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Scaling AI with Ray
pub.towardsai.net/scaling-ai-with-ray-faeb5434c2b6

Ray is emerging in AI engineering and becomes essential to scale
LLM and RL

Photo by on

Spark is almost essential in data engineering. And Ray is emerging in AI engineering.

Ray is a successor to Spark from UCB. Spark and Ray have many similarities, e.g., unified
engines for computing. But Spark is mainly focused on large-scale data analytics, while Ray
is designed for machine learning applications.

Here, I’ll introduce Ray and touch on how to scale large language models (LLM) and
reinforcement learning (RL) with Ray, then wrap up with Ray’s nostalgia and trend.

Introduction to Ray

https://pub.towardsai.net/scaling-ai-with-ray-faeb5434c2b6
https://spark.apache.org/
https://www.ray.io/
https://eecs.berkeley.edu/
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Ray is an open-source unified compute framework making it easy to scale AI and Python
workloads, from reinforcement learning to deep learning to model tuning and serving.

Below is Ray's latest architecture. It mainly has three components: Ray Core, Ray AI
Runtime, and Storage and Tracking.

Ray 2.x and Ray AI Runtime (AIR) (Source: January 2023 )

Ray Core provides a small number of core primitives (i.e., tasks, actors, objects) for building
and scaling distributed applications.

Ray AI Runtime (AIR) is a scalable and unified toolkit for ML applications. AIR enables
simple scaling of individual workloads, end-to-end workflows, and popular ecosystem
frameworks, all in just Python.

AIR builds on Ray’s best-in-class libraries for Preprocessing, Training, Tuning, Scoring,
Serving, and Reinforcement Learning to bring together an ecosystem of integrations.

Ray enables seamless scaling of workloads from a laptop to a large cluster. A Ray cluster
consists of a single head node and any number of connected worker nodes. The number of
worker nodes may be autoscaled with application demand as specified by Ray cluster
configuration. The head node runs the autoscaler.

We can submit jobs for execution on the Ray cluster or interactively use the cluster by
connecting to the head node and running ray.init.

It’s simple to start and run Ray. The following will illustrate how to install it.

$ pip install ray████████████████████████████████████████ 100%Successfully installed 
ray$ python>>>import ray; ray.init() ... INFO worker.py:1509 -- Started a  Ray 
instance. View the dashboard at 127.0.0.1:8265 ...

pip install -U  pip install -U   pip install -U   pip install -U   

https://docs.ray.io/en/latest/data/dataset.html#datasets
https://docs.ray.io/en/latest/train/train.html#train-docs
https://docs.ray.io/en/latest/tune/index.html#tune-main
https://docs.ray.io/en/latest/ray-air/predictors.html#air-predictors
https://docs.ray.io/en/latest/serve/index.html#rayserve
https://docs.ray.io/en/latest/rllib/index.html#rllib-index
https://docs.ray.io/en/latest/cluster/key-concepts.html#cluster-head-node
https://docs.ray.io/en/latest/cluster/key-concepts.html#cluster-worker-nodes
https://docs.ray.io/en/latest/cluster/key-concepts.html#cluster-autoscaler
https://docs.ray.io/en/latest/ray-core/package-ref.html#ray.init
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Furthermore, Ray can run at scale on Kubernetes and cloud VMs.

Scale LLM and RL with Ray

ChatGPT is a significant AI milestone with rapid growth and unprecedented impact. It is built
on OpenAI’s GPT-3 family of large language models (LLM) employing Ray.

Greg Brockman, CTO and cofounder of OpenAI, said, At OpenAI, we are tackling some of
the world’s most complex and demanding computational problems. Ray powers our solutions
to the thorniest of these problems and allows us to iterate at scale much faster than we could
before.

It takes about 25 days to train GPT-3 on 240 ml.p4d.24xlarge instances of the SageMaker
training platform. The challenge is not just processing but also memory. Wu Tao 2.0 appears
to need more than 1000 GPUs only to store its parameters.

Training ChatGPT, including large language models like GPT-3 requires substantial
computational resources and is estimated to be in the tens of millions of dollars. By
empowering ChatGPT, we can see the scalability of Ray.

Ray tries to tackle challenging ML problems. It supports training and serving reinforcement
learning models from the beginning.

Let’s code in Python to see how to train a large-scale reinforcement learning model and
serve it using Ray Serve.

Step 1: Install dependencies for reinforcement learning policy models.

!pip install -qU  gym

Step 2: Define training, serving, evaluating, and querying a large-scale reinforcement
learning policy model.

https://medium.com/geekculture/ai-compilers-ae28afbc4907
https://medium.com/towards-data-science/distributed-parallel-training-data-parallelism-and-model-parallelism-ec2d234e3214
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import gym
import numpy as np

 import requests

# import Ray-related libs
 from ray.air.checkpoint import Checkpoint

 from ray.air.config import RunConfig
 from ray.train.rl.rl_trainer import RLTrainer

 from ray.air.config import ScalingConfig
 from ray.train.rl.rl_predictor import RLPredictor

 from ray.air.result import Result
 from ray.serve import PredictorDeployment

 from ray import serve
 from ray.tune.tuner import Tuner

# train API for RL by specifying num_workers and use_gpu
 deftrain_rl_ppo_online(num_workers: , use_gpu:  = ) -> Result:

 print("Starting online training")
    trainer = RLTrainer(

        run_config=RunConfig(stop={"training_iteration": 5}),
        scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),

        algorithm="PPO",
        config={

 "env": "CartPole-v1",
 "framework": "tf",

        },
    )

                            

   tuner = Tuner(
        trainer,

        _tuner_kwargs={"checkpoint_at_end": True},
    )

    result = tuner.fit()[0]
 return result

   

# serve RL model
 defserve_rl_model(checkpoint: Checkpoint, name=) -> str:

 

""" Serve an RL model and return deployment URI.

   This function will start Ray Serve and deploy a model wrapper    that loads the 
RL checkpoint into an RLPredictor.    """

    serve.run(
        PredictorDeployment.options(name=name).bind(

            RLPredictor, checkpoint
        )

    )
 returnf"http://localhost:8000/"
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# evaluate RL policy
defevaluate_served_policy(endpoint_uri: , num_episodes:  = ) -> list:

 

""" Evaluate a served RL policy on a local environment.

   This function will create an RL environment and step through it.    To obtain the 
actions, it will query the deployed RL model.    """

    env = gym.make("CartPole-v1")

    

   rewards = []
 for i inrange(num_episodes):

        obs = env.reset()
        reward = 0.0

        done = False
 whilenot done:

            action = query_action(endpoint_uri, obs)
            obs, r, done, _ = env.step(action)

            reward += r
        rewards.append(reward)

                 

return rewards

():    

""" Perform inference on a served RL model.

   This will send an HTTP request to the Ray Serve endpoint of the served    RL 
policy model and return the result.    """    action_dict = 
requests.post(endpoint_uri, json={: obs.tolist()}).json()     action_dict

Step 3: Now train the model, serve it using Ray Serve, evaluate the served model, and
finally shut down Ray Serve.

# training in 20 workers using GPU
 result = train_rl_ppo_online(num_workers=20, use_gpu=True)

# serving
 endpoint_uri = serve_rl_model(result.checkpoint)

# evaluating
 rewards = evaluate_served_policy(endpoint_uri=endpoint_uri)

serve.shutdown()

Ray Nostalgia and Trend

Ray was initiated as a research project at RISELab of UCB. RISELab is the successor of
AMPLab, where Spark was born.

https://rise.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/
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Professor Ion Stoica is the soul of Spark and Ray. He initiated to found Databricks with Spark
and Anyscale with Ray as their core products.

I was privileged to work with RISELab fellows in its early stage and witnessed Ray come into
being.

https://people.eecs.berkeley.edu/~istoica/
https://www.databricks.com/
https://www.anyscale.com/
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Ray's project post at the conference 2017 (Photo courtesy by author)
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Above is Ray’s project post in 2017. We can see it was elegantly simple but scalably
powerful for AI applications.

Ray is a stellar ship, proliferating. It is one of the fastest-growing open sources, as shown by
the number of Github stars below.

Ray Github stars growth (Source: January 2023 )

Ray is emerging in AI engineering and is an essential tool to scale LLM and RL. Ray is
positioned for the massive AI opportunities ahead.

 
 


