
Operating Systems Should Provide Transactions

Donald E. Porter and Emmett Witchel, The University of Texas at Austin
{porterde,witchel}@cs.utexas.edu

Abstract
Current operating systems provide programmers an insuffi-
cient interface for expressing consistency requirements for
accesses to system resources, such as files and interpro-
cess communication. To ensure consistency, programmers
must to be able to access system resources atomically and
in isolation from other applications on the same system.
Although the OS updates system resources atomically and
in isolation from other processes within a single system
call, not all operations critical to the integrity of an appli-
cation can be condensed into a single system call.

Operating systems should support transactional execu-
tion of system calls, providing a simple, comprehensive
mechanism for atomic and isolated accesses to system re-
sources. Preliminary results from a Linux prototype imple-
mentation indicate that the overhead of system transactions
can be acceptably low.

1 Introduction
Operating systems manage resources for user applications,
but do not provide a mechanism for applications to group
operations into logically consistent updates. The consis-
tency of application data can be undermined by system
failures and concurrency. Consistency is guaranteed by al-
lowing critical operations occur atomically (i.e., they oc-
cur all at once or not at all) and in isolation from the rest
of the system (i.e., partial results of a series of operations
are not visible and cannot observe concurrent operations).
Mechanisms for data consistency exist at different layers
of the software stack. For instance, locks use mutual ex-
clusion to provide consistency for user-level data struc-
tures, and database transactions provide consistent updates
to database-managed secondary storage.

Unfortunately, the POSIX system call API has lagged
behind in providing support for consistent updates to OS-
managed resources. The OS executes a single system call
atomically and in isolation, but it is difficult, if not im-
possible, for applications to extend these guarantees to an
operation that is too complex to fit into a single system
call. This paper proposes adding system transactions to
the system call API. A system transaction executes a se-
ries of system calls in isolation from the rest of the system
and atomically publishes the effects to the rest of the sys-
tem. System transactions provide a simple and powerful
way for applications to express consistency requirements

for concurrent operations to the OS.
Only the application knows when its data is in a consis-

tent state, yet system resources that are critical to ensur-
ing consistent updates, such as the file system, are outside
of user control. In simple cases, programmers can serial-
ize operations by using a single system call, such as us-
ing rename to atomically replace the contents of a file.
Unfortunately, more complex operations, such as software
installation or upgrade, cannot be condensed into a single
system call. An incomplete software install can leave the
system in an unusable state. Executing the entire software
install atomically and in isolation would be a powerful tool
for the system administrator, but no mainstream operating
system provides a combination of system abstractions that
can express it.

In the presence of concurrency, applications must ensure
consistency by isolating a series of modifications to impor-
tant data from interference by other tasks. Concurrency
control mechanisms exposed to the user (e.g., file locking)
are clumsy and difficult to program. Moreover, they are of-
ten insufficient for protecting a series of system calls from
interference by other applications running on the system,
especially when the other applications are malicious.

Figure 1 shows an example where an application wants
to make a single, consistent update to the file system by
checking the access permissions of a file and conditionally
writing it. This pattern is common in setuid programs. Un-
fortunately, the application cannot express to the system
its need for the access and open system calls to see a
consistent view of the filesystem namespace.

The inability of an application to consistently view and
update system resources results in serious security and
programmability problems. The example in Figure 1 il-
lustrates a time-of-check-to-time-of-use (TOCTTOU) race
condition, a major and persistent security problem in mod-
ern operating systems. During a TOCTTOU attack, the at-
tacker changes the file system namespace using symbolic
links between the victim’s access control check and its ac-
tual use, perhaps tricking a setuid program into over-
writing a sensitive system file like the password database.
TOCTTOU races also arise in temporary file creation and
other accesses to system resources. While conceptually
simple, TOCTTOU attacks are present in much deployed
software and are difficult to eliminate. At the time of writ-
ing, a search of the U.S. national vulnerability database for

1



Victim Attacker

if(access(’foo’)){
symlink(’secret’,’foo’);

fd=open(’foo’);
write(fd,...);
...

}

Victim Attacker

symlink(’secret’,’foo’);
sys xbegin();
if(access(’foo’)){
fd=open(’foo’);
write(fd,...);
...

}
sys xend();

symlink(’secret’,’foo’);

Figure 1: An example of a TOCTTOU attack, followed by an
example of eliminating the race with system transactions. The
attacker’s symlink is serialized (ordered) either before or after the
transaction, and the attacker cannot see partial updates from the
victim’s transaction, such as changes to atime.

the term “symlink attack” yields over 600 hits [3].
In practice, the lack of concurrency control in the sys-

tem call API has been addressed in an ad hoc manner by
adding new, semantically heavy system calls for each new
problem that arises. Linux has been addressing TOCT-
TOU races by encouraging developers to traverse the di-
rectory tree in user space rather than in the kernel using
the recently introduced openat() family of system calls.
Similarly, Linux kernel developers recently added a new
close-on-exec flag to fifteen system calls to eliminate a
race condition between calls to open and fcntl [6].
Individual file systems have introduced new operations,
such as the Google File System supporting atomic append
operations [7] or Windows adding transaction support to
NTFS [11]. Rather than requiring users to lobby OS devel-
opers for new system calls, why not allow users to solve
their own problems by composing a series of simple sys-
tem calls into an atomic and isolated unit?

In this position paper, we advocate adding system trans-
actions to the system call API to provide the user a simple
and powerful mechanism to express consistency require-
ments for system resources. The relative success of par-
allel programming with database transactions as compared
to threads and locking is a strong indicator that transactions
are a useful, natural abstraction for programmers to reason
about consistency. By wrapping a series of system calls in
a transaction, programmers can continue using the POSIX
API in a secure manner, eliminating the need for many of
the complicated API changes that have been recently intro-
duced. Developers can also protect concurrency in a natu-

ral way, reducing code complexity and potentially gaining
performance, e.g., eliminating lock files and allowing con-
current file updates instead of using a database. This paper
also shows that system transactions can be efficient with
preliminary data from TxOS, a prototype implementation
on the Linux kernel.

2 System Transactions
System transactions provide atomicity, consistency, isola-
tion, and durability (ACID) for system state. The only ap-
plication code change required to use system transactions
is to enclose the relevant code region within the appropri-
ate system calls: sys xbegin(), sys xabort(), and
sys xend(). Placing system calls within a transaction
changes the semantics of when and how their results are
published to the rest of the system. Outside of a transac-
tion, actions on system resources are visible as soon as the
relevant internal kernel locks are released. Within a trans-
action, all updates are kept isolated until commit, when
they are atomically published to the rest of the system.

2.1 Previous transactional operating systems

Locus [19] and QuickSilver [15] are historical systems that
provide some system support for transactions. Both sys-
tems implement transactions using database implementa-
tion techniques, namely isolating data structures with two-
phase locking and rolling back failed transactions with an
undo log. One problem with this locking scheme is that
simple reader-writer locks do not capture the semantics of
container objects, such as directories. Multiple transac-
tions can concurrently and safely create files in the same
directory so long as none of them use the same file name
and none of them read the directory. Unfortunately, creat-
ing a file in these historical systems requires a write lock on
the entire directory, which needlessly serializes operations
and eliminates concurrency. To compensate for the poor
performance of reader/writer locks, both systems allow
directory contents to change during a transaction, which
reintroduces the possibility of time-of-check-to-time-of-
use (TOCTTOU) race conditions that system transactions
ought to eliminate.

We propose a design for system transactions that pro-
vides stronger semantics than these historical systems and
helps address the problems of concurrent programming on
current and future generations of multi-core hardware.

2.2 Implementation sketch

The key goal of a system transaction implementation
should be to provide strong atomicity and isolation guar-
antees to transactions while retaining good performance.
This section outlines how our TxOS prototype achieves
these goals; a detailed design of our prototype is available
as a technical report [12].

TxOS implements a custom, object-based software
transactional memory system to checkpoint and rollback

2


