Scaling Al with Ray

@ nub.towardsai.net/scaling-ai-with-ray-faeb5434c2b6

Luhui Hu February 11, 2023

Ray is emerging in Al engineering and becomes essential to scale
LLM and RL

Photo by on

Spark is almost essential in data engineering. And Ray is emerging in Al engineering.

Ray is a successor to Spark from UCB. Spark and Ray have many similarities, e.g., unified
engines for computing. But Spark is mainly focused on large-scale data analytics, while Ray
is designed for machine learning applications.

Here, I'll introduce Ray and touch on how to scale large language models (LLM) and
reinforcement learning (RL) with Ray, then wrap up with Ray’s nostalgia and trend.

Introduction to Ray

1/8

https://pub.towardsai.net/scaling-ai-with-ray-faeb5434c2b6
https://spark.apache.org/
https://www.ray.io/
https://eecs.berkeley.edu/

Ray is an open-source unified compute framework making it easy to scale Al and Python
workloads, from reinforcement learning to deep learning to model tuning and serving.

Below is Ray's latest architecture. It mainly has three components: Ray Core, Ray Al
Runtime, and Storage and Tracking.

Ray Al Runtime

Datasets Training Tuning Scoring Serving RL

Storage and Tracking % Ray Core

ws A O =
Ray 2.x and Ray Al Runtime (AIR) (Source: January 2023)

Ray Core provides a small number of core primitives (i.e., tasks, actors, objects) for building
and scaling distributed applications.

Ray Al Runtime (AIR) is a scalable and unified toolkit for ML applications. AIR enables
simple scaling of individual workloads, end-to-end workflows, and popular ecosystem
frameworks, all in just Python.

AIR builds on Ray’s best-in-class libraries for Preprocessing, Training, Tuning, Scoring,
Serving, and Reinforcement Learning to bring together an ecosystem of integrations.

Ray enables seamless scaling of workloads from a laptop to a large cluster. A Ray cluster
consists of a single head node and any number of connected worker nodes. The number of
worker nodes may be autoscaled with application demand as specified by Ray cluster
configuration. The head node runs the autoscaler.

We can submit jobs for execution on the Ray cluster or interactively use the cluster by
connecting to the head node and running ray.init.

It's simple to start and run Ray. The following will illustrate how to install it.

$ pip install raylEEEEEEEEEEEEEEEENEEEEENEEEREEEEEE 100%Successfully installed

ray$ python>>>import ray; ray.init() ... INFO worker.py:1509 -- Started a Ray
instance. View the dashboard at 127.0.0.1:8265 ...

pip install -U pip install -U pip install -U pip install -U

2/8

https://docs.ray.io/en/latest/data/dataset.html#datasets
https://docs.ray.io/en/latest/train/train.html#train-docs
https://docs.ray.io/en/latest/tune/index.html#tune-main
https://docs.ray.io/en/latest/ray-air/predictors.html#air-predictors
https://docs.ray.io/en/latest/serve/index.html#rayserve
https://docs.ray.io/en/latest/rllib/index.html#rllib-index
https://docs.ray.io/en/latest/cluster/key-concepts.html#cluster-head-node
https://docs.ray.io/en/latest/cluster/key-concepts.html#cluster-worker-nodes
https://docs.ray.io/en/latest/cluster/key-concepts.html#cluster-autoscaler
https://docs.ray.io/en/latest/ray-core/package-ref.html#ray.init

Furthermore, Ray can run at scale on Kubernetes and cloud VMs.

Scale LLM and RL with Ray

ChatGPT is a significant Al milestone with rapid growth and unprecedented impact. It is built
on OpenAl's GPT-3 family of large language models (LLM) employing Ray.

Greg Brockman, CTO and cofounder of OpenAl, said, At OpenAl, we are tackling some of
the world’s most complex and demanding computational problems. Ray powers our solutions
to the thorniest of these problems and allows us to iterate at scale much faster than we could
before.

It takes about 25 days to train GPT-3 on 240 ml.p4d.24xlarge instances of the SageMaker
training platform. The challenge is not just processing but also memory. Wu Tao 2.0 appears
to need more than 1000 GPUs only to store its parameters.

Training ChatGPT, including large language models like GPT-3 requires substantial
computational resources and is estimated to be in the tens of millions of dollars. By
empowering ChatGPT, we can see the scalability of Ray.

Ray tries to tackle challenging ML problems. It supports training and serving reinforcement
learning models from the beginning.

Let’s code in Python to see how to train a large-scale reinforcement learning model and
serve it using Ray Serve.

Step 1: Install dependencies for reinforcement learning policy models.
I'pip install -qU gym

Step 2: Define training, serving, evaluating, and querying a large-scale reinforcement
learning policy model.

3/8

https://medium.com/geekculture/ai-compilers-ae28afbc4907
https://medium.com/towards-data-science/distributed-parallel-training-data-parallelism-and-model-parallelism-ec2d234e3214

import gym
import numpy as np
import requests

import Ray-related libs

from ray.air.checkpoint import Checkpoint

from ray.air.config import RunConfig

from ray.train.rl.rl_trainer import RLTrainer
from ray.air.config import ScalingConfig

from ray.train.rl.rl_predictor import RLPredictor
from ray.air.result import Result

from ray.serve import PredictorDeployment

from ray import serve

from ray.tune.tuner import Tuner

train API for RL by specifying num_workers and use_gpu
deftrain_rl_ppo_online(num_workers: , use_gpu: =) -> Result:
print("Starting online training")
trainer = RLTrainer (
run_config=RunConfig(stop={"training_iteration": 53}),

scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),

algorithm="PPO",

config={
"env": "CartPole-v1",
"framework": "tf",

+

tuner = Tuner(
trainer,
_tuner_kwargs={"checkpoint_at_end": True},
)
result = tuner.fit()[0]
return result

serve RL model
defserve_rl_model(checkpoint: Checkpoint, name=) -> str:

""" Serve an RL model and return deployment URI.

This function will start Ray Serve and deploy a model wrapper
RL checkpoint into an RLPredictor. e
serve.run(
PredictorDeployment.options(name=name).bind(
RLPredictor, checkpoint

)
returnf"http://localhost:8000/"

that loads the

4/8

evaluate RL policy
defevaluate_served_policy(endpoint_uri: , num_episodes: =) -> list:

""" Evaluate a served RL policy on a local environment.

This function will create an RL environment and step through it. To obtain the
actions, it will query the deployed RL model. e
env = gym.make("CartPole-v1")

rewards = []
for i inrange(num_episodes):
obs = env.reset()
reward = 0.0
done = False
whilenot done:
action = query_action(endpoint_uri, obs)
obs, r, done, _ = env.step(action)
reward += r
rewards.append(reward)

return rewards

O
""" perform inference on a served RL model.
This will send an HTTP request to the Ray Serve endpoint of the served RL
policy model and return the result. e action_dict =
requests.post(endpoint_uri, json={: obs.tolist()}).json() action_dict

Step 3: Now train the model, serve it using Ray Serve, evaluate the served model, and
finally shut down Ray Serve.

training in 20 workers using GPU
result = train_rl_ppo_online(num_workers=20, use_gpu=True)

serving
endpoint_uri = serve_rl_model(result.checkpoint)

evaluating
rewards = evaluate_served_policy(endpoint_uri=endpoint_uri)

serve.shutdown()

Ray Nostalgia and Trend

Ray was initiated as a research project at RISELab of UCB. RISELab is the successor of
AMPLab, where Spark was born.

5/8

https://rise.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/

Professor lon Stoica is the soul of Spark and Ray. He initiated to found Databricks with Spark
and Anyscale with Ray as their core products.

| was privileged to work with RISELab fellows in its early stage and witnessed Ray come into
being.

6/8

https://people.eecs.berkeley.edu/~istoica/
https://www.databricks.com/
https://www.anyscale.com/

3 (B
- A DISTRIBUTED EX
i APPLICATIONS

Jordan, Richard Linw, Philipp Montz, Mehrdad Niknam oy
Sohleior-Smith, Ton Stoica, Alexey Tumanov, Stephanie Wang

University of California. Berkeley

Contributors: Michael |

cuTioN FRAMEWORK FOR EMERGING Al

i Robert Nishihara, William Paul, Johanu

Why Build a New System?

are changing from stabic to dynamic.

Machine learning applications

Question answering systems — Dialogue systems : Global Scheduler
Medical diagnosis —+ Real-time health recommendations

Course recommendations — Intelligent tutoring systems

The changing nature of ML applications impyses new requirements o the swstoms we s

Suppert heterogeneous tasks (smulations, truning, search; decp leaming)

«Support small tasks, high throughput (neod 1o do ls of simulations in parallel).

o Mt be low latency (RL i resctive) read-time in nature),

« Allw arbitrary fine-grained task dependencies (multiple dita streams ponniplox
algarithms/patterns). Bulk synchromous paradlel is not enogh.

Node Node Node
The Ray Programming Model | Locat scheduter || || Local Scheduler | fLocal Scheduler |
1o e T~
o A EaROER defines o remate function ot o remote actor [”""’EN:"”“J [mw] &w lwurwq wmar] ,ma_m[{werser] mw}
o rayiget fetches the values of remote futures Shared Memory I Shared Mamory Shared Memary
Ty walE waits for o sitset of futures w be avalable J I Object Store } { Object Store } -i Object Store I

A Reinforcement Learning Experiment

Evolution S
Highlighited code shows the changes nesdod to parallolize the code wsing Rav

remote
et axpurisest (cont!
pelicy

| Reforcny
Ray (st

sic) 1521 285K T

ime 1n para SpFrepate the rassits
wEatients - EaygeEl [riss lataca: s mesded)
fir 4 in Taagel100}]Y

Spesre the midet

palicy. spdateigratiema}

10 nodes |20 nodes 30 nodes 40 nodes 50 nodes
tepsfeee) 97K 215K 00K T NJA N/A
K | 5TIK

ton that uses evolutionary algorithis in reinforcement learning,

recurs palicy

[weny] Ttepn] [sopy]
policy, |P°“°!'.!

(i) Baseline
I_Expuri.mgm
[(a): Parallel Rollowts on CPU | Ry + Tex

step,

(b) Bascle

() Ray-euahled
‘System |Speedup

?-{!)}. fui|c;' Evaluation on Cil-"L?I'1"-.‘1»&(1rF‘Icw:m = ll:;k
H{e): Fine grained rollouts [Ray + TersorFlow! 4‘[:' |
» Ray enables the officieny ¢ i i ; I
L el execution of fmegramed task eraphs like (o)

~ontrolling a Simuy]
Real-Time

;
Time budget (ms) (300207 10 3 |
s . e S A
gml-;:s fulfilled (%) 10011001100 10010961 6o
Stable walk? 1Yos | Yos [Vs Vs Yt | Ng.
;ilidng Ray, we eon
AU it real time,

ol

rol
A shinulated robot thit s certain time

ated Robot in

budlget for Tecoving

Ray's project post at the conference 2017 (Photo courtesy by author)

7/8

Above is Ray’s project post in 2017. We can see it was elegantly simple but scalably
powerful for Al applications.

Ray is a stellar ship, proliferating. It is one of the fastest-growing open sources, as shown by
the number of Github stars below.

2014 2016 2018 2020 2022

Ray Github stars growth (Source: January 2023)

Ray is emerging in Al engineering and is an essential tool to scale LLM and RL. Ray is
positioned for the massive Al opportunities ahead.

8/8

