
Dune: Safe User-level Access to Privileged CPU Features

Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, Christos Kozyrakis
Stanford University

Abstract

Dune is a system that provides applications with direct but
safe access to hardware features such as ring protection,
page tables, and tagged TLBs, while preserving the exist-
ing OS interfaces for processes. Dune uses the virtualiza-
tion hardware in modern processors to provide a process,
rather than a machine abstraction. It consists of a small
kernel module that initializes virtualization hardware and
mediates interactions with the kernel, and a user-level li-
brary that helps applications manage privileged hardware
features. We present the implementation of Dune for 64-
bit x86 Linux. We use Dune to implement three user-
level applications that can benefit from access to privi-
leged hardware: a sandbox for untrusted code, a privilege
separation facility, and a garbage collector. The use of
Dune greatly simplifies the implementation of these appli-
cations and provides significant performance advantages.

1 Introduction

A wide variety of applications stand to benefit from ac-
cess to “kernel-only” hardware features. As one exam-
ple, Azul Systems demonstrates significant speedups to
garbage collection through use of paging hardware [15,
36]. As another example, process migration, though im-
plementable within a user program, can benefit consider-
ably from access to page faults [40] and system calls [32].
In some cases, it might even be appropriate to replace
the kernel entirely to meet the needs of a particular ap-
plication. For example, IBOS improves browser security
by moving browser abstractions into the lowest OS lay-
ers [35].

Such systems require changes in the kernel because
hardware access in userspace is restricted for security and
isolation reasons. Unfortunately, modifying the kernel is
not ideal in practice because kernel changes can be fairly
intrusive and, if done incorrectly, affect whole system sta-
bility. Moreover, if multiple applications require kernel
changes, there is no guarantee that the changes will com-
pose.

Another strategy is to bundle applications into virtual
machine images with specialized kernels [4, 14]. Many
modern CPUs contain virtualization hardware with which
guest operating systems can safely and efficiently access
kernel hardware features. Moreover, virtual machines
provide failure containment similar to that of processes—
i.e., buggy or malicious behavior should not bring down
the entire physical machine.

Unfortunately, virtual machines offer poor integration
with the host operating system. Processes expect to inherit
file descriptors from their parents, spawn other processes,
share a file system and devices with their parents and chil-
dren, and use IPC services such as Unix-domain sock-
ets. Moving a process to a virtual machine for the pur-
poses of, say, speeding up garbage collection is likely to
break many assumptions and may simply not be worth the
hassle. Moreover, producing a kernel for an application-
specific virtual machine is no small task. Production ker-
nels such as Linux are complex and hard to modify. Yet
implementing a special-purpose kernel with a simple vir-
tual memory layer is also challenging. In addition to vir-
tual memory, one must support a file system, a networking
stack, device drivers, and a bootstrap process.

This paper introduces a new approach to application
use of kernel hardware features: using virtualization hard-
ware to provide a process, rather than a machine abstrac-
tion. We have implemented this approach for Linux on
64-bit Intel CPUs in a system called Dune. Dune pro-
vides a loadable kernel module that works with unmodi-
fied Linux kernels. The module allows processes to enter
“Dune mode,” an irreversible transition in which, through
virtualization hardware, safe and fast access to privileged
hardware features is enabled, including privilege modes,
virtual memory registers, page tables, and interrupt, ex-
ception, and system call vectors. We provide a user-level
library, libDune, to facilitate the use of these features.

For applications that fit its paradigm, Dune offers sev-
eral advantages over virtual machines. First, a Dune pro-
cess is a normal Linux process, the only difference be-
ing that it uses the VMCALL instruction to invoke system
calls. This means that Dune processes have full access to
the rest of the system and are an integral part of it, and

1

that Dune applications are easy to develop (like applica-
tion programming, not kernel programming). Second, be-
cause the Dune kernel module is not attempting to provide
a machine abstraction, the module can be both simpler
and faster. In particular, the virtualization hardware can
be configured to avoid saving and restoring several pieces
of hardware state that would be required for a virtual ma-
chine.

With Dune we contribute the following:
• We present a design that uses hardware-assisted virtual-

ization to safely and efficiently expose privileged hard-
ware features to user programs while preserving stan-
dard OS abstractions.

• We evaluate three hardware features in detail and show
how they can benefit user programs: exceptions, pag-
ing, and privilege modes.

• We demonstrate the end-to-end utility of Dune by im-
plementing and evaluating three use cases: sandboxing,
privilege separation, and garbage collection.

2 Virtualization and Hardware
In this section, we review the hardware support for virtu-
alization and discuss which privileged hardware features
Dune is able to expose. Throughout the paper, we describe
Dune in terms of x86 CPUs and Intel VT-x. However, this
is not fundamental to our design, and in Section 7, we
broaden our discussion to include other architectures that
could be supported in the future.

2.1 The Intel VT-x Extension
In order to improve virtualization performance and
simplify VMM implementation, Intel has developed
VT-x [37], a virtualization extension to the x86 ISA.
AMD also provides a similar extension with a different
hardware interface called SVM [3].

The simplest method of adapting hardware to support
virtualization is to introduce a mechanism for trapping
each instruction that accesses privileged state so that em-
ulation can be performed by a VMM. VT-x embraces a
more sophisticated approach, inspired by IBM’s interpre-
tive execution architecture [31], where as many instruc-
tions as possible, including most that access privileged
state, are executed directly in hardware without any in-
tervention from the VMM. This is possible because hard-
ware maintains a “shadow copy” of privileged state. The
motivation for this approach is to increase performance,
as traps can be a significant source of overhead.

VT-x adopts a design where the CPU is split into two
operating modes: VMX root and VMX non-root mode.

VMX root mode is generally used to run the VMM and
does not change CPU behavior, except to enable access
to new instructions for managing VT-x. VMX non-root
mode, on the other hand, restricts CPU behavior and is
intended for running virtualized guest OSes.

Transitions between VMX modes are managed by
hardware. When the VMM executes the VMLAUNCH or
VMRESUME instruction, hardware performs a VM entry;
placing the CPU in VMX non-root mode and executing
the guest. Then, when action is required from the VMM,
hardware performs a VM exit, placing the CPU back in
VMX root mode and jumping to a VMM entry point.
Hardware automatically saves and restores most architec-
tural state during both types of transitions. This is ac-
complished by using buffers in a memory resident data
structure called the VM control structure (VMCS).

In addition to storing architectural state, the VMCS
contains a myriad of configuration parameters that allow
the VMM to control execution and specify which type of
events should generate VM exits. This gives the VMM
considerable flexibility in determining which hardware is
exposed to the guest. For example, a VMM could config-
ure the VMCS so that the HLT instruction causes a VM
exit or it could allow the guest to halt the CPU. However,
some hardware interfaces, such as the interrupt descriptor
table (IDT) and privilege modes, are exposed implicitly in
VMX non-root mode and never generate VM exits when
accessed. Moreover, a guest can manually request a VM
exit by using the VMCALL instruction.

Virtual memory is perhaps the most difficult hardware
feature for a VMM to expose safely. A straw man solu-
tion would be to configure the VMCS so that the guest
has access to the page table root register, %CR3. How-
ever, this would place complete trust in the guest because
it would be possible for it to configure the page table to
access any physical memory address, including memory
that belongs to the VMM. Fortunately, VT-x includes a
dedicated hardware mechanism, called the extended page
table (EPT), that can enforce memory isolation on guests
with direct access to virtual memory. It works by applying
a second, underlying, layer of address translation that can
only be configured by the VMM. AMD’s SVM includes
a similar mechanism to the EPT, referred to as a nested
page table (NPT).

2.2 Supported Hardware Features

Dune uses VT-x to provide user programs with full access
to x86 protection hardware. This includes three privileged
hardware features: exceptions, virtual memory, and priv-
ilege modes. Table 1 shows the corresponding privileged

2

Mechanism Privileged Instructions
Exceptions LIDT, LTR, IRET, STI, CLI

Virtual Memory MOV CRn, INVLPG, INVPCID

Privilege Modes SYSRET, SYSEXIT, IRET

Segmentation LGDT, LLDT

Table 1: Hardware features exposed by Dune and their
corresponding privileged x86 instructions.

instructions made available for each feature. Dune also
exposes segmentation, but we do not discuss it further, as
it is primarily a legacy mechanism on modern x86 CPUs.

Efficient support for exceptions is important in a vari-
ety of use cases such as emulation, debugging, and per-
formance tracing. Normally, reporting an exception to a
user program requires privilege mode transitions and an
upcall mechanism (e.g., signals). Dune can reduce ex-
ception overhead because it uses VT-x to deliver excep-
tions directly in hardware. This does not, however, allow
a Dune process to monopolize the CPU, as timer inter-
rupts and other exceptions intended for the kernel will still
cause a VM exit. The net result is that software overhead
is eliminated and exception performance is determined by
hardware efficiency alone. As just one example, Dune im-
proves the speed of delivering page fault exceptions, when
compared to SIGSEGV in Linux, by more than 4×. Sev-
eral other types of exceptions are also accelerated, includ-
ing breakpoints, floating point overflow and underflow, di-
vide by zero, and invalid opcodes.

User programs can also benefit from fast and flexible
access to virtual memory [5]. Use cases include check-
pointing, garbage collection (evaluated in this paper),
data-compression paging, and distributed shared memory.
Dune improves virtual memory access by exposing page
table entries to user programs directly, allowing them to
control address translations, access permissions, global
bits, and modified/accessed bits with simple memory ref-
erences. In contrast, even the most efficient OS inter-
faces [17] add extra latency by requiring system calls in
order to perform these operations. Letting applications
write their own page tables does not affect security be-
cause the underlying EPT exposes only the normal pro-
cess address space, which is equally accessible without
Dune.

Dune also gives user programs the ability to manually
control TLB invalidations. As a result, page table updates
can be performed in batches when permitted by the ap-
plication. This is considerably more challenging to sup-
port in the kernel because it is difficult to defer TLB in-
validations when general correctness must be maintained.
In addition, Dune exposes TLB tagging by providing ac-

cess to Intel’s recently added process-context identifier
(PCID) feature. This permits a single user program to
switch between multiple page tables efficiently. All to-
gether, we show that using Dune results in a 7× speedup
over Linux in the Appel and Li user-level virtual memory
benchmarks [5]. This figure includes the use of exception
hardware to reduce page fault latency.

Finally, Dune exposes access to privilege modes. On
x86, the most important privilege modes are ring 0 (su-
pervisor mode) and ring 3 (user mode), although rings 1
and 2 are also available. Two motivating use cases for
privilege modes are privilege separation and sandboxing
of untrusted code, both evaluated in this paper. Dune can
support privilege modes efficiently because VMX non-
root mode maintains its own set of privilege rings. Hence,
Dune allows hardware-enforced protection within a pro-
cess in exactly the way kernels protect themselves from
user processes. The supervisor bit in the page table is
available to control memory isolation. Moreover, system
call instructions trap to the process itself, rather than to
the kernel, which can be used for system call interposi-
tion and to prevent untrusted code from directly accessing
the kernel. Compared to ptrace in Linux, we show that
Dune can intercept a system call with 25× less overhead.

Although the hardware features Dune exposes suffice
in supporting our motivating use cases, several other hard-
ware features, such as cache control, debug registers, and
access to DMA-capable devices, could also be safely ex-
posed through virtualization hardware. We leave these for
future work and discuss their potential in Section 7.

3 Kernel Support for Dune
The core of Dune is a kernel module that manages
VT-x and provides user programs with greater access to
privileged hardware features. We describe this module
here, including a system overview, a threat model, and a
comparison to an ordinary VMM. We then explore three
key aspects of the module’s operation: managing mem-
ory, exposing access to privileged hardware, and preserv-
ing access to kernel interfaces. Finally, we describe the
Dune module we implemented for the Linux kernel.

3.1 System Overview
Figure 1 shows a high-level view of the Dune architecture.
Dune extends the kernel with a module that enables VT-x,
placing the kernel in VMX root mode. Processes using
Dune are granted direct but safe access to privileged hard-
ware by running in VMX non-root mode. The Dune mod-
ule intercepts VM exits, the only means for a Dune pro-

3

HW	 (VMX	 root,	 ring	 0)	

Kernel	

Dune	 Module	

Dune	 Process	

Normal	 Process	

HW	 (VMX	 non-‐root,	 ring	 0)	

libDune	

HW	 (VMX	 root,	 ring	 3)	

HW	 (VMX	 non-‐root,	 ring	 3)	

Untrusted	 Code	

Figure 1: The Dune system architecture.

cess to access the kernel, and performs any necessary ac-
tions such as servicing a page fault, calling a system call,
or yielding the CPU after a HLT instruction. Dune also
includes a library, called libDune, to assist with manag-
ing privileged hardware features in userspace, discussed
further in Section 4.

We apply Dune selectively to processes that need it;
processes that do not use Dune are completely unaffected.
A process can enable Dune at any point by initiating a
transition through an ioctl on the /dev/dune device, but
once in Dune mode, a process cannot exit Dune mode.
Whenever a Dune process forks, the child process does
not start in Dune mode, but can re-enter Dune if the use
case requires it.

The Dune module requires VT-x. As a result, it can-
not be used inside a VM unless there is support for nested
VT-x [6]; the performance characteristics of such a con-
figuration are an interesting topic of future consideration.
On the other hand, it is possible to run a VMM on the
same machine as the Dune module, even if the VMM
requires VT-x, because VT-x can be controlled indepen-
dently on each core.

3.2 Threat Model

Dune exposes privileged CPU features without affecting
the existing security model of the underlying OS. Any ex-
ternal effects produced by a Dune-enabled process could
be produced without Dune through the same series of
system calls. However, by exposing hardware privilege
modes, Dune enables additional privilege-separation tech-
niques within a process that would not otherwise be prac-
tical.

We assume that the CPU is free of defects, although we
acknowledge that in rare cases exploitable hardware flaws
have been identified [26, 27].

3.3 Comparing to a VMM

Though all software using VT-x shares a common struc-
ture, Dune’s use of VT-x deviates from that of standard
VMMs. Specifically, Dune exposes a process environ-
ment instead of a machine environment. As a result,
Dune is not capable of supporting a normal guest OS, but
this permits Dune to be lighter weight and more flexible.
Some of the most significant differences are as follows:

• Hypercalls are a common way for VMMs to support
paravirtualization, a technique in which the guest OS
is modified to use interfaces that are more efficient and
less difficult to virtualize. In Dune, by contrast, the hy-
percall mechanism invokes normal Linux system calls.
For example, a VMM might provide a hypercall to reg-
ister an interrupt handler for a virtual network device,
whereas a Dune process would use a hypercall to call
read on a TCP socket.

• Many VMMs emulate physical hardware interfaces in
order to support unmodified guest OSes. In Dune, only
hardware features that can be directly accessed without
VMM intervention are made available; in cases where
this is not possible, a Dune process falls back on the OS.
For example, most VMMs go to great lengths to present
a virtual graphics card interface in order to support a
frame buffer. By contrast, Dune processes employ the
normal OS display service, usually an X server accessed
over a Unix-domain socket and shared memory.

• A typical VMM must save and restore all state that is
necessary to support a guest OS. In Dune, we can limit
the differences in guest and host state because processes
using Dune have a narrower hardware interface. This
results in reductions to the overhead of performing VM
entries and VM exits.

• VMMs place each VM in a separate address space that
emulates flat physical memory. In Dune, we configure
the EPT to reflect process address spaces. As a result,
the memory layout can be sparse and memory can be
coherently shared when two processes map the same
memory segment.

Despite these differences, the Dune module could be
considered a type-2 hypervisor [22] because it runs on top
of an existing OS kernel.

4

Host-‐Physical	 (RAM)	

Kernel	
Page	
Table	

Host-‐Virtual	

EPT	

Guest-‐Physical	

User	
Page	
Table	

Guest-‐Virtual	

Dune	 Process	

Normal	 Process	

Figure 2: Virtual memory in Dune.

3.4 Memory Management
Memory management is one of the biggest responsibili-
ties of the Dune module. The challenge is to expose direct
page table access to user programs while preventing arbi-
trary access to physical memory. Moreover, our goal is
to provide a normal process memory address space by de-
fault, permitting user programs to add just the functional-
ity they need instead of completely replacing kernel-level
memory management.

Paging translations occur in three separate cases in
Dune, shown in Figure 2. One translation is specified
by the kernel’s standard page table. In virtualization ter-
minology this is the host-virtual to host-physical (i.e.,
raw memory) translation. Host-virtual addresses are or-
dinary virtual addresses, but they are only used by the
kernel and normal processes. For processes using Dune,
a user controlled page table maps guest-virtual addresses
to guest-physical. Then the EPT, managed by the kernel,
performs an additional translation from guest-physical to
host-physical. All memory references made by processes
using Dune can only be guest-virtual, allowing for iso-
lation and correctness to be enforced in the EPT while
application-specific functionality and optimizations can
be applied in the user page table.

Ideally, we would like to match the EPT to the ker-
nel’s page table as closely as possible because of our goal
to give processes using Dune access to the same address
space they would have as normal processes. If it were
permitted by hardware, we would simply point the EPT
and the kernel’s page table to the same page root. Unfor-
tunately, two limitations make this impossible. First, the
EPT requires a different binary format from the standard
x86 page table. Second, Intel x86 processors limit the

address width of guest-physical addresses to be the same
as host-physical addresses. In a standard virtual machine
environment this would not be a concern because any ma-
chine being emulated would have a realistically bounded
amount of RAM. For Dune, however, the problem is that
we want to expose the full host-virtual address space and
yet the guest-physical address space is limited to a smaller
size (e.g., a 36-bit physical limit vs. a 48-bit virtual limit
on many contemporary Intel processors). We note that
this issue is not present when running in 32-bit protected
mode, as physical addresses are at least as large as virtual
addresses.

Our solution to EPT format incompatibility is to query
the kernel for process memory mappings and to manually
update the EPT to reflect them. We start with an empty
EPT. Then, we receive an EPT fault (a type of VM exit)
each time a missing EPT entry is accessed. The fault han-
dler crafts a new EPT entry that reflects an address trans-
lation and permission reported by the kernel’s page fault
handler. Occasionally, address ranges will need to be un-
mapped. In addition, the kernel requires page access in-
formation, to assist with swapping, and page dirty status,
to determine when write-back to disk is necessary. Dune
supports all of these cases by hooking into an MMU no-
tifier chain, the same approach used by KVM [30]. For
example, when an address is unmapped, the Dune module
receives an event. It then evicts affected EPT entries and
sets dirty bits in the appropriate Linux page structures.

We work around the address width issue by allow-
ing only some address ranges to be mapped in the EPT.
Specifically, we only permit addresses from the beginning
of the process (i.e., the heap, code, and data segments),
the mmap region, and the stack. Currently, we limit each
of these regions to 4GB, allowing us to compress the ad-
dress space to fit in the first 12GB of the EPT. Typically
the user’s page table will then expand the addresses to
their original layout. This could result in incompatibilities
in programs that use nonstandard portions of the address
space, though such cases are rare. A more sophisticated
solution might pack each virtual memory area into the
guest-physical address space in arbitrary order and then
provide the user program the additional information re-
quired to remap the segment to the correct guest-virtual
address in its own page table, thus avoiding the possibil-
ity of unaddressable memory regions.

3.5 Exposing Access to Hardware

As discussed previously, Dune exposes access to excep-
tions, virtual memory, and privilege modes. Exceptions
and privilege modes are implicitly available in VMX non-

5

root mode and do not require any special configuration.
On the other hand, virtual memory requires access to the
%CR3 register, which can be granted in the VMCS. We
maintain a separate VMCS for each process in order to
allow for per-process configuration of privileged state and
to support context switching more easily and efficiently.

x86 includes a variety of control registers that deter-
mine which hardware features are enabled (e.g., floating
point, SSE, no execute, etc.) Although we could have
permitted Dune processes to configure these directly, we
instead mirror the configuration set by the kernel. This al-
lows us to support a normal process environment; permit-
ting many configuration changes would break compatibil-
ity with user programs. For example, it makes little sense
for a 64-bit process to disable long mode. There are, how-
ever, a couple of important exceptions to this rule. First,
we allow user programs to disable paging because it is the
only method available on x86 to clear global TLB entries.
Second, we give user programs some control over float-
ing point hardware in order to allow for support of lazy
floating point state management.

In some cases, Dune restricts access to hardware reg-
isters for performance reasons. For instance, Dune does
not allow modification to MSRs in order to avoid the rel-
atively high overhead of saving and restoring them during
each system call. The FS and GS base registers are ex-
ceptions because they are not only used frequently but
are also saved and restored by hardware automatically.
MSR LSTAR, which contains the address of the system
call handler, is a special case where Dune allows read-
only access. This allows a user process to map code for
a system call handler at the existing address (by manipu-
lating its page table) instead of changing the register to a
new address and, as a result, harming performance.

Dune exposes raw access to the time stamp counter
(TSC). By contrast, most VMMs virtualize the TSC in or-
der to avoid confusing guest kernels, which tend to make
timing assumptions that could be violated if time spent in
the VMM is made visible.

3.6 Preserving OS Interfaces

In addition to exposing privileged hardware features,
Dune preserves access to OS system calls. Normal system
call invocation instructions will only trap within the pro-
cess itself and do not cause a VM exit. Instead, processes
must use VMCALL, the hypercall instruction, to make sys-
tem calls. The Dune module vectors hypercalls through
the kernel’s system call table. In some cases, it must per-
form extra actions before calling the system call handler.
For example, during an exit system call, Dune performs

cleanup tasks.

Dune completely changes how signal handlers are in-
voked. Some signals are obviated by more efficient di-
rect hardware support. For example, hardware page faults
largely subsume the role of SIGSEGV. For other signals
(e.g., SIGINT), the Dune module injects fake hardware
interrupts into the process. This is not only an efficient
mechanism, but also has the advantage of correctly com-
posing with privilege modes. For example, if a user pro-
cess were running in ring 3 to sandbox untrusted code,
hardware would automatically transition it to ring 0 in or-
der to service the signal securely.

3.7 Implementation

Dune presently supports Linux running on Intel x86 pro-
cessors in 64-bit long mode. Support for AMD CPUs and
32-bit mode are possible future additions. In order to keep
changes to the kernel as unintrusive as possible, we devel-
oped Dune as a dynamically loadable kernel module. Our
implementation is based partially on KVM [30]. Specif-
ically, it shares code for managing low-level VT-x opera-
tions. However, high-level code is not shared with KVM
because Dune operates differently from a VMM. Further-
more, our Dune module is simpler than KVM, consisting
of only 2,509 lines of code.

In Linux, user threads are supported by the kernel, mak-
ing them nearly identical to processes except they have a
shared address space. As a result, it was easiest for us
to create a VMCS for each thread instead of merely each
process. One interesting consequence is that it is possible
for both threads using Dune and threads not using Dune
to belong to the same process.

Our implementation is capable of supporting thousands
of processes at a time. The reason is that processes us-
ing Dune are substantially lighter-weight than full virtual
machines. Efficiency is further improved by using virtual-
processor identifiers (VPIDs). VPIDs enable a unique
TLB tag to be assigned to each Dune process, and, as a re-
sult, hypercalls and context switches do not require TLB
invalidations.

One limitation in our implementation is that we cannot
efficiently detect when EPT pages have been modified or
accessed, which is needed for swapping. Intel recently
added hardware support for this capability, so it should be
easy to rectify this limitation. For now, we take a conser-
vative approach and always report pages as modified and
accessed during MMU notifications in order to ensure cor-
rectness.

6

4 User-mode Environment

The execution environment of a process using Dune has
some differences from a normal process. Because privi-
lege rings are an exposed hardware feature, one difference
is that user code runs in ring 0. Despite changing the be-
havior of certain instructions, this does not typically result
in any incompatibilities for existing code. Ring 3 is also
available and can optionally be used to confine untrusted
code. Another difference is that system calls must be per-
formed as hypercalls. To simplify supporting this change,
we provide a mechanism that can detect when a system
call is performed from ring 0 and automatically redirect it
to the kernel as a hypercall. This is one of many features
included in libDune.

libDune is a library created to make it easier to build
user programs that make use of Dune. It is completely
untrusted by the kernel and consists of a collection of util-
ities that aid in managing and configuring privileged hard-
ware features. Major components of libDune include a
page table manager, an ELF loader, a simple page allo-
cator, and routines that assist user programs in managing
exceptions and system calls. libDune is currently 5,898
lines of code.

We also provide an optional, modified version of libc
that uses VMCALL instructions instead of SYSCALL in-
structions in order to get a slight performance benefit.

4.1 Bootstrapping

In many ways, transitioning a process into Dune mode
is similar to booting an OS. The first issue is that a valid
page table must be provided before enabling Dune. A sim-
ple identity mapping is insufficient because, although the
goal is to have process addresses remain consistent before
and after the transition, the compressed layout of the EPT
must be taken into account. After a page table is created,
the Dune entry ioctl is called with the page table root as
an argument. The Dune module then switches the pro-
cess to Dune mode and begins executing code, using the
provided page table root as the initial %CR3. From there,
libDune configures privileged registers to set up a reason-
able operating environment. For example, it loads a GDT
to provide basic flat segmentation and loads an IDT so
that hardware exceptions can be captured. It also sets up
a separate stack in the TSS to handle double faults and
configures the GS segment base in order to easily access
per-thread data.

4.2 Limitations

Although we are able to run a wide variety of Linux pro-
grams, libDune is still missing some functionality. First,
we have not fully integrated support for signals despite
the fact that they are reported by the Dune module. Ap-
plications are required to use dune signal whereas a more
compatible solution would override several libc symbols
like signal and sigaction. Second, although we support
pthreads, some utilities in libDune, such as page table
management, are not yet thread-safe. Both of these issues
could be resolved with further implementation.

One unanticipated challenge with working in a Dune
environment is that system call arguments must be valid
host-virtual addresses, regardless of how guest-virtual
mappings are setup. In many ways, this parallels the need
to provide physical addresses to hardware devices that
perform DMA. In most cases we can work around the
issue by having the guest-virtual address space mirror the
host-virtual address space. For situations where this is not
possible, walking the user page table to adjust system call
argument addresses is necessary.

Another challenge introduced by Dune is that by ex-
posing greater access to privileged hardware, user pro-
grams require more architecture-specific code, potentially
reducing portability. libDune currently provides an x86-
centric API, so it is already compatible with AMD ma-
chines. However, it should be possible to modify libDune
to support non-x86 architectures in a fashion that parallels
the construction of many OS kernels. This would require
libDune to provide an efficient architecture independent
interface, a topic worth exploring in future revisions.

5 Applications

Dune is generic enough that it lets us improve on a broad
range of applications. We built two security-related appli-
cations, a sandbox and privilege separation system, and
one performance-related application, a garbage collector.
Our goals were simpler implementations, higher perfor-
mance, and where applicable, improved security.

5.1 Sandboxing

Sandboxing is the process of confining code so as to re-
strict the memory it can access and the interfaces or sys-
tem calls it can use. It is useful for a variety of purposes,
such as running native code in web browsers, creating se-
cure OS containers, and securing mobile phone applica-
tions. In order to explore Dune’s potential for these types

7

of applications, we built a sandbox that supports native
64-bit Linux executables.

The sandbox enforces security through privilege modes
by running a trusted sandbox runtime in ring 0 and an un-
trusted binary in ring 3, both operating within a single
address space (on the left of Figure 1, the top and middle
boxes respectively). Memory belonging to the sandbox
runtime is protected by setting the supervisor bit in appro-
priate page table entries. Whenever the untrusted binary
performs an unsafe operation such as trying to access the
kernel through a system call or attempting to modify priv-
ileged state, libDune receives an exception and jumps into
a handler provided by the sandbox runtime. In this way,
the sandbox runtime is able to filter and restrict the behav-
ior of the untrusted binary.

While we rely on the kernel to load the sandbox run-
time, the untrusted binary must be loaded in userspace.
One risk is that it could contain maliciously crafted head-
ers designed to exploit flaws in the ELF loader. We hard-
ened our sandbox against this possibility by using two
separate ELF loaders. First, the sandbox runtime uses a
minimal ELF loader (part of libDune), that only supports
static binaries, to load a second ELF loader into the un-
trusted environment. We choose to use ld-linux.so as our
second ELF loader because it is already used as an inte-
gral and trusted component in Linux. Then, the sandbox
runtime executes the untrusted environment, allowing the
second ELF loader to load an untrusted binary entirely
from ring 3. Thus, even if the untrusted binary is mali-
cious, it does not have a greater opportunity to attack the
sandbox during ELF loading than it would while running
inside the sandbox normally.

So far our sandbox has been applied primarily as a tool
for filtering Linux system calls. However, it could poten-
tially be used for other purposes, including providing a
completely new system call interface. For system call fil-
tering, a large concern is to prevent execution of any sys-
tem call that could corrupt or disable the sandbox runtime.
We protect against this hazard by validating each system
call argument, checking to make sure performing the sys-
tem call would not allow the untrusted binary to access or
modify memory belonging to the sandbox runtime. We
do not yet support all system calls, but we support enough
to run most single-threaded Linux applications. However,
nothing prevents supporting multi-threaded programs in
the future.

We implemented two policies on top of the sandbox.
Firstly, we support a null policy that allows system calls
to pass through but still validates arguments in order to
protect the sandbox runtime. It is intended primarily to
demonstrate raw performance overhead. Secondly, we

support a userspace firewall. It uses system call interpo-
sition to inspect important network system calls, such as
bind and connect, and prevents communication with un-
desirable parties as specified by a policy description.

To further demonstrate the flexibility of our sandbox,
we also implemented a checkpointing system that can se-
rialize an application to disk and then restore execution at
a later time. This includes saving memory, registers, and
system call state (e.g., open file descriptors).

5.2 Wedge

Wedge [10] is a privilege separation system. Its core
abstraction is an sthread which provides fork-like iso-
lation with pthread-like performance. An sthread is a
lightweight process that has access to memory, file de-
scriptors and system calls as specified by a policy. The
idea is to run risky code in an sthread so that any exploits
will be contained within it. In a web server, for exam-
ple, each client request would run in a separate sthread
to guarantee isolation between users. To make this prac-
tical, sthreads need fast creation (e.g., one per request)
and context switch time. Fast creation can be achieved
through sthread recycling. Instead of creating and killing
an sthread each time, an sthread is checkpointed on its
first creation (while still pristine and unexploited) and re-
stored on exit so that it can be safely reused upon the next
creation request. Doing so reduces sthread creation cost
to the (cheaper) cost of restoring memory.

Wedge uses many of Dune’s hardware features. Ring
protection is used to enforce system call policies; page
tables limit what memory sthreads can access; dirty bits
are used to restore memory during sthread recycling; and
the tagged TLB is used for fast context switching.

5.3 Garbage Collection

Garbage collectors (GC) often utilize memory manage-
ment hardware to speed up collection [28]. Appel and
Li [5] explain several techniques that use standard user
level virtual memory protection operations, whereas Azul
Systems [15, 36] went to the extent of modifying the ker-
nel and system call interface. By contrast, Dune provides
a clean and efficient way to access relevant hardware di-
rectly. The features provided by Dune that are of interest
to garbage collectors include:
• Fast faults. GCs often use memory protection and fault

handling to implement read and write barriers.
• Dirty bits. Knowing what memory has been touched

since the last collection enables optimizations and can
be a core part of the algorithm.

8

• Page table. One optimization in a moving GC is to
free the underlying physical frame without freeing the
virtual page it was backing. This is useful when the
data has been moved but references to the old loca-
tion remain and can still be caught through page faults.
Remapping memory can also be performed to reduce
fragmentation.

• TLB control. GCs often manipulate memory map-
pings at high rates, making control over TLB invalida-
tion very useful. If it can be controlled, mapping ma-
nipulations can be effectively batched, rendering certain
algorithms more feasible.
We modified the Boehm GC [12] to use Dune in or-

der to improve performance. The Boehm GC is a robust
mark-sweep collector that supports parallel and incremen-
tal collection. It is designed either to be used as a conser-
vative collector with C/C++ programs, or by compiler and
run-time backends where the conservativeness can be con-
trolled. It is widely used, including by the Mono project
and GNU Objective C.

An important implementation question for the Boehm
GC is how dirty pages are discovered and managed. The
two original options were (i) utilizing mprotect and signal
handlers to implement its own dirty bit tracking; or (ii)
utilizing OS provided dirty bit read methods such as the
Win32 API call GetWriteWatch. In Dune we support and
improve both methods.

A direct port to Dune already gives a performance im-
provement because mprotect can directly manipulate the
page table and a page fault can be handled directly with-
out needing an expensive SIGSEGV signal. The GC ma-
nipulates single pages 90% of the time, so we were able
to improve performance further by using the INVPLG in-
struction to flush only a single page instead of the entire
TLB. Finally, in Dune, the Boehm GC can access dirty
bits directly without having to emulate this functionality.
Some OSes provide system calls for reading page table
dirty bits. Not all of these interfaces are well matched
to GC—for instance, SunOS examines the entire virtual
address space rather than permit queries for a particular
region. Linux provides no user-level access at all to dirty
bits.

The work done on the Boehm GC represents a straight-
forward application of Dune to a GC. It is worth also
examining the changes made by Azul Systems to Linux
so that they could support their C4 GC [36] and mapping
this to the support provided by Dune:
• Fast faults. Azul modified the Linux memory protec-

tion and mapping primitives to greatly improve perfor-
mance, part of this included allowing hardware excep-
tions to bypass the kernel and be handled directly by

usermode.
• Batched page table. Azul enabled explicit control of

TLB invalidation and a shadow page table to expose a
prepare and commit style API for batching page table
manipulation.

• Shatter/Heal. Azul enabled large pages to be ‘shat-
tered’ into small pages or a group of small pages to be
‘healed’ into a single large page.

• Free physical frames. When the Azul C4 collector
frees an underlying physical frame, it will trap on ac-
cesses to the unmapped virtual pages in order to catch
old references.

All of the above techniques and interfaces can be imple-
mented efficiently on top of Dune, with no need for any
kernel changes other than loading the Dune module.

6 Evaluation
In this section, we evaluate the performance and utility
of Dune. Although using VT-x has an intrinsic cost, in
most cases, Dune’s overhead is relatively minor. On the
other hand, Dune offers significant opportunities to im-
prove security and performance for applications that can
take advantage of access to privileged hardware features.

All tests were performed on a single-socket machine
with an Intel Xeon E3-1230 v2 (a four core Ivy Bridge
CPU clocked at 3.3 GHz) and 16GB of RAM. We in-
stalled a recent 64-bit version of Debian Linux that in-
cludes Linux kernel version 3.2. Power management fea-
tures, such as frequency scaling, were disabled.

6.1 Overhead from Running in Dune
Performance in Dune is impacted by two main sources of
overhead. First, VT-x increases the cost of entering and
exiting the kernel—VM entries and VM exits are more
expensive than fast system call instructions or exceptions.
As a result, both system calls and other types of faults
(e.g., page faults) must pay a fixed cost in Dune. Sec-
ond, using the EPT makes TLB misses more expensive
because, in some cases, the hardware page walker must
traverse two page tables instead of one.

We built synthetic benchmarks to measure both of these
effects. Table 2 shows the overhead of system calls, page
faults, and page table walks. For system calls, we man-
ually performed getpid, an essentially null system call
(worst case for Dune), and measured the round-trip la-
tency. For page faults, we measured the time it took to
fault in a pre-zeroed memory page by the kernel. Finally,
for page table walks, we measured the time spent filling a
TLB miss.

9

getpid page fault page walk
Linux 138 2,687 35.8
Dune 895 5,093 86.4

Table 2: Average time (in cycles) of operations that have
overhead in Dune compared to Linux.

Measuring TLB miss overhead required us to build a
simple memory stress tool. It works by performing a ran-
dom page-aligned walk across 216 memory pages. This
models a workload with poor memory locality, as nearly
every memory access results in a last-level TLB miss. We
then divided the total number of cycles spent waiting for
page table walks, as reported by a performance counter,
by the total number of memory references, giving us a cy-
cle cost per page walk.

In general, the overhead Dune adds has only a small
effect on end-to-end performance, as we show in Sec-
tion 6.3. For system calls, the time spent in the kernel
tends to be a larger cost than the fixed VMX mode transi-
tion costs. Page fault overhead is also not much of a con-
cern, as page faults tend to occur infrequently during nor-
mal use, and direct access to exception hardware is avail-
able when higher performance is required. On the other
hand, Dune’s use of the EPT does impact performance in
certain workloads. For applications with good memory
locality or a small working set, it has no impact because
the TLB hit rate is sufficiently high. However, for appli-
cation with poor memory locality or a large working set,
more frequent TLB misses result in a measurable slow-
down. One effective strategy for limiting this overhead is
to use large pages. We explore this possibility further in
section 6.3.1.

6.2 Optimizations Made Possible by Dune

Access to privileged hardware features creates many op-
portunities for optimization. Table 3 shows speedups we
achieved in the following OS workloads:

ptrace is a measure of system call interposition perfor-
mance. This is the cost of a Linux process intercepting a
system call (getpid) with ptrace, forwarding the system
call to the kernel and returning the result. In Dune this
is the cost of intercepting a system call directly using
ring protection in VMX non-root mode, forwarding the
system call through a VMCALL and returning the result.
An additional scenario is where applications wish to
intercept system calls but not forward them to the
kernel and instead just implement them internally.
PTRACE SYSEMU is the most efficient mechanism for

ptrace trap appel1 appel2
Linux 27,317 2,821 701,413 684,909
Dune 1,091 587 94,496 94,854

Table 3: Average time (in cycles) of operations that are
faster in Dune compared to Linux.

doing so since ptrace requires forwarding a call to the
kernel. The latency of intercepting a system call with
PTRACE SYSEMU is 13,592 cycles. In Dune this can
be implemented by handling the hardware system call
trap directly, with a latency of just 180 cycles. This
reveals that most of the Dune ptrace benchmark over-
head was in fact forwarding the getpid system call via a
VMCALL rather than intercepting the system call.

trap indicates the time it takes for a process to get an
exception for a page fault. We compare the latency of
a SIGSEGV signal in Linux with a hardware-generated
page fault in Dune.

appel1 is a measure of user-level virtual memory man-
agement performance. It corresponds to the TRAP,
PROT1, and UNPROT test described in [5], where 100
protected pages are accessed, causing faults. Then, in
the fault handler, the faulting page is unprotected, and a
new page is protected.

appel2 is another measure of user-level virtual mem-
ory management performance. It corresponds to the
PROTN, TRAP, and UNPROT test described in [5],
where 100 pages are protected. Then each is accessed,
with the fault handler unprotecting the faulting page.

6.3 Application Performance
6.3.1 Sandbox

We evaluated the performance of our sandbox by running
two types of workloads. First, we tested compute perfor-
mance by running SPEC2000. Second, we tested IO per-
formance by running lighttpd. The null sandbox policy
was used in both cases.

Figure 3 shows the performance of SPEC2000. In gen-
eral, the sandbox had very low overhead, averaging only
2.9% percent slower than Linux. However, the mcf and
ammp benchmarks were outliers, with 20.9% and 10.1%
slowdowns respectively. This deviation in performance
can be explained by EPT overhead, as we observed a high
TLB miss rate. We also measured SPEC2000 in VMware
Player, and, as expected, EPT overhead resulted in very
similar drops in performance.

We then adjusted the sandbox to avoid EPT overhead
by backing large memory allocations with 2MB large

10

 −25

 −20

 −15

 −10

 −5

 0

 5

 10

 15

 20

 25

gzip
vpr

gcc
m

esa

art
m

cf
equake

crafty

am
m

p

parser

eon
perlbm

k

gap
vortex

bzip2

tw
olf

%
 S

lo
w

d
o
w

n

 Sandbox
 Sandbox w/ LGPG
 Linux w/ LGPG

Figure 3: Average SPEC2000 slowdown compared to
Linux for the sandbox, the sandbox using large pages, and
Linux using large pages identically.

1 client 100 clients
Linux 2,236 24,609
Dune sandbox 2,206 24,255
VMware Player 734 5,763

Table 4: Lighttpd performance (in requests per second).

pages, both in the EPT and the user page table. Sup-
porting this optimization was straightforward because we
were able to intercept mmap calls and transparently mod-
ify them to use large pages. Such an approach does not
cause much memory fragmentation because large pages
are only used selectively. In order to perform a direct
comparison, we tested SPEC2000 in a modified Linux en-
vironment that allocates large pages in an identical fash-
ion using libhugetlbfs [1]. When large pages were used
for both, average performance in the sandbox and Linux
was nearly identical (within 0.1%).

Table 4 shows the performance of lighttpd, a single-
threaded, single-process, event-based HTTP server.
Lighttpd exercises the kernel to a much greater extent than
SPEC2000, making frequent system calls and putting load
on the network stack. Lighttpd performance was mea-
sured over Gigabit Ethernet using the Apache ab bench-
marking tool. We configured ab to repeatedly retrieve a
small HTML page over the network with different levels
of concurrency: 1 client for measuring latency and 100
clients for measuring throughput.

We found that the sandbox incurred only a slight slow-
down, less than 2% for both the latency and throughput
test. This slowdown can be explained by Dune’s higher
system call overhead. Using strace, we determined that
lighttpd was performing several system calls per con-
nection, causing frequent VMX transitions. However,

create ctx switch http request
fork 81 0.49 454
Dune sthread 2 0.15 362

Table 5: Wedge benchmarks (times in microseconds).

VMware Player, a conventional VMM, experienced much
greater overhead: 67% for the latency test and 77% for
the throughput test. Although VMware Player pays VMX
transition costs too, the primary reason for the slowdown
is that each network request must traverse two network
stacks, one in the guest and one in the host.

We also found that the sandbox provides an easily ex-
tensible framework that we used to implement check-
pointing and our firewall. The checkpointing implemen-
tation consisted of approximately 450 SLOC with 50 of
those being enhancements to the sandbox loader. Our fire-
wall was around 200 SLOC with half of that being the
firewall rules parser.

6.3.2 Wedge

Wedge has two main benchmarks: sthread creation and
context switch time. These are compared to fork, the
system call used today to implement privilege separation.
As shown in Table 5, sthread creation is faster than fork
because instead of creating a new process each time, an
sthread is reused from a pool and “recycled” by restoring
dirty memory and state. Context switch time in sthreads is
low because TLB flushes are avoided by using the tagged
TLB. In Dune sthreads are created 40× faster than pro-
cesses and the context switch time is 3× faster. In pre-
vious Wedge implementations sthread creation was 12×
faster than fork with no improvement in context switch
time [9]. Dune is faster because it can leverage the tagged
TLB and avoid kernel calls to create sthreads. The last
column of Table 5 shows an application benchmark of a
web server serving a static file on a LAN where each re-
quest runs in a newly forked process or sthread for isola-
tion. Dune sthreads show a 20% improvement here.

The original Wedge implementation consisted of a 700-
line kernel module and a 1,300-line library. A userspace-
only implementation of Wedge exists, though the authors
lamented that POSIX did not offer adequate APIs for
memory and system call protection, hence the result was
a very complicated 5,000-line implementation [9]. Dune
instead exposes the hardware protection features needed
for a simple implementation, consisting of only 750 lines
of user code.

11

GCBench LinkedList HashMap XML
Collections 542 33,971 161 10
Memory use (MB)
Allocation 938 15,257 10,352 1,753
Heap 28 1,387 27 1,737
Execution time (ms)
Normal 1,224 15,983 14,160 6,663
Dune 1,176 16,884 13,715 7,930
Dune TLB 933 14,234 11,124 7,474
Dune dirty 888 11,760 8,391 6,675

Table 6: Performance numbers of the GC benchmarks.

6.3.3 Garbage Collector

We implemented three different sets of modifications to
the Boehm GC. The first is the simplest port possible with
no attempt to utilize any advanced features of Dune. This
benefits from Dune’s fast memory protection and fault
handling but suffers from the extra TLB costs. The second
version improves the direct port by carefully controlling
when the TLB is invalidated. The third version avoids
using memory protection altogether, instead it reads the
dirty bits directly. The direct port required changing 52
lines, the TLB optimized version 91 lines, and the dirty
bit version 82 lines.

To test the performance improvements of these changes
we used the following benchmarks:
• GCBench [11]. A microbenchmark written by Hans

Boehm and widely used to test garbage collector per-
formance. In essence, it builds a large binary tree.

• Linked List. A microbenchmark that builds increas-
ingly large linked lists of integers, summing each one
after it is built.

• Hash Map. A microbenchmark that utilizes the Google
sparse hash map library [23] (C version).

• XML Parser. A full application that uses the Mini-
XML library [34] to parse a 150MB XML file contain-
ing medical publications. It then counts the number of
publications each author has using a hash map.
The results for these benchmarks are presented in Ta-

ble 6. The direct port displays mixed results due to the
improvement to memory protection and the fault handler
but slowdown of EPT overhead. As soon as we start using
more hardware features, we see a clear improvement over
the baseline. Other than the XML Parser, the TLB version
improves performance between 10.9% and 23.8%, and the
dirty bit version between 26.4% and 40.7%.

The XML benchmark is interesting as it shows a slow-
down under Dune for all three versions: 19.0%, 12.2%
and 0.2% slower for the direct, TLB and dirty version re-

spectively. This appears to be caused by EPT overhead,
as the benchmark does not create enough garbage to ben-
efit from the modifications we made to the Boehm GC.
This is indicated in Table 6; the total amount of allocation
is nearly equal to the maximum heap size. We verified
this by modifying the benchmark to instead take a list of
XML files, processing each sequentially so that memory
would be recycled. We then saw a linear improvement
in the Dune versions over the baseline as the number of
files was increased. With ten 150MB XML files as input,
the dirty bit version of the Boehm GC showed a 12.8%
improvement in execution time over the baseline.

7 Reflections on Hardware
While developing Dune, we found VT-x to be a surpris-
ingly flexible hardware mechanism. In particular, the fine-
grained control provided by the VMCS allowed us to pre-
cisely direct how hardware was exposed. However, some
hardware changes to VT-x could benefit Dune. One note-
worthy area is the EPT, as we encountered both perfor-
mance overhead and implementation challenges. Hard-
ware modifications have been proposed to mitigate EPT
overhead [2, 8]. In addition, modifying the EPT to support
the same address width as the regular page table would re-
duce the complexity of our implementation and improve
coverage of the process address space. Further reductions
to VM exit and VM entry latency could also benefit Dune.
However, we were able to aggressively optimize hyper-
calls, and VMX transition costs had only a small effect on
the performance of the applications we evaluated.

There are a few hardware features that we have not
yet exposed, despite the fact that they are available in
VT-x and possible to support in Dune. Most seem use-
ful only in special situations. For example, a user pro-
gram might want to have control over caching in order to
prevent information leakage. However, this would only
be effective if CPU affinity could be controlled. As an-
other example, access to efficient polling instructions (i.e.,
MONITOR and MWAIT) could be useful in reducing power
consumption for userspace messaging implementations
that perform cache line polling. Finally, exposing access
to debug registers could allow user programs to more ef-
ficiently set up memory watchpoints.

It may also be useful to provide Dune applications with
direct access to IO devices. Many VT-x systems include
support for an IOMMU, a device that can be used to make
DMA access safe even when it is available to untrusted
software. Thus, Dune could be modified to safely expose
certain hardware devices. A potential benefit could be re-
duced IO latency. The availability of SR-IOV makes this

12

possibility more practical because it allows a single phys-
ical device to be partitioned across multiple guests.

Recently, a variety of non-x86 hardware platforms
have gained support for hardware-assisted virtualiza-
tion, including ARM [38], Intel Itanium [25], and IBM
Power [24]. ARM is of particular interest because of its
prevalence in mobile devices, making the ARM Virtu-
alization Extensions an obvious future target for Dune.
ARM’s support for virtualization is similar to VT-x in
some areas. For example, ARM is capable of exposing
direct access to privileged hardware features, including
exceptions, virtual memory, and privilege modes. More-
over, ARM provides a System MMU, which is compara-
ble to the EPT. ARM’s most significant difference is that
it introduces a new deeper privilege mode call Hyp that
runs underneath the guest kernel. In contrast, VT-x pro-
vides separate operating modes for the guest and VMM.
Another difference from VT-x is that ARM does not auto-
matically save and restore architectural state when switch-
ing between a VMM and a guest. Instead, the VMM is
expected to manage state in software, perhaps creating an
opportunity for optimization.

8 Related Work
There have been several efforts to give applications
greater access to hardware. For example, The Exoker-
nel [18] exposes hardware features through a low-level
kernel interface that allows applications to manage hard-
ware resources directly. Another approach, adopted by the
SPIN project [7], is to permit applications to safely load
extensions directly into the kernel. Dune shares many
similarities with these approaches because it also tries to
give applications greater access to hardware. However,
Dune differs because its goal is not extensibility. Rather,
Dune provides access to privileged hardware features so
that they can be used in concert with the OS instead of a
means of modifying or overriding it.

The Fluke project [20] supports a nested process model
in software, allowing OSes to be constructed “vertically.”
Dune complements this approach because it could be used
to efficiently support an extra OS layer between the appli-
cation and the kernel through use of privilege mode hard-
ware. However, the hardware that Dune exposes can only
support a single level instead of the multiple levels avail-
able in Fluke.

A wide range of strategies have been employed to sup-
port sandboxing, such as ptrace [16], dedicated kernel
modifications [16, 21, 33], binary translation [19], and
binary verification [39]. To our knowledge, Dune is the
first system to support sandboxing entirely through user-

level access to hardware protection, improving perfor-
mance and reducing code complexity. For example, Na-
tive Client [39] reports an average SPEC2000 overhead of
5% with a worst case performance of 12%—anecdotally,
we observed higher overheads on modern microarchitec-
tures. By contrast, we were able to achieve nearly zero
average overhead (1.4% worst case) for the same bench-
marks in Dune. Our sandbox is similar to Native Client
in that it creates a secure subdomain within a process.
However, Native Client is more portable than Dune be-
cause it does not require virtualization hardware or kernel
changes.

Like Dune, some previous work has used hardware
virtualization for non-traditional purposes. For example,
VT-x has been suggested as a tool for creating rootk-
its [29] that are challenging to detect. Moreover, IOMMU
hardware has been used to safely isolate malicious device
drivers by running them in Linux processes [13].

9 Conclusion
Dune provides ordinary applications with efficient and
safe access to privileged hardware features that are tra-
ditionally available only to kernels. It does so by leverag-
ing modern virtualization hardware, which enables direct
execution of privileged instructions in unprivileged con-
texts. Our implementation of Dune for Linux uses Intel’s
VT-x virtualization architecture and provides application-
level access to exceptions, virtual memory, and privilege
modes. Our evaluation shows both performance and se-
curity benefits to Dune. For instance, we built a sandbox
that approaches zero overhead, modified a garbage collec-
tor to improve performance by up to 40.7%, and created
a privilege separation system with 3× less context switch
overhead than without Dune.

In an effort to spur adoption, we have structured Dune
as a module that works with unmodified Linux kernels.
We hope the applications described in this paper are just
the first of many uses people will find for the system. The
hardware mechanisms exposed by Dune are at the core of
many operating systems innovations; their new accessibil-
ity from user-level creates opportunities to deploy novel
systems without kernel modifications. Dune is freely
available at http://dune.scs.stanford.edu/.

Acknowledgments
We wish to thank our shepherd, Timothy Roscoe, for his
guidance and valuable suggestions. We would also like
to thank Edouard Bugnion for feedback on several itera-

13

http://dune.scs.stanford.edu/

tions of this paper and for his valuable discussions dur-
ing the early phases of Dune. Finally, we thank Richard
Uhlig, Jacob Leverich, Ben Serebrin, and our anonymous
reviewers for suggestions that greatly shaped our paper.
This work was funded DARPA CRASH under contract
#N66001-10-2-4088 and by a gift from Google. Adam
Belay is supported by a Stanford Graduate Fellowship.

References
[1] Libhugetlbfs. http://libhugetlbfs.sourceforge.net, Apr.

2012.
[2] J. Ahn, S. Jin, and J. Huh. Revisiting Hardware-Assisted Page Walks for

Virtualized Systems. In Proceedings of the 39th International Symposium
on Computer Architecture, ISCA ’12, pages 476–487, Piscataway, NJ, USA,
2012.

[3] AMD. Secure Virtual Machine Architecture Reference Manual.
[4] G. Ammons, D. D. Silva, O. Krieger, D. Grove, B. Rosenburg, R. W. Wis-

niewski, M. Butrico, K. Kawachiya, and E. V. Hensbergen. Libra: A Library
Operating System for a JVM in a Virtualized Execution Environment. In
Proceedings of the 3rd International Conference on Virtual Execution Envi-
ronments, pages 13–15, 2007.

[5] A. Appel and K. Li. Virtual Memory Primitives for User Programs. In
Proceedings of the Fourth International Conference on ASPLOS, pages 96–
107, Apr. 1991.

[6] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El, A. Gor-
don, A. Liguori, O. Wasserman, and B.-A. Yassour. The Turtles Project:
Design and Implementation of Nested Virtualization. In Proceedings of the
9th USENIX Symposium on Operating Systems Design and Implementation,
2010.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility Safety and Perfor-
mance in the SPIN Operating System. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, SOSP ’95, pages 267–283,
1995.

[8] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. Accelerating Two-
Dimensional Page Walks for Virtualized Systems. In Proceedings of the
13th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 26–35, 2008.

[9] A. Bittau. Toward Least-Privilege Isolation for Software. PhD thesis, 2009.
[10] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting Appli-

cations into Reduced-Privilege Compartments. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI’08, pages 309–322, 2008.

[11] H. Boehm. GC Bench. http://www.hpl.hp.com/personal/
Hans_Boehm/gc/gc_bench/, Apr. 2012.

[12] H. Boehm, A. Demers, and S. Shenker. Mostly Parallel Garbage Collection.
In Proceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation, PLDI ’91, pages 157–164, 1991.

[13] S. Boyd-Wickizer and N. Zeldovich. Tolerating Malicious Device Drivers in
Linux. In Proceedings of the 2010 USENIX Annual Technical Conference,
USENIXATC’10, pages 9–9, 2010.

[14] E. Bugnion, S. Devine, and M. Rosenblum. Disco: Running Commodity
Operating Systems on Scalable Multiprocessors. In Proceedings of the Six-
teenth ACM Symposium on Operating Systems Principles, SOSP ’97, pages
143–156, 1997.

[15] C. Click, G. Tene, and M. Wolf. The Pauseless GC Algorithm. In Proceed-
ings of the 1st ACM/USENIX International Conference on Virtual Execution
Environments, VEE ’05, pages 46–56, 2005.

[16] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging Legacy
Code to Deploy Desktop Applications on the Web. In Proceedings of the
8th USENIX Conference on Operating systems Design and Implementation,
OSDI’08, pages 339–354, 2008.

[17] D. R. Engler, S. K. Gupta, and M. F. Kaashoek. AVM: Application-Level
Virtual Memory. In Proceedings of the 5th Workshop on Hot Topics in Op-
erating Systems, pages 72–77, Orcas Island, Washington, May 1995.

[18] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an Operating
System Architecture for Application-level Resource Management. In Pro-

ceedings of the Fifteenth ACM Symposium on Operating Systems Principles,
SOSP ’95, pages 251–266, 1995.

[19] B. Ford and R. Cox. Vx32: Lightweight User-Level Sandboxing on the x86.
In Proceedings of the 2008 USENIX Annual Technical Conference, ATC’08,
pages 293–306, 2008.

[20] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson. Mi-
crokernels Meet Recursive Virtual Machines. In Proceedings of the Sec-
ond USENIX Symposium on Operating Systems Design and Implementation,
OSDI ’96, pages 137–151, 1996.

[21] T. Garfinkel. Traps and Pitfalls: Practical Problems in System Call Interpo-
sition Based Security Tools. In Proceedings of the Network and Distributed
Systems Security Symposium, pages 163–176, 2003.

[22] R. P. Goldberg. Architectural Principles for Virtual Computer Systems. PhD
thesis, Harvard University, Cambridge, MA, 1972.

[23] Google. sparsehash. http://code.google.com/p/sparsehash/,
Apr. 2012.

[24] IBM. Power ISA, Version 2.06 Revision B.
[25] Intel. Intel Virtualization Technology Specification for the Intel Itanium Ar-

chitecture (VT-i).
[26] Intel Corporation. Invalid Instruction Erratum Overview. http:

//www.intel.com/support/processors/pentium/sb/
cs-013151.htm, Apr. 2012.

[27] K. Kaspersky and A. Chang. Remote Code Execution thorugh Intel CPU
Bugs. In Hack In The Box (HITB) 2008 Malaysia Conference.

[28] H. Kermany and E. Petrank. The Compressor: Concurrent, Incremental, and
Parallel Compaction. In Proceedings of the 2006 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’06, pages
354–363, 2006.

[29] S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, and J. R.
Lorch. SubVirt: Implementing Malware with Virtual Machines. In Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy, SP ’06, pages
314–327, 2006.

[30] A. Kivity. KVM: the Linux Virtual Machine Monitor. In OLS ’07: The 2007
Ottawa Linux Symposium, pages 225–230, July 2007.

[31] D. L. Osisek, K. M. Jackson, and P. H. Gum. ESA/390 Interpretive-
Execution Architecture, Foundation for VM/ESA. IBM Syst. J., 30(1):34–51,
Feb. 1991.

[32] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and Implementation
of Zap: A System for Migrating Computing Environments. In Proceedings
of the Fifth Symposium on Operating Systems Design and Implementation,
pages 361–376, 2002.

[33] N. Provos. Improving Host Security with System Call Policies. In Proceed-
ings of the 12th USENIX Security Symposium, SSYM’03, 2003.

[34] M. Sweet. Mini-XML: Lightweight XML Library. http://www.
minixml.org/, Apr. 2012.

[35] S. Tang, H. Mai, and S. T. King. Trust and Protection in the Illinois Browser
Operating System. In Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’10, pages 1–8, 2010.

[36] G. Tene, B. Iyengar, and M. Wolf. C4: the Continuously Concurrent Com-
pacting Collector. In Proceedings of the International Symposium on Mem-
ory Management, ISMM ’11, pages 79–88, 2011.

[37] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F. Martins, A. Anderson,
S. Bennett, A. Kagi, F. Leung, and L. Smith. Intel Virtualization Technology.
Computer, 38(5):48 – 56, May 2005.

[38] P. Varanasi and G. Heiser. Hardware-Supported Virtualization on ARM. In
Proceedings of the Second Asia-Pacific Workshop on Systems, APSys ’11,
pages 11:1–11:5, 2011.

[39] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar. Native Client: A Sandbox for Portable, Untrusted
x86 Native Code. In Proceedings of the 2009 30th IEEE Symposium on
Security and Privacy, SP ’09, pages 79–93, 2009.

[40] E. Zayas. Attacking the Process Migration Bottleneck. In Proceedings of
the eleventh ACM Symposium on Operating Systems Principles, SOSP ’87,
pages 13–24, 1987.

14

http://libhugetlbfs.sourceforge.net
http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench/
http://code.google.com/p/sparsehash/
http://www.intel.com/support/processors/pentium/sb/cs-013151.htm
http://www.intel.com/support/processors/pentium/sb/cs-013151.htm
http://www.intel.com/support/processors/pentium/sb/cs-013151.htm
http://www.minixml.org/
http://www.minixml.org/

	Introduction
	Virtualization and Hardware
	The Intel VT-x Extension
	Supported Hardware Features

	Kernel Support for Dune
	System Overview
	Threat Model
	Comparing to a VMM
	Memory Management
	Exposing Access to Hardware
	Preserving OS Interfaces
	Implementation

	User-mode Environment
	Bootstrapping
	Limitations

	Applications
	Sandboxing
	Wedge
	Garbage Collection

	Evaluation
	Overhead from Running in Dune
	Optimizations Made Possible by Dune
	Application Performance
	Sandbox
	Wedge
	Garbage Collector

	Reflections on Hardware
	Related Work
	Conclusion

