trans/s ’
1000 DB Transis Web Server | | Mail Server DB Server Idle
VM# VM#2 VM#3 VM#4
Virtual Machine Monitor
Physical Platform

Figure 4: vConsolidate example virtualization
benchmark results calculation

INDUSTRY-STANDARD
VIRTUALIZATION BENCHMARKS

We have established a general methodology for
developing a virtualization benchmark. The value of the
benchmark will be amplified to the degree that its
component workloads map to the actual work and metrics
of the particular usage model. There is great value in
having a proxy industry-standard benchmark since it
permits the community to focus on some standard
repeatable test that facilitates comparisons between
configurations and platform technologies. Virtualization
opportunities require that some abstraction on top of a set
of workloads is developed, for example a throughput
methodology (SPECthruput” and later SPECrate’) [6]
applied on top of the well-known SPEC" CPU
benchmarks.

Despite virtualization technologies and implementations
dating back more than 30 years, no de-facto or industry-
standard performance metric exists. As virtualization is
exploited on commodity high-volume platforms across a
range of server workloads, the community needs standards
to compare virtualized performance (e.g., [7]). These are

some of the motivations for an industry-standard
benchmark:

® Motivate the industry to add a performance and
optimization discipline to virtualization platforms,
monitors, and tools.

® Help users considering virtualization to compare
alternatives, particularly where they were unwilling or
unable to develop, execute, and maintain their own
benchmarks.

® Accelerate both the development and application of
virtualization technologies.

What is a server virtualization performance benchmark
and how could it be used? It is a performance discipline
that includes consolidated server workloads running in
virtualized partitions. It is most likely to be useful to
compare platforms and virtualization technologies. Some
examples on how it would be used are given:

® How does the performance, power efficiency, or
price/performance of Platform A compare with
Platform B?

® How does VM monitor A compare with VM monitor
B (an upgrade, a competitive comparison, comparison
of software and hardware accelerated
implementations)?

®  What is the effect of a configuration modification or a
component substitution?

What is a good benchmark and how is this question
modified by virtualization? We will first list what we
believe is required of benchmarks and then what is
desirable.

First, required attributes of benchmarks:

® They should be relevant to some well-defined user
constituency like Web servers, application servers,
database servers, and e-mail servers, that would be
likely considered for consolidation.

® They should be timeless, in the sense they do not
specify any platforms, technologies, or usage models
that will not make sense over some reasonably long
time.

® They should provide repeatable results from run to
run and provide a means to ensure that valid results
were obtained.

® They should be agnostic (in terms of platforms,
virtualization monitors, and as many other parts of the
stack) to the extent possible.
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® They should be able to automate, repeat, scale,
consolidate, and compare performance observations
across a wide range of systems, times, and

components.

® They should use a simple, single unit of measure for
performance results (and associated component
scores for those preferring more detail).

® They should be citable, which depends upon
components that are freely accessible to the
community.

Second, desirable attributes of benchmarks:

® They should not require infrastructure that will block
most organizations from putting the system together.
This rules out workloads that need a huge number of
disks, a load-generation infrastructure, or an
infrastructure that is otherwise encumbered.

® They should be easy to test. For example, load
generation is considered a minor performance
consumer and can be run within the test environment
(no external load generators needed).

® They should be easy to obtain, set up, and test. For
example, they should use relatively low-cost, easy-to-
access and set up applications, tools, and utilities.

There are many practical challenges in constructing such a
specification. Here are some examples.

® If you were to start with existing workloads, some of
the most visible contemporary industry-standard
server workloads may limit other components from
participating in the benchmark or introduce
complexities that cannot be easily managed across a
range of systems and timeframes. One solution would
be to develop new server workloads that were totally
portable, but this would introduce a new challenge in
that these would be unproven and unknown.

® Many benchmarks artificially attempt to saturate the
CPU and marginally reflect best configuration
practices.

® Some virtualization technologies may have different
feature sets and in order to maximize those that could
participate, we would have to limit the features that
could be exercised, for example migration of VMs.

®  Perhaps the most difficult set of decisions is to pick
the constituent workloads and define an aggregation
process—since there is no single right set. This will
require compromises before it can be accepted by the
community.

Driving a standardized benchmark is the best way to
create a performance discipline, achieve continuous
improvement at every layer of the platform stack, and
ultimately develop an industry standard for measuring and
optimizing virtualization performance.

CONCLUSION

In order to be agnostic to the underlying operating
environments and implementation, we have taken a high-
level approach that assumes a coherent performance
discipline on each constituent workload component and
have presented an approach on how to aggregate these
into a unified metric for comparing systems. Since there
are many different user requirements for assessing and
projecting performance, there is no one right answer for
what workloads should be included and how they should
be combined, so we have provided readers with
considerations for doing this in a manner that best
addresses their needs. The vConsolidate benchmark was
presented as an example implementation, highlighting the
compromises required in workload selection, component
definition, and metric aggregation. Industry standards for
measuring the performance of virtualization environments
will help accelerate the performance and deployment of
same. The performance discipline presented outlined a
basic framework that could be used to create industry-
standard virtualization benchmarks.
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