
The Turtles Project: Design and Implementation of Nested Virtualization

Muli Ben-Yehuda† Michael D. Day‡ Zvi Dubitzky† Michael Factor† Nadav Har’El†
muli@il.ibm.com mdday@us.ibm.com dubi@il.ibm.com factor@il.ibm.com nyh@il.ibm.com

Abel Gordon† Anthony Liguori‡ Orit Wasserman† Ben-Ami Yassour†
abelg@il.ibm.com aliguori@us.ibm.com oritw@il.ibm.com benami@il.ibm.com

†IBM Research – Haifa ‡IBM Linux Technology Center

Abstract
In classical machine virtualization, a hypervisor runs
multiple operating systems simultaneously, each on its
own virtual machine. In nested virtualization, a hypervi-
sor can run multiple other hypervisors with their associ-
ated virtual machines. As operating systems gain hyper-
visor functionality—Microsoft Windows 7 already runs
Windows XP in a virtual machine—nested virtualization
will become necessary in hypervisors that wish to host
them. We present the design, implementation, analysis,
and evaluation of high-performance nested virtualization
on Intel x86-based systems. The Turtles project, which
is part of the Linux/KVM hypervisor, runs multiple un-
modified hypervisors (e.g., KVM and VMware) and op-
erating systems (e.g., Linux and Windows). Despite the
lack of architectural support for nested virtualization in
the x86 architecture, it can achieve performance that is
within 6-8% of single-level (non-nested) virtualization
for common workloads, through multi-dimensional pag-
ing for MMU virtualization and multi-level device as-
signment for I/O virtualization.

The scientist gave a superior smile before re-
plying, “What is the tortoise standing on?”
“You’re very clever, young man, very clever”,
said the old lady. “But it’s turtles all the way
down!”1

1 Introduction

Commodity operating systems increasingly make use
of virtualization capabilities in the hardware on which
they run. Microsoft’s newest operating system, Win-
dows 7, supports a backward compatible Windows XP
mode by running the XP operating system as a virtual
machine. Linux has built-in hypervisor functionality

1http://en.wikipedia.org/wiki/Turtles all the way down

via the KVM [29] hypervisor. As commodity operat-
ing systems gain virtualization functionality, nested vir-
tualization will be required to run those operating sys-
tems/hypervisors themselves as virtual machines.

Nested virtualization has many other potential uses.
Platforms with hypervisors embedded in firmware [1,20]
need to support any workload and specifically other hy-
pervisors as guest virtual machines. An Infrastructure-
as-a-Service (IaaS) provider could give a user the ability
to run a user-controlled hypervisor as a virtual machine.
This way the cloud user could manage his own virtual
machines directly with his favorite hypervisor of choice,
and the cloud provider could attract users who would like
to run their own hypervisors. Nested virtualization could
also enable the live migration [14] of hypervisors and
their guest virtual machines as a single entity for any
reason, such as load balancing or disaster recovery. It
also enables new approaches to computer security, such
as honeypots capable of running hypervisor-level root-
kits [43], hypervisor-level rootkit protection [39,44], and
hypervisor-level intrusion detection [18, 25]—for both
hypervisors and operating systems. Finally, it could also
be used for testing, demonstrating, benchmarking and
debugging hypervisors and virtualization setups.

The anticipated inclusion of nested virtualization in
x86 operating systems and hypervisors raises many in-
teresting questions, but chief amongst them is its runtime
performance cost. Can it be made efficient enough that
the overhead doesn’t matter? We show that despite the
lack of architectural support for nested virtualization in
the x86 architecture, efficient nested x86 virtualization—
with as little as 6-8% overhead—is feasible even when
running unmodified binary-only hypervisors executing
non-trivial workloads.

Because of the lack of architectural support for nested
virtualization, an x86 guest hypervisor cannot use the
hardware virtualization support directly to run its own
guests. Fundamentally, our approach for nested virtual-
ization multiplexes multiple levels of virtualization (mul-

tiple hypervisors) on the single level of architectural sup-
port available. We address each of the following ar-
eas: CPU (e.g., instruction-set) virtualization, memory
(MMU) virtualization, and I/O virtualization.

x86 virtualization follows the “trap and emulate”
model [21,22,36]. Since every trap by a guest hypervisor
or operating system results in a trap to the lowest (most
privileged) hypervisor, our approach for CPU virtualiza-
tion works by having the lowest hypervisor inspect the
trap and forward it to the hypervisors above it for emula-
tion. We implement a number of optimizations to make
world switches between different levels of the virtualiza-
tion stack more efficient. For efficient memory virtual-
ization, we developed multi-dimensional paging, which
collapses the different memory translation tables into the
one or two tables provided by the MMU [13]. For effi-
cient I/O virtualization, we bypass multiple levels of hy-
pervisor I/O stacks to provide nested guests with direct
assignment of I/O devices [11, 31, 37, 52, 53] via multi-
level device assignment.

Our main contributions in this work are:

• The design and implementation of nested virtual-
ization for Intel x86-based systems. This imple-
mentation can run unmodified hypervisors such as
KVM and VMware as guest hypervisors, and can
run multiple operating systems such as Linux and
Windows as nested virtual machines. Using multi-
dimensional paging and multi-level device assign-
ment, it can run common workloads with overhead
as low as 6-8% of single-level virtualization.

• The first evaluation and analysis of nested x86 virtu-
alization performance, identifying the main causes
of the virtualization overhead, and classifying them
into guest hypervisor issues and limitations in the
architectural virtualization support. We also sug-
gest architectural and software-only changes which
could reduce the overhead of nested x86 virtualiza-
tion even further.

2 Related Work

Nested virtualization was first mentioned and theoreti-
cally analyzed by Popek and Goldberg [21, 22, 36]. Bel-
paire and Hsu extended this analysis and created a formal
model [10]. Lauer and Wyeth [30] removed the need for
a central supervisor and based nested virtualization on
the ability to create nested virtual memories. Their im-
plementation required hardware mechanisms and corre-
sponding software support, which bear little resemblance
to today’s x86 architecture and operating systems.

Belpaire and Hsu also presented an alternative ap-
proach for nested virtualization [9]. In contrast to today’s

x86 architecture which has a single level of architectural
support for virtualization, they proposed a hardware ar-
chitecture with multiple virtualization levels.

The IBM z/VM hypervisor [35] included the first prac-
tical implementation of nested virtualization, by making
use of multiple levels of architectural support. Nested
virtualization was also implemented by Ford et al. in a
microkernel setting [16] by modifying the software stack
at all levels. Their goal was to enhance OS modularity,
flexibility, and extensibility, rather than run unmodified
hypervisors and their guests.

During the last decade software virtualization tech-
nologies for x86 systems rapidly emerged and were
widely adopted by the market, causing both AMD and
Intel to add virtualization extensions to their x86 plat-
forms (AMD SVM [4] and Intel VMX [48]). KVM [29]
was the first x86 hypervisor to support nested virtualiza-
tion. Concurrent with this work, Alexander Graf and Jo-
erg Roedel implemented nested support for AMD pro-
cessors in KVM [23]. Despite the differences between
VMX and SVM—VMX takes approximately twice as
many lines of code to implement—nested SVM shares
many of the same underlying principles as the Turtles
project. Multi-dimensional paging was also added to
nested SVM based on our work, but multi-level device
assignment is not implemented.

There was also a recent effort to incorporate nested
virtualization into the Xen hypervisor [24], which again
appears to share many of the same underlying principles
as our work. It is, however, at an early stage: it can only
run a single nested guest on a single CPU, does not have
multi-dimensional paging or multi-level device assign-
ment, and no performance results have been published.

Blue Pill [43] is a root-kit based on hardware virtual-
ization extensions. It is loaded during boot time by in-
fecting the disk master boot record. It emulates VMX
in order to remain functional and avoid detection when a
hypervisor is installed in the system. Blue Pill’s nested
virtualization support is minimal since it only needs to
remain undetectable [17]. In contrast, a hypervisor with
nested virtualization support must efficiently multiplex
the hardware across multiple levels of virtualization deal-
ing with all of CPU, MMU, and I/O issues. Unfortu-
nately, according to its creators, Blue Pill’s nested VMX
implementation can not be published.

ScaleMP vSMP is a commercial product which aggre-
gates multiple x86 systems into a single SMP virtual ma-
chine. ScaleMP recently announced a new “VM on VM”
feature which allows running a hypervisor on top of their
underlying hypervisor. No details have been published
on the implementation.

Berghmans demonstrates another approach to nested
x86 virtualization, where a software-only hypervisor is
run on a hardware-assisted hypervisor [12]. In contrast,

2

our approach allows both hypervisors to take advantage
of the virtualization hardware, leading to a more efficient
implementation.

3 Turtles: Design and Implementation

The IBM Turtles nested virtualization project imple-
ments nested virtualization for Intel’s virtualization tech-
nology based on the KVM [29] hypervisor. It can host
multiple guest hypervisors simultaneously, each with its
own multiple nested guest operating systems. We have
tested it with unmodified KVM and VMware Server as
guest hypervisors, and unmodified Linux and Windows
as nested guest virtual machines. Since we treat nested
hypervisors and virtual machines as unmodified black
boxes, the Turtles project should also run any other x86
hypervisor and operating system.

The Turtles project is fairly mature: it has been tested
running multiple hypervisors simultaneously, supports
SMP, and takes advantage of two-dimensional page table
hardware where available in order to implement nested
MMU virtualization via multi-dimensional paging. It
also makes use of multi-level device assignment for effi-
cient nested I/O virtualization.

3.1 Theory of Operation
There are two possible models for nested virtualization,
which differ in the amount of support provided by the
underlying architecture. In the first model, multi-level
architectural support for nested virtualization, each hy-
pervisor handles all traps caused by sensitive instructions
of any guest hypervisor running directly on top of it. This
model is implemented for example in the IBM System z
architecture [35].

The second model, single-level architectural support
for nested virtualization, has only a single hypervisor
mode, and a trap at any nesting level is handled by this
hypervisor. As illustrated in Figure 1, regardless of the
level in which a trap occurred, execution returns to the
level 0 trap handler. Therefore, any trap occurring at
any level from 1 . . . n causes execution to drop to level
0. This limited model is implemented by both Intel and
AMD in their respective x86 virtualization extensions,
VMX [48] and SVM [4].

Since the Intel x86 architecture is a single-level vir-
tualization architecture, only a single hypervisor can
use the processor’s VMX instructions to run its guests.
For unmodified guest hypervisors to use VMX instruc-
tions, this single bare-metal hypervisor, which we call
L0, needs to emulate VMX. This emulation of VMX can
work recursively. Given that L0 provides a faithful em-
ulation of the VMX hardware any time there is a trap
on VMX instructions, the guest running on L1 will not

Figure 1: Nested traps with single-level architectural
support for virtualization

know it is not running directly on the hardware. Build-
ing on this infrastructure, the guest at L1 is itself able
use the same techniques to emulate the VMX hardware
to an L2 hypervisor which can then run its L3 guests.
More generally, given that the guest at Ln−1 provides a
faithful emulation of VMX to guests at Ln, a guest at Ln

can use the exact same techniques to emulate VMX for a
guest at Ln+1. We thus limit our discussion below to L0,
L1, and L2.

Fundamentally, our approach for nested virtualization
works by multiplexing multiple levels of virtualization
(multiple hypervisors) on the single level of architectural
support for virtualization, as can be seen in Figure 2.
Traps are forwarded by L0 between the different levels.

Figure 2: Multiplexing multiple levels of virtualization
on a single hardware-provided level of support

When L1 wishes to run a virtual machine, it launches it
via the standard architectural mechanism. This causes a
trap, since L1 is not running in the highest privilege level
(as is L0). To run the virtual machine, L1 supplies a spec-
ification of the virtual machine to be launched, which
includes properties such as its initial instruction pointer
and its page table root. This specification must be trans-
lated by L0 into a specification that can be used to run
L2 directly on the bare metal, e.g., by converting mem-
ory addresses from L1’s physical address space to L0’s
physical address space. Thus L0 multiplexes the hard-
ware between L1 and L2, both of which end up running
as L0 virtual machines.

When any hypervisor or virtual machine causes a trap,
the L0 trap handler is called. The trap handler then in-
spects the trapping instruction and its context, and de-

3

cides whether that trap should be handled by L0 (e.g.,
because the trapping context was L1) or whether to for-
ward it to the responsible hypervisor (e.g., because the
trap occurred in L2 and should be handled by L1). In the
latter case, L0 forwards the trap to L1 for handling.

When there are n levels of nesting guests, but the hard-
ware supports less than n levels of MMU or DMA trans-
lation tables, the n levels need to be compressed onto the
levels available in hardware, as described in Sections 3.3
and 3.4.

3.2 CPU: Nested VMX Virtualization
Virtualizing the x86 platform used to be complex and
slow [40, 41, 49]. The hypervisor was forced to re-
sort to on-the-fly binary translation of privileged instruc-
tions [3], slow machine emulation [8], or changes to
guest operating systems at the source code level [6] or
during compilation [32].

In due time Intel and AMD incorporated hardware
virtualization extensions in their CPUs. These exten-
sions introduced two new modes of operation: root mode
and guest mode, enabling the CPU to differentiate be-
tween running a virtual machine (guest mode) and run-
ning the hypervisor (root mode). Both Intel and AMD
also added special in-memory virtual machine control
structures (VMCS and VMCB, respectively) which con-
tain environment specifications for virtual machines and
the hypervisor.

The VMX instruction set and the VMCS layout are ex-
plained in detail in [27]. Data stored in the VMCS can be
divided into three groups. Guest state holds virtualized
CPU registers (e.g., control registers or segment regis-
ters) which are automatically loaded by the CPU when
switching from root mode to guest mode on VMEntry.
Host state is used by the CPU to restore register val-
ues when switching back from guest mode to root mode
on VMExit. Control data is used by the hypervisor to
inject events such as exceptions or interrupts into vir-
tual machines and to specify which events should cause
a VMExit; it is also used by the CPU to specify the
VMExit reason to the hypervisor.

In nested virtualization, the hypervisor running in root
mode (L0) runs other hypervisors (L1) in guest mode.
L1 hypervisors have the illusion they are running in root
mode. Their virtual machines (L2) also run in guest
mode.

As can be seen in Figure 3, L0 is responsible for mul-
tiplexing the hardware between L1 and L2. The CPU
runs L1 using VMCS0→1 environment specification. Re-
spectively, VMCS0→2 is used to run L2. Both of these
environment specifications are maintained by L0. In ad-
dition, L1 creates VMCS1→2 within its own virtualized
environment. Although VMCS1→2 is never loaded into

the processor, L0 uses it to emulate a VMX enabled CPU
for L1.

Figure 3: Extending VMX for nested virtualization

3.2.1 VMX Trap and Emulate

VMX instructions can only execute successfully in root
mode. In the nested case, L1 uses VMX instructions in
guest mode to load and launch L2 guests, which causes
VMExits. This enables L0, running in root mode, to trap
and emulate the VMX instructions executed by L1.

In general, when L0 emulates VMX instructions, it
updates VMCS structures according to the update pro-
cess described in the next section. Then, L0 resumes
L1, as though the instructions were executed directly by
the CPU. Most of the VMX instructions executed by L1

cause, first, a VMExit from L1 to L0, and then a VMEn-
try from L0 to L1.

For the instructions used to run a new VM,
vmresume and vmlaunch, the process is different,
since L0 needs to emulate a VMEntry from L1 to L2.
Therefore, any execution of these instructions by L1

cause, first, a VMExit from L1 to L0, and then, a VMEn-
try from L0 to L2.

3.2.2 VMCS Shadowing

L0 prepares a VMCS (VMCS0→1) to run L1, exactly in
the same way a hypervisor executes a guest with a single
level of virtualization. From the hardware’s perspective,
the processor is running a single hypervisor (L0) in root
mode and a guest (L1) in guest mode. L1 is not aware
that it is running in guest mode and uses VMX instruc-
tions to create the specifications for its own guest, L2.

L1 defines L2’s environment by creating a VMCS
(VMCS1→2) which contains L2’s environment from L1’s
perspective. For example, the VMCS1→2 GUEST-CR3
field points to the page tables that L1 prepared for L2.
L0 cannot use VMCS1→2 to execute L2 directly, since
VMCS1→2 is not valid in L0’s environment and L0 can-
not use L1’s page tables to run L2. Instead, L0 uses

4

VMCS1→2 to construct a new VMCS (VMCS0→2) that
holds L2’s environment from L0’s perspective.

L0 must consider all the specifications defined
in VMCS1→2 and also the specifications defined in
VMCS0→1 to create VMCS0→2. The host state defined in
VMCS0→2 must contain the values required by the CPU
to correctly switch back from L2 to L0. In addition,
VMCS1→2 host state must be copied to VMCS0→1 guest
state. Thus, when L0 emulates a switch between L2 to
L1, the processor loads the correct L1 specifications.

The guest state stored in VMCS1→2 does not require
any special handling in general, and most fields can be
copied directly to the guest state of VMCS0→2.

The control data of VMCS1→2 and VMCS0→1 must be
merged to correctly emulate the processor behavior. For
example, consider the case where L1 specifies to trap an
event EA in VMCS1→2 but L0 does not trap such event
for L1 (i.e., a trap is not specified in VMCS0→1). To for-
ward the event EA to L1, L0 needs to specify the corre-
sponding trap in VMCS0→2. In addition, the field used by
L1 to inject events to L2 needs to be merged, as well as
the fields used by the processor to specify the exit cause.

For the sake of brevity, we omit some details on how
specific VMCS fields are merged. For the complete de-
tails, the interested reader is encouraged to refer to the
KVM source code [29].

3.2.3 VMEntry and VMExit Emulation

In nested environments, switches from L1 to L2 and back
must be emulated. When L2 is running and a VMExit
occurs there are two possible handling paths, depending
on whether the VMExit must be handled only by L0 or
must be forwarded to L1.

When the event causing the VMExit is related to L0

only, L0 handles the event and resumes L2. This kind of
event can be an external interrupt, a non-maskable inter-
rupt (NMI) or any trappable event specified in VMCS0→2

that was not specified in VMCS1→2. From L1’s perspec-
tive this event does not exist because it was generated
outside the scope of L1’s virtualized environment. By
analogy to the non-nested scenario, an event occurred at
the hardware level, the CPU transparently handled it, and
the hypervisor continued running as before.

The second handling path is caused by events related
to L1 (e.g., trappable events specified in VMCS1→2).
In this case L0 forwards the event to L1 by copying
VMCS0→2 fields updated by the processor to VMCS1→2

and resuming L1. The hypervisor running in L1 believes
there was a VMExit directly from L2 to L1. The L1 hy-
pervisor handles the event and later on resumes L2 by
executing vmresume or vmlaunch, both of which will
be emulated by L0.

3.3 MMU: Multi-dimensional Paging

In addition to virtualizing the CPU, a hypervisor also
needs to virtualize the MMU: A guest OS builds a guest
page table which translates guest virtual addresses to
guest physical addresses. These must be translated again
into host physical addresses. With nested virtualization,
a third layer of address translation is needed.

These translations can be done entirely in software,
or assisted by hardware. However, as we explain be-
low, current hardware supports only one or two dimen-
sions (levels) of translation, not the three needed for
nested virtualization. In this section we present a new
technique, multi-dimensional paging, for multiplexing
the three needed translation tables onto the two avail-
able in hardware. In Section 4.1.2 we demonstrate the
importance of this technique, showing that more naı̈ve
approaches (surveyed below) cause at least a three-fold
slowdown of some useful workloads.

When no hardware support for memory manage-
ment virtualization was available, a technique known as
shadow page tables [15] was used. A guest creates a
guest page table, which translates guest virtual addresses
to guest physical addresses. Based on this table, the hy-
pervisor creates a new page table, the shadow page ta-
ble, which translates guest virtual addresses directly to
the corresponding host physical address [3, 6]. The hy-
pervisor then runs the guest using this shadow page table
instead of the guest’s page table. The hypervisor has to
trap all guest paging changes, including page fault excep-
tions, the INVLPG instruction, context switches (which
cause the use of a different page table) and all the guest
updates to the page table.

To improve virtualization performance, x86 architec-
tures recently added two-dimensional page tables [13]—
a second translation table in the hardware MMU. When
translating a guest virtual address, the processor first uses
the regular guest page table to translate it to a guest phys-
ical address. It then uses the second table, called EPT by
Intel (and NPT by AMD), to translate the guest physi-
cal address to a host physical address. When an entry
is missing in the EPT table, the processor generates an
EPT violation exception. The hypervisor is responsible
for maintaining the EPT table and its cache (which can
be flushed with INVEPT), and for handling EPT viola-
tions, while guest page faults can be handled entirely by
the guest.

The hypervisor, depending on the processors capabil-
ities, decides whether to use shadow page tables or two-
dimensional page tables to virtualize the MMU. In nested
environments, both hypervisors, L0 and L1, determine
independently the preferred mechanism. Thus, L0 and
L1 hypervisors can use the same or a different MMU
virtualization mechanism. Figure 4 shows three differ-

5

ent nested MMU virtualization models.

Figure 4: MMU alternatives for nested virtualization

Shadow-on-shadow is used when the processor does
not support two-dimensional page tables, and is the least
efficient method. Initially, L0 creates a shadow page ta-
ble to run L1 (SPT0→1). L1, in turn, creates a shadow
page table to run L2 (SPT1→2). L0 cannot use SPT1→2

to run L2 because this table translates L2 guest virtual
addresses to L1 host physical addresses. Therefore, L0

compresses SPT0→1 and SPT1→2 into a single shadow
page table, SPT0→2. This new table translates directly
from L2 guest virtual addresses to L0 host physical ad-
dresses. Specifically, for each guest virtual address in
SPT1→2, L0 creates an entry in SPT0→2 with the corre-
sponding L0 host physical address.

Shadow-on-EPT is the most straightforward approach
to use when the processor supports EPT. L0 uses the EPT
hardware, but L1 cannot use it, so it resorts to shadow
page tables. L1 uses SPT1→2 to run L2. L0 configures
the MMU to use SPT1→2 as the first translation table and
EPT0→1 as the second translation table. In this way, the
processor first translates from L2 guest virtual address to
L1 host physical address using SPT1→2, and then trans-
lates from the L1 host physical address to the L0 host
physical address using the EPT0→1.

Though the Shadow-on-EPT approach uses the EPT
hardware, it still has a noticeable overhead due to page
faults and page table modifications in L2. These must
be handled in L1, to maintain the shadow page ta-
ble. Each of these faults and writes cause VMExits
and must be forwarded from L0 to L1 for handling. In
other words, Shadow-on-EPT is slow for the exactly the
same reasons that Shadow itself was slow for single-level
virtualization—but it is even slower because nested exits
are slower than non-nested exits.

In multi-dimensional page tables, as in two-
dimensional page tables, each level creates its own sepa-
rate translation table. For L1 to create an EPT table, L0

exposes EPT capabilities to L1, even though the hard-
ware only provides a single EPT table.

Since only one EPT table is available in hardware, the
two EPT tables should be compressed into one: Let us
assume that L0 runs L1 using EPT0→1, and that L1 cre-

ates an additional table, EPT1→2, to run L2, because L0

exposed a virtualized EPT capability to L1. The L0 hy-
pervisor could then compress EPT0→1 and EPT1→2 into
a single EPT0→2 table as shown in Figure 4. Then L0

could run L2 using EPT0→2, which translates directly
from the L2 guest physical address to the L0 host physi-
cal address, reducing the number of page fault exits and
improving nested virtualization performance. In Sec-
tion 4.1.2 we demonstrate more than a three-fold speedup
of some useful workloads with multi-dimensional page
tables, compared to shadow-on-EPT.

The L0 hypervisor launches L2 with an empty EPT0→2

table, building the table on-the-fly, on L2 EPT-violation
exits. These happen when a translation for a guest phys-
ical address is missing in the EPT table. If there is no
translation in EPT1→2 for the faulting address, L0 first
lets L1 handle the exit and update EPT1→2. L0 can now
create an entry in EPT0→2 that translates the L2 guest
physical address directly to the L0 host physical address:
EPT1→2 is used to translate the L2 physical address to a
L1 physical address, and EPT0→1 translates that into the
desired L0 physical address.

To maintain correctness of EPT0→2, the L0 hypervisor
needs to know of any changes that L1 makes to EPT1→2.
L0 sets the memory area of EPT1→2 as read-only, thereby
causing a trap when L1 tries to update it. L0 will then up-
date EPT0→2 according to the changed entries in EPT1→2.
L0 also needs to trap all L1 INVEPT instructions, and in-
validate the EPT cache accordingly.

By using huge pages [34] to back guest memory, L0

can create smaller and faster EPT tables. Finally, to
further improve performance, L0 also allows L1 to use
VPIDs. With this feature, the CPU tags each transla-
tion in the TLB with a numeric virtual-processor id,
eliminating the need for TLB flushes on every VMEn-
try and VMExit. Since each hypervisor is free to choose
these VPIDs arbitrarily, they might collide and therefore
L0 needs to map the VPIDs that L1 uses into valid L0

VPIDs.

3.4 I/O: Multi-level Device Assignment
I/O is the third major challenge in server virtualization.
There are three approaches commonly used to provide
I/O services to a guest virtual machine. Either the hyper-
visor emulates a known device and the guest uses an un-
modified driver to interact with it [47], or a para-virtual
driver is installed in the guest [6, 42], or the host assigns
a real device to the guest which then controls the device
directly [11, 31, 37, 52, 53]. Device assignment generally
provides the best performance [33, 38, 53], since it mini-
mizes the number of I/O-related world switches between
the virtual machine and its hypervisor, and although it
complicates live migration, device assignment and live

6

migration can peacefully coexist [26, 28, 54].
These three basic I/O approaches for a single-level

guest imply nine possible combinations in the two-level
nested guest case. Of the nine potential combinations
we evaluated the more interesting cases, presented in Ta-
ble 1. Implementing the first four alternatives is straight-
forward. We describe the last option, which we call
multi-level device assignment, below. Multi-level de-
vice assignment lets the L2 guest access a device di-
rectly, bypassing both hypervisors. This direct device
access requires dealing with DMA, interrupts, MMIO,
and PIOs [53].

I/O virtualization method I/O virtualization method
between L0 & L1 between L1 & L2

Emulation Emulation
Para-virtual Emulation
Para-virtual Para-virtual
Device assignment Para-virtual
Device assignment Device assignment

Table 1: I/O combinations for a nested guest

Device DMA in virtualized environments is compli-
cated, because guest drivers use guest physical addresses,
while memory access in the device is done with host
physical addresses. The common solution to the DMA
problem is an IOMMU [2, 11], a hardware component
which resides between the device and main memory. It
uses a translation table prepared by the hypervisor to
translate the guest physical addresses to host physical
addresses. IOMMUs currently available, however, only
support a single level of address translation. Again, we
need to compress two levels of translation tables onto the
one level available in hardware.

For modified guests this can be done using a paravir-
tual IOMMU: the code in L1 which sets a mapping on
the IOMMU from L2 to L1 addresses is replaced by a
hypercall to L0. L0 changes the L1 address in that map-
ping to the respective L0 address, and puts the resulting
mapping (from L2 to L0 addresses) in the IOMMU.

A better approach, one which can run unmodified
guests, is for L0 to emulate an IOMMU for L1 [5]. L1

believes that it is running on a machine with an IOMMU,
and sets up mappings from L2 to L1 addresses on it. L0

intercepts these mappings, remaps the L1 addresses to
L0 addresses, and builds the L2-to-L0 map on the real
IOMMU.

In current x86 architecture, interrupts always cause a
guest exit to L0, which proceeds to forward the interrupt
to L1. L1 will then inject it into L2. The EOI (end of
interrupt) will also cause a guest exit. In Section 4.1.1 we
discuss the slowdown caused by these interrupt-related
exits, and propose ways to avoid it.

Memory-mapped I/O (MMIO) and Port I/O (PIO) for
a nested guest work the same way they work for a single-
level guest, without incurring exits on the critical I/O
path [53].

3.5 Micro Optimizations
There are two main places where a guest of a nested hy-
pervisor is slower than the same guest running on a bare-
metal hypervisor. First, the transitions between L1 and
L2 are slower than the transitions between L0 and L1.
Second, the exit handling code running in the L1 hyper-
visor is slower than the same code running in L0. In this
section we discuss these two issues, and propose opti-
mizations that improve performance. Since we assume
that both L1 and L2 are unmodified, these optimizations
require modifying L0 only. We evaluate these optimiza-
tions in the evaluation section.

3.5.1 Optimizing transitions between L1 and L2

As explained in Section 3.2.3, transitions between L1

and L2 involve an exit to L0 and then an entry. In
L0, most of the time is spent merging the VMCS’s. We
optimize this merging code to only copy data between
VMCS’s if the relevant values were modified. Keeping
track of which values were modified has an intrinsic cost,
so one must carefully balance full copying versus partial
copying and tracking. We observed empirically that for
common workloads and hypervisors, partial copying has
a lower overhead.

VMCS merging could be further optimized by copy-
ing multiple VMCS fields at once. However, according to
Intel’s specifications, reads or writes to the VMCS area
must be performed using vmread and vmwrite in-
structions, which operate on a single field. We empiri-
cally noted that under certain conditions one could ac-
cess VMCS data directly without ill side-effects, bypass-
ing vmread and vmwrite and copying multiple fields
at once with large memory copies. However, this opti-
mization does not strictly adhere to the VMX specifica-
tions, and thus might not work on processors other than
the ones we have tested.

In the evaluation section, we show that this opti-
mization gives a significant performance boost in micro-
benchmarks. However, it did not noticeably improve the
other, more typical, workloads that we have evaluated.

3.5.2 Optimizing exit handling in L1

The exit-handling code in the hypervisor is slower when
run in L1 than the same code running in L0. The main
cause of this slowdown are additional exits caused by
privileged instructions in the exit-handling code.

7

In Intel VMX, the privileged instructions vmread and
vmwrite are used by the hypervisor to read and mod-
ify the guest and host specification. As can be seen in
Section 4.3, these cause L1 to exit multiple times while
it handles a single L2 exit.

In contrast, in AMD SVM, guest and host specifica-
tions can be read or written to directly using ordinary
memory loads and stores. The clear advantage of that
model is that L0 does not intervene while L1 modifies
L2 specifications. Removing the need to trap and emu-
late special instructions reduces the number of exits and
improves nested virtualization performance.

One thing L0 can do to avoid trapping on every
vmread and vmwrite is binary translation [3] of prob-
lematic vmread and vmwrite instructions in the L1

instruction stream, by trapping the first time such an in-
struction is called and then rewriting it to branch to a
non-trapping memory load or store. To evaluate the po-
tential performance benefit of this approach, we tested a
modified L1 that directly reads and writes VMCS1→2 in
memory, instead of using vmread and vmwrite. The
performance of this setup, which we call DRW (direct
read and write) is described in the evaluation section.

4 Evaluation

We start the evaluation and analysis of nested virtual-
ization with macro benchmarks that represent real-life
workloads. Next, we evaluate the contribution of multi-
level device assignment and multi-dimensional paging to
nested virtualization performance. Most of our experi-
ments are executed with KVM as the L1 guest hyper-
visor. In Section 4.2 we present results with VMware
Server as the L1 guest hypervisor.

We then continue the evaluation with a synthetic,
worst-case micro benchmark running on L2 which
causes guest exits in a loop. We use this synthetic, worst-
case benchmark to understand and analyze the overhead
and the handling flow of a single L2 exit.

Our setup consisted of an IBM x3650 machine booted
with a single Intel Xeon 2.9GHz core and with 3GB of
memory. The host OS was Ubuntu 9.04 with a kernel
that is based on the KVM git tree version kvm-87, with
our nested virtualization support added. For both L1 and
L2 guests we used an Ubuntu Jaunty guest with a kernel
that is based on the KVM git tree, version kvm-87. L1

was configured with 2GB of memory and L2 was config-
ured with 1GB of memory. For the I/O experiments we
used a Broadcom NetXtreme 1Gb/s NIC connected via
crossover-cable to an e1000e NIC on another machine.

4.1 Macro Workloads
kernbench is a general purpose compilation-type
benchmark that compiles the Linux kernel multiple
times. The compilation process is, by nature, CPU- and
memory-intensive, and it also generates disk I/O to load
the compiled files into the guest’s page cache.
SPECjbb is an industry-standard benchmark de-

signed to measure the server-side performance of Java
run-time environments. It emulates a three-tier system
and is primarily CPU-intensive.

We executed kernbench and SPECjbb in four se-
tups: host, single-level guest, nested guest, and nested
guest optimized with direct read and write (DRW) as de-
scribed in Section 3.5.2. The optimizations described
in Section 3.5.1 did not make a significant difference to
these benchmarks, and are thus omitted from the results.
We used KVM as both L0 and L1 hypervisor with multi-
dimensional paging. The results are depicted in Table 2.

Kernbench
Host Guest Nested NestedDRW

Run time 324.3 355 406.3 391.5
STD dev. 1.5 10 6.7 3.1
% overhead
vs. host - 9.5 25.3 20.7
% overhead
vs. guest - - 14.5 10.3
%CPU 93 97 99 99

SPECjbb
Host Guest Nested NestedDRW

Score 90493 83599 77065 78347
STD dev. 1104 1230 1716 566
% degradati-
on vs. host - 7.6 14.8 13.4
% degradati-
on vs. guest - - 7.8 6.3
%CPU 100 100 100 100

Table 2: kernbench and SPECjbb results

We compared the impact of running the workloads in a
nested guest with running the same workload in a single-
level guest, i.e., the overhead added by the additional
level of virtualization. For kernbench, the overhead
of nested virtualization is 14.5%, while for SPECjbb the
score is degraded by 7.82%. When we discount the
Intel-specific vmread and vmwrite overhead in L1,
the overhead is 10.3% and 6.3% respectively.

To analyze the sources of overhead, we examine the
time distribution between the different levels. Figure 5
shows the time spent in each level. It is interesting to
compare the time spent in the hypervisor in the single-
level case with the time spent in L1 in the nested guest

8

case, since both hypervisors are expected to do the same
work. The times are indeed similar, although the L1 hy-
pervisor takes more cycles due to cache pollution and
TLB flushes, as we show in Section 4.3. The signifi-
cant part of the virtualization overhead in the nested case
comes from the time spent in L0 and the increased num-
ber of exits.

For SPECjbb, the total number of cycles across
all levels is the same for all setups. This is because
SPECjbb executed for the same pre-set amount of time
in both cases and the difference was in the benchmark
score.

Efficiently virtualizing a hypervisor is hard. Nested
virtualization creates a new kind of workload for the L0

hypervisor which did not exist before: running another
hypervisor (L1) as a guest. As can be seen in Figure 5,
for kernbench L0 takes only 2.28% of the overall cy-
cles in the single-level guest case, but takes 5.17% of the
overall cycles for the nested-guest case. In other words,
L0 has to work more than twice as hard when running a
nested guest.

Not all exits of L2 incur the same overhead, as each
type of exit requires different handling in L0 and L1. In
Figure 6, we show the total number of cycles required
to handle each exit type. For the single level guest we
measured the number of cycles between VMExit and the
consequent VMEntry. For the nested guest we measured
the number of cycles spent between L2 VMExit and the
consequent L2 VMEntry.

There is a large variance between the handling times
of different types of exits. The cost of each exit comes
primarily from the number of privileged instructions per-
formed by L1, each of which causes an exit to L0. For ex-
ample, when L1 handles a PIO exit of L2, it generates on
average 31 additional exits, whereas in the cpuid case
discussed later in Section 4.3 only 13 exits are required.
Discounting traps due to vmread and vmwrite, the
average number of exits was reduced to 14 for PIO and
to 2 for cpuid.

Another source of overhead is heavy-weight exits. The
external interrupt exit handler takes approximately 64K
cycles when executed by L0. The PIO exit handler takes
approximately 12K cycles when executed by L0. How-
ever, when those handlers are executed by L1, they take
much longer: approximately 192K cycles and 183K cy-
cles, respectively. Discounting traps due to vmread
and vmwrite, they take approximately 148K cycles and
130K cycles, respectively. This difference in execution
times between L0 and L1 is due to two reasons: first, the
handlers execute privileged instructions causing exits to
L0. Second, the handlers run for a long time compared
with other handlers and therefore more external events
such as external interrupts occur during their run-time.

Guest
L1
L0
CPU mode switch

 0

 20

 40

 60

 80

 100

Guest
NestedGuest

Nested Guest DRW

Guest
NestedGuest

Nested Guest DRW

N
or

m
al

iz
ed

 C
PU

 C
yc

le
s

Kernbench SPECjbb

Figure 5: CPU cycle distribution

nested guest
nested guest DRW
guest

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

 180,000

 200,000

External interrupt

PIO Read MSR
CR access

APIC access

Exception
Write MSR

Pending interrupt

Cpuid
EPT violation

CP
U

 C
yc

le
s

Figure 6: Cycle costs of handling different types of exits

4.1.1 I/O Intensive Workloads

To examine the performance of a nested guest in the
case of I/O intensive workloads we used netperf, a
TCP streaming application that attempts to maximize the
amount of data sent over a single TCP connection. We
measured the performance on the sender side, with the
default settings of netperf (16,384 byte messages).

Figure 7 shows the results for running the netperf
TCP stream test on the host, in a single-level guest, and in
a nested guest, using the five I/O virtualization combina-
tions described in Section 3.4. We used KVM’s default
emulated NIC (RTL-8139), virtio [42] for a paravirtual
NIC, and a 1 Gb/s Broadcom NetXtreme II with device
assignment. All tests used a single CPU core.

On bare-metal, netperf easily achieved line rate
(940 Mb/s) with 20% CPU utilization.

Emulation gives a much lower throughput, with full
CPU utilization: On a single-level guest we get 25%
of the line rate. On the nested guest the throughput is
even lower and the overhead is dominated by the cost of
device emulation between L1 and L2. Each L2 exit is
trapped by L0 and forwarded to L1. For each L2 exit, L1

then executes multiple privileged instructions, incurring
multiple exits back to L0. In this way the overhead for

9

throughput (Mbps)
%cpu

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1,000

native
single level guest

 emulation

single level guest

 virtio

single level guest

 direct access

nested guest

 emulation / emulation

nested guest

 virtio / emulation

nested guest

 virtio / virtio

nested guest

 direct / virtio

nested guest

 direct / direct

 0

 20

 40

 60

 80

 100

th
ro

ug
hp

ut
 (M

bp
s)

%
 c

pu

Figure 7: Performance of netperf in various setups

each L2 exit is multiplied.
The para-virtual virtio NIC performs better than emu-

lation since it reduces the number of exits. Using virtio
all the way up to L2 gives 75% of line rate with a satu-
rated CPU, better but still considerably below bare-metal
performance.

Multi-level device assignment achieved the best per-
formance, with line rate at 60% CPU utilization (Fig-
ure 7, direct/direct). Using device assignment between
L0 and L1 and virtio between L1 and L2 enables the L2

guest to saturate the 1Gb link with 92% CPU utilization
(Figure 7, direct/virtio).

While multi-level device assignment outperformed the
other methods, its measured performance is still subop-
timal because 60% of the CPU is used for running a
workload that only takes 20% on bare-metal. Unfortu-
nately on current x86 architecture, interrupts cannot be
assigned to guests, so both the interrupt itself and its EOI
cause exits. The more interrupts the device generates,
the more exits, and therefore the higher the virtualiza-
tion overhead—which is more pronounced in the nested
case. We hypothesize that these interrupt-related exits
are the biggest source of the remaining overhead, so had
the architecture given us a way to avoid these exits—by
assigning interrupts directly to guests rather than having
each interrupt go through both hypervisors—netperf
performance on L2 would be close to that of bare-metal.

To test this hypothesis we reduced the number of in-
terrupts, by modifying standard bnx2 network driver to
work without any interrupts, i.e., continuously poll the
device for pending events

Figure 8 compares some of the I/O virtualization com-
binations with this polling driver. Again, multi-level de-
vice assignment is the best option and, as we hypothe-
sized, this time L2 performance is close to bare-metal.
With netperf’s default 16,384 byte messages, the
throughput is often capped by the 1 Gb/s line rate, so we

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

bp
s)

Message size (netperf -m)

L0 (bare metal)
L2 (direct/direct)
L2 (direct/virtio)

Figure 8: Performance of netperf with interrupt-less
network driver

ran netperf with smaller messages. As we can see in the
figure, for 64-byte messages, for example, on L0 (bare
metal) a throughput of 900 Mb/s is achieved, while on
L2 with multi-level device assignment, we get 837 Mb/s,
a mere 7% slowdown. The runner-up method, virtio on
direct, was not nearly as successful, and achieved just
469 Mb/s, 50% below bare-metal performance. CPU
utilization was 100% in all cases since a polling driver
consumes all available CPU cycles.

4.1.2 Impact of Multi-dimensional Paging

To evaluate multi-dimensional paging, we compared
each of the macro benchmarks described in the previ-
ous sections with and without multi-dimensional paging.
For each benchmark we configured L0 to run L1 with
EPT support. We then compared the case where L1 uses
shadow page tables to run L2 (“Shadow-on-EPT”) with
the case of L1 using EPT to run L2 (“multi-dimensional
paging”).

Shadow on EPT
Multi−dimensional paging

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

kernbench specjbb netperf

Im
pr

ov
em

en
t r

at
io

Figure 9: Impact of multi-dimensional paging

Figure 9 shows the results. The overhead between the
two cases is mostly due to the number of page-fault exits.
When shadow paging is used, each page fault of the L2

guest results in a VMExit. When multi-dimensional pag-

10

ing is used, only an access to a guest physical page that is
not mapped in the EPT table will cause an EPT violation
exit. Therefore the impact of multi-dimensional paging
depends on the number of guest page faults, which is a
property of the workload. The improvement is startling
in benchmarks such as kernbench with a high number
of page faults, and is less pronounced in workloads that
do not incur many page faults.

4.2 VMware Server as a Guest Hypervisor
We also evaluated VMware as the L1 hypervisor to ana-
lyze how a different guest hypervisor affects nested vir-
tualization performance. We used the hosted version,
VMWare Server v2.0.1, build 156745 x86-64, on top of
Ubuntu based on kernel 2.6.28-11. We intentionally did
not install VMware tools for the L2 guest, thereby in-
creasing nested virtualization overhead. Due to similar
results obtained for VMware and KVM as the nested hy-
pervisor, we show only kernbench and SPECjbb re-
sults below.

Benchmark % overhead vs. single-level guest
kernbench 14.98
SPECjbb 8.85

Table 3: VMware Server as a guest hypervisor

Examining L1 exits, we noticed VMware Server
uses VMX initialization instructions (vmon, vmoff,
vmptrld, vmclear) several times during L2 execu-
tion. Conversely, KVM uses them only once. This
dissimilitude derives mainly from the approach used by
VMware to interact with the host Linux kernel. Each
time the monitor module takes control of the CPU, it en-
ables VMX. Then, before it releases control to the Linux
kernel, VMX is disabled. Furthermore, during this tran-
sition many non-VMX privileged instructions are exe-
cuted by L1, increasing L0 intervention.

Although all these initialization instructions are emu-
lated by L0, transitions from the VMware monitor mod-
ule to the Linux kernel are less frequent for Kernbench
and SPECjbb. The VMware monitor module typically
handles multiple L2 exits before switching to the Linux
kernel. As a result, this behavior only slightly affected
the nested virtualization performance.

4.3 Micro Benchmark Analysis
To analyze the cycle-costs of handling a single L2 exit,
we ran a micro benchmark in L2 that does nothing ex-
cept generate exits by calling cpuid in a loop. The vir-
tualization overhead for running an L2 guest is the ratio
between the effective work done by the L2 guest and the

overhead of handling guest exits in L0 and L1. Based on
this definition, this cpuid micro benchmark is a worst
case workload, since L2 does virtually nothing except
generate exits. We note that cpuid cannot in the gen-
eral case be handled by L0 directly, as L1 may wish to
modify the values returned to L2.

Figure 10 shows the number of CPU cycles required to
execute a single cpuid instruction. We ran the cpuid
instruction 4∗106 times and calculated the average num-
ber of cycles per iteration. We repeated the test for the
following setups: 1. native, 2. running cpuid in a single
level guest, and 3. running cpuid in a nested guest with
and without the optimizations described in Section 3.5.
For each execution, we present the distribution of the cy-
cles between the levels: L0, L1, L2. CPU mode switch
stands for the number of cycles spent by the CPU when
performing a VMEntry or a VMExit. On bare metal
cpuid takes about 100 cycles, while in a virtual ma-
chine it takes about 2,600 cycles (Figure 10, column 1),
about 1,000 of which is due to the CPU mode switch-
ing. When run in a nested virtual machine it takes about
58,000 cycles (Figure 10, column 2).

L1
L0
cpu mode switch

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

1. Single Level
Guest

2. Nested Guest

3. Nested Guest

optimizations 3.5.1

4. Nested Guest

optimizations 3.5.2

5. Nested Guest

optimizations 3.5.1 & 3.5.2

CP
U

 C
yc

le
s

Figure 10: CPU cycle distribution for cpuid

To understand the cost of handling a nested guest
exit compared to the cost of handling the same exit for
a single-level guest, we analyzed the flow of handling
cpuid:

1. L2 executes a cpuid instruction
2. CPU traps and switches to root mode L0

3. L0 switches state from running L2 to running L1

4. CPU switches to guest mode L1

5. L1 modifies VMCS1→2

repeat n times:

(a) L1 accesses VMCS1→2

(b) CPU traps and switches to root mode L0

(c) L0 emulates VMCS1→2 access and resumes L1

(d) CPU switches to guest mode L1

6. L1 emulates cpuid for L2

11

7. L1 executes a resume of L2

8. CPU traps and switches to root mode L0

9. L0 switches state from running L1 to running L2

10. CPU switches to guest mode L2

In general, step 5 can be repeated multiple times. Each
iteration consists of a single VMExit from L1 to L0.
The total number of exits depends on the specific im-
plementation of the L1 hypervisor. A nesting-friendly
hypervisor will keep privileged instructions to a mini-
mum. In any case, the L1 hypervisor must interact with
VMCS1→2, as described in Section 3.2.2. In the case of
cpuid, in step 5, L1 reads 7 fields of VMCS1→2, and
writes 4 fields to VMCS1→2, which ends up as 11 VMEx-
its from L1 to L0. Overall, for a single L2 cpuid exit
there are 13 CPU mode switches from guest mode to
root mode and 13 CPU mode switches from root mode
to guest mode, specifically in steps: 2, 4, 5b, 5d, 8, 10.

The number of cycles the CPU spends in a single
switch to guest mode plus the number of cycles to switch
back to root mode, is approximately 1,000. The total
CPU switching cost is therefore around 13,000 cycles.

The other two expensive steps are 3 and 9. As de-
scribed in Section 3.5, these switches can be optimized.
Indeed as we show in Figure 10, column 3, using various
optimizations we can reduce the virtualization overhead
by 25%, and by 80% when using non-trapping vmread
and vmwrite instructions.

By avoiding traps on vmread and vmwrite (Fig-
ure 10, columns 4 and 5), we removed the exits caused
by VMCS1→2 accesses and the corresponding VMCS ac-
cess emulation, step 5. This optimization reduced the
switching cost by 84.6%, from 13,000 to 2,000.

While it might still be possible to optimize steps 3
and 9 further, it is clear that the exits of L1 while han-
dling a single exit of L2, and specifically VMCS accesses,
are a major source of overhead. Architectural support for
both faster world switches and VMCS updates without ex-
its will reduce the overhead.

Examining Figure 10, it seems that handling cpuid
in L1 is more expensive than handling cpuid in L0.
Specifically, in column 3, the nested hypervisor L1

spends around 5,000 cycles to handle cpuid, while in
column 1 the same hypervisor running on bare metal
only spends 1500 cycles to handle the same exit (note
that these numbers do not include the mode switches).
The code running in L1 and in L0 is identical; the differ-
ence in cycle count is due to cache pollution. Running
the cpuid handling code incurs on average 5 L2 cache
misses and 2 TLB misses when run in L0, whereas run-
ning the exact same code in L1 incurs on average 400 L2
cache misses and 19 TLB misses.

5 Discussion

In nested environments we introduce a new type of work-
load not found in single-level virtualization: the hypervi-
sor as a guest. Traditionally, x86 hypervisors were de-
signed and implemented assuming they will be running
directly on bare metal. When they are executed on top of
another hypervisor this assumption no longer holds and
the guest hypervisor behavior becomes a key factor.

With a nested L1 hypervisor, the cost of a single L2

exit depends on the number of exits caused by L1 dur-
ing the L2 exit handling. A nesting-friendly L1 hyper-
visor should minimize this critical chain to achieve bet-
ter performance, for example by limiting the use of trap-
causing instructions in the critical path.

Another alternative for reducing this critical chain is to
para-virtualize the guest hypervisor, similar to OS para-
virtualization [6, 50, 51]. While this approach could re-
duce L0 intervention when L1 virtualizes the L2 envi-
ronment, the work being done by L0 to virtualize the
L1 environment will still persist. How much this tech-
nique can help depends on the workload and on the spe-
cific approach used. Taking as a concrete example the
conversion of vmreads and vmwrites to non-trapping
load/stores, para-virtualization could reduce the over-
head for kernbench from 14.5% to 10.3%.

5.1 Architectural Overhead
Part of the overhead introduced with nested virtualization
is due to the architectural design choices of x86 hardware
virtualization extensions.

Virtualization API: Two performance sensitive areas
in x86 virtualization are memory management and I/O
virtualization. With multi-dimensional paging we com-
pressed three MMU translation tables onto the two avail-
able in hardware; multi-level device assignment does
the same for IOMMU translation tables. Architectural
support for multiple levels of MMU and DMA transla-
tion tables—as many tables as there are levels of nested
hypervisors—will immediately improve MMU and I/O
virtualization.

Architectural support for delivering interrupts directly
from the hardware to the L2 guest will remove L0 inter-
vention on interrupt delivery and completion, interven-
tion which, as we explained in Section 4.1.1, hurts nested
performance. Such architectural support will also help
single-level I/O virtualization performance [33].

VMX features such as MSR bitmaps, I/O bitmaps, and
CR masks/shadows [48] proved to be effective in reduc-
ing exit overhead. Any architectural feature that reduces
single-level exit overhead also shortens the nested critical
path. Such features, however, also add implementation
complexity, since to exploit them in nested environments

12

they must be properly emulated by L0 hypervisors.
Removing the (Intel-specific) need to trap on every

vmread and vmwrite instruction will give an imme-
diate performance boost, as we showed in Section 3.5.2.

Same Core Constraint: The x86 trap-and-emulate
implementation dictates that the guest and hypervisor
share each core, since traps are always handled on the
core where they occurred. Due to this constraint, when
the hypervisor handles an exit the guest is temporarily
stopped on that core. In a nested environment, the L1

guest hypervisor will also be interrupted, increasing the
total interruption time of the L2 guest. Gavrilovska, et
al., presented techniques for exploiting additional cores
to handle guest exits [19]. According to the authors, for
a single level of virtualization, they measured 41% aver-
age improvements in call latency for null calls, cpuid and
page table updates. These techniques could be adapted
for nested environments in order to remove L0 interven-
tions and also reduce privileged instructions call laten-
cies, decreasing the total interruption time of a nested
guest.

Cache Pollution: Each time the processor switches
between the guest and the host context on a single core,
the effectiveness of its caches is reduced. This phe-
nomenon is magnified in nested environments, due to
the increased number of switches. As was seen in Sec-
tion 4.3, even after discounting L0 intervention, the L1

hypervisor still took more cycles to handle an L2 exit
than it took to handle the same exit for the single-level
scenario, due to cache pollution. Dedicating cores to
guests could reduce cache pollution [7, 45, 46] and in-
crease performance.

6 Conclusions and Future Work

Efficient nested x86 virtualization is feasible, despite
the challenges stemming from the lack of architectural
support for nested virtualization. Enabling efficient
nested virtualization on the x86 platform through multi-
dimensional paging and multi-level device assignment
opens exciting avenues for exploration in such diverse
areas as security, clouds, and architectural research.

We are continuing to investigate architectural and
software-based methods to improve the performance
of nested virtualization, while simultaneously exploring
ways of building computer systems that have nested vir-
tualization built-in.

Last, but not least, while the Turtles project is fairly
mature, we expect that the additional public exposure
stemming from its open source release will help enhance
its stability and functionality. We look forward to see-
ing in what interesting directions the research and open
source communities will take it.

Acknowledgments

The authors would like to thank Alexander Graf and Jo-
erg Roedel, whose KVM patches for nested SVM in-
spired parts of this work. The authors would also like
to thank Ryan Harper, Nadav Amit, and our shepherd
Robert English for insightful comments and discussions.

References
[1] Phoenix Hyperspace. http://www.hyperspace.com/.
[2] ABRAMSON, D., JACKSON, J., MUTHRASANALLUR, S.,

NEIGER, G., REGNIER, G., SANKARAN, R., SCHOINAS, I.,
UHLIG, R., VEMBU, B., AND WIEGERT, J. Intel virtualiza-
tion technology for directed I/O. Intel Technology Journal 10, 03
(August 2006), 179–192.

[3] ADAMS, K., AND AGESEN, O. A comparison of software and
hardware techniques for x86 virtualization. SIGOPS Oper. Syst.
Rev. 40, 5 (December 2006), 2–13.

[4] AMD. Secure virtual machine architecture reference manual.
[5] AMIT, N., BEN-YEHUDA, M., AND YASSOUR, B.-A. IOMMU:

Strategies for mitigating the IOTLB bottleneck. In WIOSCA ’10:
Sixth Annual Workshop on the Interaction between Operating
Systems and Computer Architecture.

[6] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In SOSP ’03:
Symposium on Operating Systems Principles (2003).

[7] BAUMANN, A., BARHAM, P., DAGAND, P. E., HARRIS, T.,
ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND
SINGHANIA, A. The multikernel: a new os architecture for scal-
able multicore systems. In SOSP ’09: 22nd ACM SIGOPS Sym-
posium on Operating systems principles, pp. 29–44.

[8] BELLARD, F. QEMU, a fast and portable dynamic translator. In
USENIX Annual Technical Conference (2005), p. 41.

[9] BELPAIRE, G., AND HSU, N.-T. Hardware architecture for re-
cursive virtual machines. In ACM ’75: 1975 annual ACM con-
ference, pp. 14–18.

[10] BELPAIRE, G., AND HSU, N.-T. Formal properties of recur-
sive virtual machine architectures. SIGOPS Oper. Syst. Rev. 9, 5
(1975), 89–96.

[11] BEN-YEHUDA, M., MASON, J., XENIDIS, J., KRIEGER, O.,
VAN DOORN, L., NAKAJIMA, J., MALLICK, A., AND WAHLIG,
E. Utilizing IOMMUs for virtualization in Linux and Xen. In
OLS ’06: The 2006 Ottawa Linux Symposium, pp. 71–86.

[12] BERGHMANS, O. Nesting virtual machines in virtualization test
frameworks. Master’s thesis, University of Antwerp, May 2010.

[13] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE,
S. Accelerating two-dimensional page walks for virtualized sys-
tems. In ASPLOS ’08: 13th intl. conference on architectural sup-
port for programming languages and operating systems (2008).

[14] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration of
virtual machines. In NSDI ’05: Second Symposium on Networked
Systems Design & Implementation (2005), pp. 273–286.

[15] DEVINE, S. W., BUGNION, E., AND ROSENBLUM, M. Virtu-
alization system including a virtual machine monitor for a com-
puter with a segmented architecture. US #6397242, May 2002.

[16] FORD, B., HIBLER, M., LEPREAU, J., TULLMANN, P., BACK,
G., AND CLAWSON, S. Microkernels meet recursive virtual ma-
chines. In OSDI ’96: Second USENIX symposium on Operating
systems design and implementation (1996), pp. 137–151.

13

[17] GARFINKEL, T., ADAMS, K., WARFIELD, A., AND FRANKLIN,
J. Compatibility is not transparency: VMM detection myths and
realities. In HOTOS’07: 11th USENIX workshop on Hot topics
in operating systems (2007), pp. 1–6.

[18] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine in-
trospection based architecture for intrusion detection. In Network
& Distributed Systems Security Symposium (2003), pp. 191–206.

[19] GAVRILOVSKA, A., KUMNAR, S., RAJ, H., SCHWAN, K.,
GUPTA, V., NATHUJI, R., NIRANJAN, R., RANADIVE, A., AND
SARAIYA, P. High-performance hypervisor architectures: Virtu-
alization in hpc systems. In HPCVIRT ’07: 1st Workshop on
System-level Virtualization for High Performance Computing.

[20] GEBHARDT, C., AND DALTON, C. Lala: a late launch appli-
cation. In STC ’09: 2009 ACM workshop on Scalable trusted
computing (2009), pp. 1–8.

[21] GOLDBERG, R. P. Architecture of virtual machines. In Proceed-
ings of the workshop on virtual computer systems (New York,
NY, USA, 1973), ACM, pp. 74–112.

[22] GOLDBERG, R. P. Survey of virtual machine research. IEEE
Computer Magazine (June 1974), 34–45.

[23] GRAF, A., AND ROEDEL, J. Nesting the virtualized world.
Linux Plumbers Conference, Sep. 2009.

[24] HE, Q. Nested virtualization on xen. Xen Summit Asia 2009.

[25] HUANG, J.-C., MONCHIERO, M., AND TURNER, Y. Ally: Os-
transparent packet inspection using sequestered cores. In WIOV
’10: The Second Workshop on I/O Virtualization.

[26] HUANG, W., LIU, J., KOOP, M., ABALI, B., AND PANDA, D.
Nomad: migrating OS-bypass networks in virtual machines. In
VEE ’07: 3rd international conference on Virtual execution envi-
ronments (2007), pp. 158–168.

[27] INTEL CORPORATION. Intel 64 and IA-32 Architectures Soft-
ware Developers Manual. 2009.

[28] KADAV, A., AND SWIFT, M. M. Live migration of direct-access
devices. In First Workshop on I/O Virtualization (WIOV ’08).

[29] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. KVM: the linux virtual machine monitor. In Ot-
tawa Linux Symposium (July 2007), pp. 225–230.

[30] LAUER, H. C., AND WYETH, D. A recursive virtual machine
architecture. In Workshop on virtual computer systems (1973),
pp. 113–116.

[31] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GÖTZ, S. Un-
modified device driver reuse and improved system dependability
via virtual machines. In OSDI ’04: 6th conference on Symposium
on Opearting Systems Design & Implementation (2004), p. 2.

[32] LEVASSEUR, J., UHLIG, V., YANG, Y., CHAPMAN, M.,
CHUBB, P., LESLIE, B., AND HEISER, G. Pre-virtualization:
Soft layering for virtual machines. In ACSAC ’08: 13th Asia-
Pacific Computer Systems Architecture Conference, pp. 1–9.

[33] LIU, J. Evaluating standard-based self-virtualizing devices: A
performance study on 10 GbE NICs with SR-IOV support. In
IPDPS ’10: IEEE International Parallel and Distributed Pro-
cessing Symposium (2010).

[34] NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A. Prac-
tical, transparent operating system support for superpages. In
OSDI ’02: 5th symposium on Operating systems design and im-
plementation (2002), pp. 89–104.

[35] OSISEK, D. L., JACKSON, K. M., AND GUM, P. H. Esa/390
interpretive-execution architecture, foundation for vm/esa. IBM
Systems Journal 30, 1 (1991).

[36] POPEK, G. J., AND GOLDBERG, R. P. Formal requirements for
virtualizable third generation architectures. Commun. ACM 17, 7
(July 1974), 412–421.

[37] RAJ, H., AND SCHWAN, K. High performance and scalable I/O
virtualization via self-virtualized devices. In HPDC ’07: Pro-
ceedings of the 16th international symposium on High perfor-
mance distributed computing (2007), pp. 179–188.

[38] RAM, K. K., SANTOS, J. R., TURNER, Y., COX, A. L., AND
RIXNER, S. Achieving 10Gbps using safe and transparent net-
work interface virtualization. In VEE ’09: The 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments (March 2009).

[39] RILEY, R., JIANG, X., AND XU, D. Guest-transparent pre-
vention of kernel rootkits with vmm-based memory shadowing.
In Recent Advances in Intrusion Detection, vol. 5230 of Lecture
Notes in Computer Science. 2008, ch. 1, pp. 1–20.

[40] ROBIN, J. S., AND IRVINE, C. E. Analysis of the intel pen-
tium’s ability to support a secure virtual machine monitor. In 9th
conference on USENIX Security Symposium (2000), p. 10.

[41] ROSENBLUM, M. Vmware’s virtual platform: A virtual machine
monitor for commodity pcs. In Hot Chips 11 (1999).

[42] RUSSELL, R. virtio: towards a de-facto standard for virtual I/O
devices. SIGOPS Oper. Syst. Rev. 42, 5 (2008), 95–103.

[43] RUTKOWSKA, J. Subverting vista kernel for fun and profit.
Blackhat, Aug. 2006.

[44] SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. Secvisor: a
tiny hypervisor to provide lifetime kernel code integrity for com-
modity oses. In SOSP ’07: 21st ACM SIGOPS symposium on
Operating systems principles (2007), pp. 335–350.

[45] SHALEV, L., BOROVIK, E., SATRAN, J., AND BEN-YEHUDA,
M. Isostack—highly efficient network processing on dedicated
cores. In USENIX ATC ’10: The 2010 USENIX Annual Technical
Conference (2010).

[46] SHALEV, L., MAKHERVAKS, V., MACHULSKY, Z., BIRAN, G.,
SATRAN, J., BEN-YEHUDA, M., AND SHIMONY, I. Loosely
coupled tcp acceleration architecture. In HOTI ’06: Proceedings
of the 14th IEEE Symposium on High-Performance Interconnects
(Washington, DC, USA, 2006), IEEE Computer Society, pp. 3–8.

[47] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. Virtu-
alizing I/O devices on VMware workstation’s hosted virtual ma-
chine monitor. In USENIX Annual Technical Conference (2001).

[48] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L.,
MARTINS, F. C. M., ANDERSON, A. V., BENNETT, S. M.,
KAGI, A., LEUNG, F. H., AND SMITH, L. Intel virtualization
technology. Computer 38, 5 (2005), 48–56.

[49] WALDSPURGER, C. A. Memory resource management in
VMware ESX server. In OSDI ’02: 5th Symposium on Operating
System Design and Implementation.

[50] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Denali: a
scalable isolation kernel. In EW ’10: 10th ACM SIGOPS Euro-
pean workshop (2002), pp. 10–15.

[51] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and
performance in the denali isolation kernel. SIGOPS Oper. Syst.
Rev. 36, SI (2002), 195–209.

[52] WILLMANN, P., SHAFER, J., CARR, D., MENON, A., RIXNER,
S., COX, A. L., AND ZWAENEPOEL, W. Concurrent direct net-
work access for virtual machine monitors. In High Performance
Computer Architecture, 2007. HPCA 2007. IEEE 13th Interna-
tional Symposium on (2007), pp. 306–317.

[53] YASSOUR, B.-A., BEN-YEHUDA, M., AND WASSERMAN, O.
Direct device assignment for untrusted fully-virtualized virtual
machines. Tech. rep., IBM Research Report H-0263, 2008.

[54] ZHAI, E., CUMMINGS, G. D., AND DONG, Y. Live migration
with pass-through device for Linux VM. In OLS ’08: The 2008
Ottawa Linux Symposium (July 2008), pp. 261–268.

14

