
Experience with Transactions in QuickSilver

Frank Schmuck

Jim Wyllie

IBM Research Division

Almaden Research Center

Computer Science Department

Abstract

All programs in the QuickSilver distributed system be-

have atomically with respect to their updates to perma-

nent data. Operating system support for transactions

provides the framework required to support this, as well

as a mechanism that unifies reclamation of resources af-

ter failures or normal process termination. This paper

evaluates the use of transactions for these purposes in

a general purpose operating system and presents some

of the lessons learned from our experience with a com-

plete running system based on transactions. Examples

of how transactions are used in QuickSilver and mea-

surements of their use demonstrate that the transaction

mechanism provides an efficient and powerful means for

solving many of the problems introduced by operating

system extensibility and distribution.

1 Introduction

QuickSilver is an experimental distributed operating

system that was developed at the IBM Almaden Re-

search Center for the IBM RT-PC and IBM RISC Sys-

tem/6000 families of workstations. It contains a small

kernel that provides local interprocess communication

(IPC), process and thread management, and linkage

for installable interrupt handlers. All other system ser-

vices are implemented by server processes. Clients com-

municate with servers using network-transparent IPC.

QuickSilver runs on a network of about 40 machines at

Almaden, and has been used as the primary computing
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environment for a subset of our local research commu-

nity for several years.

QuickSilver was designed to make it easy to write so-

phisticated distributed programs; the interfaces for ac-

cessing files, starting processes, or using any other sys-

tem service are the same regardless of whether the ser-

vice is local or remote. State associated with such a dis-

tributed computation will be split among many servers

on different machines. Hence it is vital that the system

provide a mechanism for servers to take appropriate ac-

tions to release resources, recover client state, etc., when

all or parts of a distributed computation end or termi-

nate prematurely due to a software problem, interven-

tion by the user, or when a machine participating in the

computation crashes.

The distinguishing characteristic of QuickSilver is that

it has borrowed the notion of transactions from the

database domain, and extended it to serve as the

method used for all resource management in the sys-

tem. In QuickSilver every program runs in the con-

text of transactions. The system provides the trans-

action management infrastructure for servers that sup-

port transactional atomicity of updates to the state they

maintain. In particular, the QuickSilver file system will

undo the effects of all operations performed by a dis-

tributed computation if any part of the computation

fails before successful completion, i.e., before the trans-

action associated with the computation commits.

In QuickSilver, transactions are used pervasively

throughout the system. This made it necessary to ex-

tend the traditional notion of a transaction, for exam-

ple, to accommodate servers that maintain only volatile

state. In order for QuickSilver to be a complete sys-

tem suitable for hosting its own development, it must

of necessity import programs from other systems. This

implies that existing programs must be able to run in a

transactional environment with little or no modification.

The purposes of this paper are to describe both qual-

itatively and quantitatively how transactions are used
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in QuickSilver and to assess the successes and failures

in our approach of using transactions to unify resource

management in a distributed operating system.

The remainder of the paper is organized as follows. We

first describe how transaction management is imple-

mented in QuickSilver. Next we show examples of how

transactions are used for various purposes in the system,

then present measurements of day-to-day transaction

usage on our local network. The next section quantifies

the cost of transactions. We then present lessons drawn

from our experience with QuickSilver, and close

discussion of related work and our conclusions.

2 Transaction Management

Quick Silver

with a

in

In database terminology, a transaction is a collection

of operations that represent a unit of consistency and

recovery. Transactions provide failure atomicity, recov-

erability, and isolation [8]. In QuickSilver, transactions

are used to manage volatile resources as well as non-

volatile, so these properties are not applicable in the

same way. In QuickSilver a transaction encapsulates

a (possibly distributed) unit of work that maY provide
failure atomicity, recoverability, isolation, or any subset

of these.

Transaction management in QuickSilver consists of a

toolkit that allows clients and servers to choose among

several services related to providing the traditional

properties of transactions. Although the QuickSilver

system enforces that all computation is done in the con-

text of some transaction, the exact semantics attached

to a transaction may vary among different servers, de-

pending on choices made by the implementer of a ser-

vice. The QuickSilver file system, for example, ensures

that updates made by a transaction are atomic with

respect to failures, and are permanent once the trans-

action commits, but it provides a degree of consistency

that falls short of full serializability.

The QuickSilver transaction management toolkit con-

sists of several pieces:

. transactional IPC,

● a transaction manager, and

● a log manager.

We will briefly describe each component of the toolkit

in the remainder of this section. An earlier paper [10]

LFollowing the terminology introduced by Gray et al. [6], the

QuickSilver file system provides degree 2 consistency for file up.

dates and degree 1 consistency on directories.

presents the overall architecture of transaction manage-

ment in QuickSilver and describes the toolkit in more

detail.

Transact ional 1P C. IPC in QuickSilver follows the

request-response paradigm. It is similar to IPC in the V

system [4], except that QuickSilver IPC requests may be

made asynchronously. A unique feature of QuickSilver

IPC is that it is transactional; that is, all interprocess

communication must be done on behalf of some trans-

action. There is no escape from this aspect of t ransac-

tions in QuickSilver. Every IPC request carries with it

a transaction id (TID) identifying the transaction that

made the request. The kernel enforces the restriction

that only processes participating in a transaction may

make requests on its behalf. The process that creates a

transaction is a participant, as are processes that have

received an IPC request containing its TID.2 Thus, a

server may call upon other servers in order to fulfill

client requests as part of a transaction.

When a process participating in a transaction makes

an IPC request to a remote server, the kernel routes

the request to the local communication manager process

(CM). The local CM sends the request to its peer on the

destination machine. The two CM processes cooperate

to handle the details of network transport and recovery

from intermittent communication errors. The remote

CM registers the transaction with its local kernel and

forwards the request to the destination server using local

IPC. The IPC response flows back along the same path.

(See Figure 1.)

Transaction Manager. The QuickSilver transaction

manage~ (TM) is a server process that handles the ini-

t iation and termination of transactions, Transactions

are created by an IPC request to TM. TM assigns

a globally unique TID and registers it with the ker-

nel. The process that created a transaction may call

conmit, and any participant in the transaction may

call abort. Servers that support recoverable state must

undo changes to their state upon transaction abort, or

make those changes permanent at commit. The primary

purpose of TM is to coordinate the decision to commit

or abort among all of the (potentially distributed) par-

ticipants in a transaction.

When a server process offers an IPC service, it speci-

fies a participation class, which determines the proto-

col used by TM to contact the server at the conclu-

sion of transactions that have called that service. The

purpose of having several participation classes is to ac-

commodate the varying demands servers place on the

transaction mechanism. The class no-state is intended

2The actual kernel protocol is somewhat more complex [10].
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Figure 1: Remote IPC in QuickSilver

for stateless servers that require no notification at all or abort a collection of changes. Long-running compu-

of transaction termination. Some servers require only a tations could use the log as a repository for checkpoints,

single notification that a transaction has ended, to clean completely independently of transactions.

up volatile state they hold. There are several varieties

of such one-phase participation classes, which differ in LM accepts log records of arbitrary length from servers

the point during commit processing at which servers re- and buffers them in memory. A server may request that

ceive their notification. Other servers, primarily those all records up to some point be forced to disk. The

maintaining recoverable state, require a full two-phase physical disk storage managed by LM is shared among

commit protocol [8, 14]. Examples of servers and their all servers that use the log.

participation classes are given in the next section.

When a process calls commit or abort, TM collects the 3 Advantages
IPC participation information from the kernel, then no-

tifies each participating local server according to its par-

ticipation class. ‘If CM is a participant, TM asks ‘CM

for the list of machines to which it has sent IPC re-

quests on behalf of the ending transaction. For each

such machine, TM requests that its remote peer recur-

sively perform local commit or abort processing. If any

CM detects what it considers a permanent communica-

tion or machine failure, it insures that all non-prepared

transactions using the failed link or machine will even-

tually abort.

There are many subtleties to commit processing, in-

cluding cycles in the participation graph, late requests

that arrive at a server after it has become prepared,

migration and/or replication of the coordinating site of

a transaction, and optimizations that apply in ceitain

cases. These issues are discussed elsewhere [10].

Log Manager. The QuickSilver log manager (LM) im-

plements the abstraction of a record-oriented append-

only file. TM uses the log to recoverable record the state

transitions of transactions during the two-phase commit

protocol. The file system uses the log to record changes
to its metadata, in order to be able to atomically commit

of Transactions

QuickSilver exploits transactions for a variety of pur-

poses. These can be categorized as follows:

● guarding persistent data against inconsistencies in

the event of failures,

● undoing a collection of changes,

● notifying servers of client termination, and

● synchronizing access to shared data.

Many of the advantages of using transactions in a gen-

eral purpose system are described in an earlier paper

[10]. In this section we explain each of these uses in

more detail and illustrate them with examples of servers

and application programs implemented in QuickSilver.

Failure atomicity. While data stored on a magnetic

disk are not lost when a machine is rebooted or ex-

periences a power loss, such data are still vulnerable

to failures that occur while it is being modified. This

is because partially completed updates may leave data

in an inconsistent state. Database systems use atomic

transactions to restore data consistency after a failure

by undoing the effects of partial updates (i.e., transac-
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tions in progress at the time of failure are aborted).

These techniques can also be very useful in a general

purpose system. A text editor, for example, could lose

part of a user’s file if it crashed in the middle of writing

a new version of the file to disk. Therefore, editors typi-

cally first save the old version of the file under a different

name and delete it only after insuring that the new ver-

sion has been written to disk (e.g. by calling fs ync in

Unix3). After a crash the user must start the editor with

a special option to retrieve the old version of the file.

Similar ad hoc recovery mechanisms are reimplemented

within many applications. Quicksilver avoids this bur-

den on applications by providing recovery in its file sys-

tem. The QuickSilver distributed jile system (DFS) sup-

ports transactional access to files and directories on local

and remote machines [3]. DFS guarantees that updates

of committed transactions are safely on disk and will not

be lost due to subsequent failures. When a transaction

aborts, DFS undoes all changes made to the file system

by the transaction. Thus, all files that were modified

by the transaction are returned to their original state,

files that were created by the transaction are deleted,

files that were deleted are restored, and files that were

renamed or moved to a different directory are returned

to their original directory or name.

Many QuickSilver applications rely on the atomicity

guarantees provided by DFS. For example:

●

●

●

●

Editors call begin-transact ion and commit before

and after writing a file to disk, respectively; there is

no need to write a separate backup copy.

The QuickSilver desktop utilities easily permit mov-

ing a subdirectory from one machine to another by

clicking the mouse on a name in a directory window

and dragging it to a different window. The benefits

of this style of interface would be lost if users had

to worry (even rarely) about cases when only part

of the directory was moved or when some file might

end up in two places or none at all. Since distributed

commit guarantees atomicity across machines, this

cannot happen in QuickSilver.

Transactions are used to install a new version of the

QuickSilver system files on a user’s machine. This

ensures that a crash during a system upgrade does

not leave a machine in an inconsistent or unbootable

state.

QuickSilver provides a parallel make facility (pmake)

that allows users to build several components of a

large program in parallel using idle machines in our

network. The pmake program reads a file contain-

ing a set of rules, each describing a command or

sequence of commands for building one of the com-

S Unix is a trademark of AT&T.

ponents of a program. A separate transaction is used

for each such command sequence. This ensures that,

when an instance of pmake is killed, no unwanted in-

termediate results (e.g. temporary files created by

preprocessors such as yacc and lex) are left behind,

while useful work (e.g. object files generated by a

compile that completed before pmake was killed) is

preserved. It also permits pmake to safely restart

a sequence of commands elsewhere when one of the

machines used by pmake crashes or is rebooted.

Undo. Transactional recovery mechanisms not only

free programmers from worrying about failures, but also

serve as an undo mechanism that simplifies applica-

tion programming. For example, QuickSilver provides a

source control system (check) for maintaining program

source files on a file server. A user may check-out a

set of files, thereby obtaining local working copies. Af-

ter modifications have been made and tested, the files

are transferred back to the file server (check-in). If any

problem is detected during the check-in procedure, e.g.

a file was not properly checked out, there is not enough

space left on the file server, etc., check aborts its trans-

action. Any partial updates that may have been applied

to source files or metadata on the file server or the user’s

machine are automatically undone.

Termination notification and cleanup. To sup-

port atomicity of updates across multiple machines, the

QuickSilver transaction toolkit must implement a dis-

tributed commit protocol. By extending the notion

of transaction to include servers that maintain only

volatile state, it is possible to use transactions as a uni-

fied mechanism for notification and resource manage-

ment throughout the system.

The following are some examples of volatile servers that

use one-phase variants of the commit protocol to be

notified when a program terminates:

●

●

●

The window manager destroys all windows explicitly

created by the program.

The virtual terminal server closes terminal connec-

tions associated with the program (e.g. standard in-

put and output ).

Taskmaster — the server responsible for creating

processes and loading programs — destroys any child

processes created by the program.

The advantage of using transactions for this purpose

is that the same mechanism is used for all resources

regardless of whether clients are local or remote. If ad

hoc methods were used for each resource class, each such

method would have to separately be extended to work

in the distributed case. By using transactions for all

resource recovery, the difficult issues of distribution can

be implemented in TM once and for all.
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The parent of a process started by Taskmaster, for in-

stance, may be on a remote machine. A good example

of this are commands started by pmake. If a user kills an

instance of pmake while it is still in progress4, all trans-

actions created by pmake will be aborted. As a result,

all commands running at remote machines at that time

will be terminated as well, thus eliminating the problem

of “orphans”.

The parallel make facility provides another example of

transactions as a distributed notification mechanism.

To select machines for running remote computations,

pmake interacts with the remote execution scheduler.

This is a replicated server that runs on two or three

designated machines and monitors the state of other

machines on the same network. It accepts remote execu-

tion requests from pmake, waits until an idle machine is

available, then tells pmake which machine to use to run

a remote job. The scheduler bases its decision not only

on such factors as CPU load and keyboard idle time, but

also tracks how many remote jobs are currently running

on behalf of a particular user, and where these jobs were

started. The selection algorithm depends on the sched-

uler knowing when each remote job has terminated. For

this purpose the scheduler participates as a one-phase

server in the transaction pmake uses to run the remote

job. This simplifies the scheduler interface (pmake does

not need to make an explicit callback to the scheduler

when a job ends), and ensures that the scheduler is no-

tified even if the instance of pmake that started a remote

job fails before the job ends.

Transactions as a unifying framework for all resource

management simplify the problem of distributed noti-

fication, especially when more than two parties are in-

volved, as in our example of parallel make (both pmake

and the scheduler need to be notified when a remote job

ends).

Concurrency control. Concurrency control tech-

niques such as locking are used in database systems

to synchronize access to shared data in order to avoid

the problems of “lost updates”, “dirty reads”, and “un-

repeatable reads” [8]. While most transaction sys-

tems use a locking policy that prevents lost updates,

not all systems implement or enforce full serializability

[1, 6]. In a general purpose system synchronization re-

quirements vary great ly among applicat ions. Therefore,
QuickSilver allows each server to implement its own con-

currency control policy.

4 This is actually more frequent than one might think. If a

header file contains an error, all modules that include that header

file will fail to compile. Users typically kill a parallel make as

soon as they notice such an error, to prevent a flood of essentially

identical error messages.

Our choice of concurrency policy for the QuickSilver file

system was driven by our desire to run standard Unix-

Iike tools and applications. In such an environment,

simultaneous use of a file system directory by unrelated

programs is common; the /tmp directory on a Unix sys-

tem provides an extreme example. It is also often desir-

able to be able to list the contents of a directory even if

it has been modified by a transaction still in progress.

For this reason DFS does not enforce full serializabil-

ity. Instead, DFS obtains a lock on a directory only

if the directory itself is renamed, created, or deleted.

Write locks on individual directory entries prevent two

transactions from renaming a file to the same name, for

example, but read locks are not required to read a direc-

tory. Thus, it is possible for clients to read directory en-

tries that have been changed by a transaction that may

later abort. According to the terminology introduced

by Gray et al. [6], DFS provides degree 1 consistency

for directories.

The choice of locking policy for individual files is best

illustrated by the example of a backup utility. If all

files read by the backup program remained locked un-

til the backup transaction ended, other programs that

wanted to update those files would have to wait until

the backup completed (potentially a very long time).

On the other hand, it is undesirable to allow a file to be

modified while it is being read by the backup program.

Therefore, DFS uses both read and write locks to syn-

chronize file access; read locks are released as soon as a

file is closed, while write locks are held until transaction

commit. This corresponds to degree 2 consistency for

files (no lost updates and no dirty reads, but reads are

not repeatable). Applications requiring degree 3 consis-

tency (full serializability) for files can delay closing their

files (and releasing the corresponding read locks) until

they are ready to commit.

Because DFS holds locks on behalf of transactions, its

locks can be shared among all processes (local or re-

mote) participating in the transaction. In contrast,

Unix associates file locks with a process on a particular

machine.

Porting existing programs. We have given a number

of examples of how transactions simplify writing new,

potentially complicated distributed applications, espe-

cially when data consistency in the presence of failures

is a concern. This leaves the question of how existing

programs (e.g. programs ported from Unix) fit into a

transactional system.

QuickSilver creates a default transaction for each pro-

cess that it starts. This transaction commits when the

program exits normally, or aborts if it terminates ab-

normally. The QuickSilver implementation of the C

runtime library uses the TID of the default transaction

243



Read-only Read/Write Unknown Total

Committed 151123 (89.37%) 11557 (6.83%) o 162680 (96,21%)

Aborted 4507 (2.67%) 128 (0.08%) o 4635 (2.74%)

Unknown o 0 1775 (1.05%) 1775 (1.05%)

Total 155630 (92.04%) 11685 (6.91%) 1775 (1.05%) 169090 (1 OO.O%)

Table 1: Number of transactions observed during a one week trace

in the IPC calls it generates. Hence, unless a program

makes explicit calls to the transaction manager, all work

done by the program is performed on behalf of its de-

fault transaction.

Sometimes it is desirable to run several programs under

the same transaction, especially from a shell script. For

this purpose we added transaction control commands

to the shell. Users may explicitly create a new trans-

action that will be used as the default transaction for

subsequent programs started from the shell. Other com-

mands allow this transaction, and therefore the results

of several programs, to be committed or aborted when

desired.

As a measure of the success of default transactions,

QuickSilver can run binary images of many common

Unix utilities taken from AIX/RT5, IBM’s version of

Unix for the RT-PC. These binary images obviously

contain no code to deal with transactions, yet they be-

have atomically when run on QuickSilver.

4 Measurements of Transaction

Usage

To better understand the actual usage patterns of trans-

actions in the QuickSilver system, we traced all trans-

actions that were created in our local network over a

period of a week. To do this, we instrumented TM and

DFS to generate timestamped trace records for every

transaction. The information traced included

● the name of the program that created the transac-

●

●

●

tion,

the amount of file system activity performed on its

behalf,

a record of all transaction participants and their par-

ticipation protocols, and

the outcome (commit/abort) of the transaction.

5 AIX is a trademark of IBM Corporation.

These trace records were buffered in memory, and peri-

odically sent to a centralized trace server running on a

dedicated machine. The trace server collected the trace

buffers and saved them in a file. Data reduction was

performed after tracing was completed.

During the week the trace was active, the QuickSilver

user community used the system as normal, primarily

for program development. The addition of transaction

tracing introduced no noticeable overhead. While trac-

ing was enabled, a total of 37 machines produced over

1.5 million trace records. Creations of 19419 tasks were

observed, for at least 135 different programs, includ-

ing everything from compilers to games to terminal em-

ulation to telephone dialers. Table 1 summarizes the

transactions traced and shows the distribution of com-

mitted vs. aborted and read-only vs. read/write transac-

tions. DFS is currently the only two-phase recoverable

server in QuickSilver, so transactions were considered

read/write if they attempted to make any changes to a

file system. Analysis of the trace data could not deter-

mine the status of some transactions (about lYo). These

represent transactions still in progress when the trace

ended, or buffered data lost when machines rebooted.

TM uses the “presumed abort” protocol [14] to con-

trol its distributed commit processing. For read-only

transactions, this protocol requires no log records to

be written, unlike the “presumed commit” or standard

two-phase algorithms. Since most transactions used by

QuickSilver are read-only (about 92%), this optimiza-

tion is essential for good system performance.

Using the timestamps included in trace records we could

also determine transaction lifetimes. The data showed

that most transactions were not long-running. The me-

dian transaction lifetime was 0.2 seconds; 80% of all

transactions ended within two seconds and 90$Z0 within

69 seconds.

Section 3 asserts that transactions are useful as a gen-

eral purpose signaling mechanism for notifying servers

of client termination. In support of this claim, Figure 2

shows the distribution of the number of servers noti-
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Figure 2: Number of servers per transaction

fied during transaction termination processing. These

counts do not include remote TMs, but do include the

CMS on each machine that has transaction participants.

The relative peak at three participants corresponds to

transactions that had one remote participant, plus the

participation of the two CM processes necessary for re-

mote communication.

The first analysis of our trace data showed a high num-

ber of transactions (43132 or 2170) with no commit pro-

tocol participants, which therefore appear to perform

no useful work. These transactions fall into two cat e-

gories: unavoidable overhead inherent in the Quicksil-

ver system, and transactions created unnecessarily due

to inefficient or careless programming. The overwhelm-

ing majority of these transactions (89~0) were of the

latter type, caused by shortcomings in the shell and in

pmake. Since these transactions obscured the results of

our analysis, we filtered out trace records from trans-

actions due to these two sources before calculating the

figures presented in this section6. The remaining zero-

participant transactions account for 2.7% of the total

number of transactions (see Figure 2) and are due to

6 A total of 38560 transactions, all of which were short-running
committed transactions, were filtered out. Since these transac-
tions had no participants, their only effect was to increase the
tot al count of short, committed, single-machine, read-only trans-
actions.

Inumber of tra nsactlons

,,,
.

,.,

. . . . 3
—..

1

1 2 34 56 34 37

machines per transuctlon -

Figure 3: Number of machines per aborted transaction

the following legitimate sources:

●

●

●

transactions used to contact only no-state servers,

which do not participate in the commit protocol,

transactions used to access only data that is repli-

cated (as will be explained in Section 6, the standard

1/0 library transparently substitutes a separate top-

level transaction when contacting replica servers),

and

transactions created by a program that is killed

or otherwise terminates before interacting with any

server using these transactions.

The average number of servers notified per transaction

was 2.53. As many as 67 servers participated in a single

transaction. There were 15 different servers that used

the termination signaling feature of QuickSilver trans-

actions. These range from servers mentioned already,

such as the file system, window manager, and program

loader, to more specialized applications providing print

service, terminal emulation, desktop management, de-

bugging services, and communication with foreign net-

works, among others. Together these facts indicate that

the transaction mechanism is heavily used for server no-

tification in QuickSilver.

The distribution of the number of machines involved

in aborted transactions shown in Figure 3 illustrates

the utility of transactions for failure cleanup. Clearly,
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Test description AIX time QS time QS time

(1 txrl) (sep txns)

Create 100 empty files locally 0.027 per file 0.065 per file 0.127 per file

Create 100 empty files remotely 0.054 per file 0.085 per file 0.187 per file

Create 32 256k byte files locally 1.160 per file 0.645 per file 1.012 per file

Create 32 256k byte files remotely 1.972 per file 1.752 per file 2.228 per file

Read 32 256k byte files locally 1.044 per file 0.666 per file 0.672 per file

Read 32 256k byte files remotely 1.338 per file 1.520 per file 1.554 per file

Run the null program 100 times 0.053 per run – 0.098 per run

Table 2: Comparison of common operation under AIX and QuickSilver (times in seconds)

any mechanism for locating and freeing the resources

held by a failed computation must be capable of scal-

ing to fairly widely distributed computations. The most

complicated transactions to abort were frequently com-

mands started by pmake, although transactions of 65

different programs were observed to have aborted.

In the week we gathered transaction trace data, we ob-

served the source code control system to abort check-in

requests on 4 occasions, compared with 14 committed

check-in operations. Both of these numbers are small,

but they show that the undo capability of the Quicksil-

ver file system is used in practice. The fact that undo

is available permits the source code control application

to be much simpler than it would have to be otherwise.

5 Effect of Transactions

System Performance

on

Our evaluation of the use of transactions in Quick-

Silver would not be complete without a discussion of

how transaction support impacts system performance.

Transactions were added to the QuickSilver operating

system after many of its pieces were operational. Thus,

we were able to observe IPC performance before and

after introducing transaction participation monitoring.

The difference measured just 570 for local IPC. Further,

this difference is computed from a fairly small base. The

round-trip time for a trivial local IPC request-response

pair, including three system calls and two task switches,

is about 350 microseconds on an RT-PC7. The round-

trip time for a remote IPC is about 6.5 milliseconds on

QuickSilver, which is not as good as other implemen-

tations on similar hardware [17]. The difference is not

due to support for transactions, but rather to the high

latency (1.3 ms per packet) of the RT-PC token ring

TAn RT.pC ~o&l 125 is rated at between 4 and 5 DhwStOne

MIPS.

adapter and to our implementation of CM as a process

outside the kernel for software engineering reasons. We

estimate the relative costs introduced into remote IPC

by transaction support to be no more than those for

local IPC.

The goal of this section, however, is not to provide a

detailed analysis of the performance of various pieces

of the QuickSilver transaction toolkit; such analysis has

been presented elsewhere [10]. Rather the intent is to

provide an idea of the overall effect of transactions on

system performance.

QuickSilver is a complete system in that it has a commu-

nity of users and hosts its own program development en-

vironment. In our use of the system, QuickSilver “feels”

as responsive as a Unix system running similar appli-

cations on the same hardware, even though Quicksil-

ver provides additional function, namely the atomicity

guarantees of its file system. To attempt to quantify this

subjective impression, we ran two performance tests on

both QuickSilver and on Unix: we measured the time to

perform representative simple operations and we ran the

Andrew file system benchmark [11] to measure the per-

formance of complex operations. The Unix tests were

run against AIX version 2.2.1. Remote file operations

under AIX used the NFS protocol. All machines used

were RT-PC model 125s with 8Mb of memory. Disk con-

trollers and network adapters were identical on all ma-

chines, and the same 4Mbit /see token ring was used for

all tests requiring more than one machine. The Quick-

Silver file system performance tests were run twice, once

using a single transaction for the entire test, and once

using individual transactions for each repetition in the

test. The results of these tests appear in Tables 2 and 3.

The only file operation where AIX significantly outper-

forms QuickSilver is the local creation of small files. Due

to the management of its buffer pool, AIX requires little

or no disk 1/0 for this test. QuickSilver, however, forces

file data to disk and file metadata to the log before com-

mitting transactions. These numbers give an indication

246



Local files Remote files

AIX time QS time AIX time QS time

MakeDir 3 1.5 5 2

copy 14 16 33 25

ScanDir 30 27 35 42
ReadAll 41 56 57 91

Compile 328 334 376 348

Total time 416 434.5 506 517

Table 3: Andrew file system benchmark under AIX and QuickSilver (times in seconds)

of the pure transaction overhead, but have little prac-

tical impact on system performance, since few applica-

tions spend all their time creating small files. Also, files

created and destroyed within a single transaction, such

as temporary files created by the compiler, do not suffer

this overhead. For operations on files of moderate size,

QuickSilver is actually slightly faster than AIX in many

cases. Our interpretation of these data is that Quicksil-

ver is faster than AIX at moving data on and off disk,

but slower at moving data across the network. Neither

of these differences is related to support for transactions

in QuickSilver.

A significant percentage overhead is also noticeable in

the time to load and run a trivial program. Fortunately,

the absolute magnitude of the time difference is small.

The time to load real programs is dominated by the

time spent reading the programs from disk or across

the network.

There are several other points of interest in Table 2. The

time to read files is barely affected by whether Quick-

Silver uses one transaction for the entire test or one

transaction per file. Since these transactions are read-

only, no log activity is required, and DFS can use the

commit-read-only optimization of the presumed abort

protocol [14], which will exclude DFS from the second

phase of the protocol, since it does not need to know

whether the transaction commits or aborts. In contrast,

using one transaction per file written has a large effect

on the running time of the tests. There are a number

of reasons for this: (1) Log forces must occur for each

file, rather than a single log force at the conclusion of

the test. (2) The log is on one of the disks used for

storing files, so additional seeks are required. (3) The

forcing of file data blocks occurs synchronously rather

than asynchronously as the file system buffer pool fills.

The Andrew benchmark (Table 3) creates a directory

tree (Ma.keDi~), copies a set of files into the directory

tree ( Copy), runs 1s to list the status of all files (Scan-

Dir), scans each file by running grep and wc (ReadA1/),

and compiles and links all files (Make). The last phase

of the benchmark is CPU bound; since AIX has a dif-

ferent linker than QuickSilver, we only ran the compile

part of the Make phase using identical binaries for the

compiler on AIX and QuickSilver. The overall results of

the benchmark show the QuickSilver performance to be

within 570 of AIX in the local and 270 in the remote case.

Only for the ReadAll phase of the benchmark does AIX

significantly outperform Quick Silver (2770 faster locally,

37% remotely). Since the benchmark runs a separate in-

stance of grep and wc for each individual files, the dif-

ference between QuickSilver and AIX in the local case

can be attributed to faster program loading under AIX.

In the remote case, AIX has an added advantage due to

NFS client caching. We chose not to implement client

caching of remote files in DFS because cache consistency

protocols were not a focus of the project.

Many factors other than the presence or absence of

transactional behavior affect the times reported in Ta-

bles 2 and 3:

●

●

●

●

Buffer pool sizes, buffer replacement strategies, and

disk layout algorithms differ between the two file sys-

tems.

AIX has a more sophisticated virtual memory man-

ager than QuickSilver, allowing it to reuse the pages

of a previously loaded program without refetching

them from the file system.

All tests were run on a shared token ring during

normal working hours.

The file systems used for the test had been in use

for months or years; therefore, their free space was

fragmented.

Despite all these caveats, we believe that our measure-

ments give an indication of the overall impact of trans-

actions on system performance and support our claim

that making programs behave atomically does not cause

a significant increase in the cost of common operations.

8 In fact, the benchmark spends more than half of its time in

this phase repeatedly loading grep and uc.
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6 Lessons Learned

Over the past several years, we have accumulated a

great deal of experience with building and using ap-

plications and servers that rely on transactions. Most

of that experience has been positive; transactions have

proven to be a very useful abstraction for writing ro-

bust distributed systems. In those cases where we en-

countered problems, they were due to limitations in our

implementation of transactions, not due to the trans-

action concept itself. In this section we present some

of the lessons we learned from building and using the

QuickSilver system.

Lesson 1: Writing transactional applications is simple.

Most QuickSilver client programs see little or no com-

plexity added by transactions. The use of default trans-

actions together with facilities for manipulating them

from shell scripts permits even programs that contain

no transactional code to behave atomically. Most short-

running application programs fall into this category.

Small changes must be made to long-running and in-

teractive programs in order for them to exhibit correct

transactional behavior. For such programs, it is neces-

sary to identify recoverable units of work and perform

them within shorter transactions. For example, con-

sider retrieving files using the file transfer utility ftp.

If all files transferred by ftp were created under the

default transaction of the f tp daemon, the locking poli-

cies of DFS would prevent the files from being accessed

until the ftp daemon exitted. Worse yet, all of these

files would automatically be deleted if the ftp daemon

crashed or its machine was rebooted. Similarly, a text

editor needs to create a new transaction each time it

writes a file back to disk. To make this as simple as pos-

sible, QuickSilver provides a library to push and pop the

current default transaction. These routines add a means

of controlling transactions to a standard 1/0 interface,

in our case the C stdio library. An alternative would

be to change the interfaces of all library functions to

include an explicit transaction parameter. This would

work better for programs using multiple threads, each of

which might need its own transaction. Our approach,

however, is better suited to porting existing applica-

tions, almost all of which are single-threaded anyway.

In most cases it has been straightforward to identify the

recoverable units of work within applications that need

to be performed as transactions. Some of the more non-

traditional uses of transactions as a notification mech-

anism, however, require more careful design. The fol-

lowing example illustrates this. In earlier versions of

the system, termination of the default transaction as-

sociated with a process was used to signal Taskmaster

to destroy that process. This caused problems when

we added the facilities to the shell that allow more

than one process to run under the same default transac-

tion; processes associated with a sequence of commands

started from a shell script were not destroyed until the

whole command sequence committed. The reason for

this problem was that the default transaction was used

for too many different purposes. The obvious solution

was to associate another transaction with each process

to be used exclusively for notifying servers that must

take actions when a process terminates.

Lesson 2: Writing simple transactional servers is sim-

ple; writing complex transactional servers is dificult but

worthwhile.

The effort involved in making a server follow the Quick-

Silver transaction protocols varies greatly, depending on

how much benefit of the transaction toolkit the server

intends to make available to its clients. At one extreme

is a server like the window manager. It simply records

the TID associated with the IPC request that created

each window, and destroys the window when it receives

a commit or abort notification for that TID from TM.

This is comparable to the work required of an X server

to close windows when TCP sockets it uses for inter-

actions with its clients are signalled that the sending

process has disappeared.

At the other extreme is DFS, which uses all of the ser-

vices of the transaction toolkit to provide its clients with

the ability to undo changes to individual files. A sub-

stantial part of this server is devoted to providing trans-

actional atomicity [2]. The code complexity of the file

system is due directly to the design choice we made to

provide atomicity. We elected to build such a file system

because we felt it provided a useful level of function, but

a non-atomic file system is also a possibility for Quick-

Silver. Indeed, the precursor of the present file system

used the transaction mechanism only for signaling that

open files should be closed. The implementation over-

head due to transactions in this older file system was

similar to that in the window manager.

Generally, we have found it easier to write robust ap-

plications for QuickSilver than the corresponding appli-

cations for Unix. The reason for this is that the code

necessary to handle failures in a distributed system has

been moved out of applications and into servers, mak-

ing even ‘(quick-and-dirty” applications with no recov-

ery code at all likely to behave reasonably in the face

of failures. Since there are more application programs

than servers, the use of transactions is a net win.
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Lesson 3: We sumived without nested transactions, but

they would have been useful in some cases.

Since QuickSilver does not provide support for nested

transactions [15], the failure of a single participant in

a transaction causes the whole transaction to abort.

While this facilitates automatic, comprehensive cleanup

in the presence of failures, it can make it more difficult

for applications to recover from partial failures and con-

tinue operating.

The parallel make utility illustrates this. When a com-

mand started by pmake on a remote machine fails be-

cause the machine reboots, it makes sense to retry the

command on a different machine, rather than aborting

pmake. For this reason pmake uses a separate trans-

action for each set of commands it starts on a remote

machine. Each such transaction must be committed as

soon as its remote commands have finished, so that DFS

will release write locks on files that need to be accessible

as input to subsequent steps of the computation. A con-

sequence of using separate transactions is that when the

pmake program is killed, only output from computation

steps that were in progress at that time is cleaned up;

output from earlier completed steps is preserved. This

behavior is desirable for the typical uses of pmake for

program development. But pmake also has other uses;

it can, for example, be used to apply an upgrade to a

software package installed on a user’s machine. In this

case it is clearly desirable to undo all of the effects of

pmake if it does not complete successfully. Our current

version of parallel make cannot be used for such appli-

cations, Nested transactions would solve this problem;

running each step of a computation as a nested sub-

transact ion of pmake would allow pmake to recover from

partial failures while committing all its updates atomi-

cally.

There are several other examples in QuickSilver where

nested transactions would be more useful than separate

top-level transactions:

●

e

In Section 3 we pointed out that transactional undo

can simplify applications even if failures are not a

concern (e.g. check). Transactions as an undo mech-

anism would be more generally useful if an applica-

tion could undo only part of its updates. Separate

transactions cannot be used for this if the applica-

tion needs to commit all its updates as one trans-

action. Nested transactions would provide a more

powerful undo facility.

The QuickSilver standard 1/0 library supports

transparent access to replicated files and directo-

ries in read-only mode. Because a client transaction

needs to be able to commit even if one of the replica

servers fails, separate transactions must be created

to access remote replicas. This method can be used

to read but not to update replicated data atomically.

Using nested transactions instead of separate top-

level transactions would solve at least part of this

problem. Updates to replicated data could be com-

mitted as one transaction, while allowing a transac-

tion to succeed even if one of the replica servers fails.

However, extra effort would still be needed to bring

a server that has missed some updates up-to-date

after it recovers.

Lesson 4: Long running update transactions are not

(or should not be) a pr’oblem.

Long running transactions that update files are a poten-

tial source of difficulty, since files can remain locked for

a long time. We found that in practice such transactions

are not a problem, because of the following observations:

1.

2.

Updates performed by long-running or interactive

programs can in most cases be encapsulated in

shorter transactions using the techniques described

under Lesson 1.

In cases where updates cannot be broken into shorter

transactions, the data written by a long-running

transaction generally do not need to be accessible

to other applications before the transaction ends.

The canonical example of the second class of applica-

tions is a backup utility. Backing up a large directory

tree may take a long time, but the fact that the archive

file created by the backup cannot be read by other trans-

actions until the backup is completed does not impact

other programs.

While the long duration of an update transaction is not

a problem, the fact that long transactions may make

arbitrarily large updates to file systems has uncovered

a major shortcoming in the log manager. Such large

update transactions require arbitrarily large amounts

of space in the log. The current implementation of

LM supports only a single on-line log partition on disk,

which it manages as a circular buffer with no provisions

for garbage collection or archiving to off-line storage.

The fact that only a finite amount of space is available

for the log artificially restricts the size of transactions

that make modifications to the file system. This has

distorted the use of transactions in QuickSilver in some

cases, forcing us to modify utilities to use multiple small

transactions rather than a single large one, even though

the utility should behave atomically. The program that

installs a new version of the operating system is an ex-

ample of such a utility.

One of the surprises in building and using the Quicksil-

ver system has been the complexity required in an in-

dustrial strength log subsystem. A major effort is now
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underway to build a new log service capable of garbage

collecting its on-line storage and archiving either to net-

work log servers or to off-line storage [9].

Lesson 5: Long running read-only transactions need

not be a problem.

As we observed above, transactions that run for a long

time and update a large number of files are rare. Long-

running transactions that read many files, on the other

hand, are very common. Read locks held by such trans-

actions are a potential source of problems, since a read

lock prevents other transactions from updating a file.

Because of our desire to run many standard Unix tools

and applications without modification, we decided to

solve this problem by giving up strict serializability as

the default concurrency policy of the QuickSilver file

system. As explained in Section 3, DFS releases the

read lock on a file as soon as the client closes the file.

We found this policy sufficient to avoid problems asso-

ciated wit h read locks, because almost all long running

applications close a file soon after reading it. The only

exception we encountered was an interactive utility for

browsing files too large to view with a text editor. In

this case we added code to the browser that buffers large

pieces of a file in memory and closes and reopens the file

between reads, in order to avoid frequent lock conflicts.

In our current implementation, however, a long-running

read-only transaction may cause problems even if it does

not keep files open. The window manager provides an

example of this phenomenon. Once started, it runs until

its machine is switched off or rebooted. Hence its de-

fault transaction remains active for weeks or months at a

time. The window manager reads data, such as bitmaps

for display fonts, from a remote file server. Each file

is closed immediately after reading to avoid interfering

with utilities that update font files. Nevertheless, the

file server remains a participant in the window man-

ager’s transaction. This has two consequences:

1. The session between CM on the window manager’s

machine and CM on the file server is kept open, caus-

ing additional background message traffic.

2. State associated with the transaction continues to

occupy space in non-pageable kernel tables on the

file server machine.

Besides the window manager, there are several other

long-running programs that run on all machines and

read remote files. As a result, kernel tables on the file

server machine can grow and eventually overflow, caus-

ing the server to crash. To avoid this problem we modi-

fied library routines used by the shell, the window man-

ager, the user interface toolkit, etc., to create separate

short transactions when searching for and reading files.

While fixing the immediate problem, this solution is un-

satisfactory for two reasons. First of all, the additional

transactions that are created often do not correspond to

any meaningful units of work in the application (this is

in contrast to our earlier mentioned changes for avoiding

long-running update transactions). A symptom of this

is that it was much more difficult to track down all the

places in application code that needed to be modified

because files were read from file servers. Secondly, to

minimize the changes to application code, most of our

modifications are embedded in library routines. As a re-

sult, more transactions than necessary are crest ed. For

example, as many as eight read-only transactions may

be created and committed to start up a window appli-

cation from a shell. This adds unnecessary overhead to

starting programs under QuickSilver.

A better solution would be to enhance the transaction

management and communication protocols as follows.

Using timeouts, CM could detect transactions that have

been inactive for extended periods of time. The trans-

action manager would then attempt to remove the re-

mote machine from its list of participants. This is only

possible for read-only transactions, so TM would need

to call the remote transaction manager, which in turn

would ask each local participating server if the transac-

tion needed to be kept active. If ail servers on a machine

agreed, the transaction could be removed from the ker-

nel tables at the remote machine. If no more active

transactions required the CM communication session

between two machines, CM would close the session. In

this way, long-running programs could simply use their

default transaction for reading files from the server. The

kernel, TM, CM, and DFS would cooperate to period-

ically reclaim inactive resources without requiring new

transactions. This would eliminate the need for modifi-

cations to library routines and application code.

Lesson 6: A jlexible concurrency control policy allow-

ing a wide range of consistency options is desirable.

The QuickSilver philosophy regarding concurrency con-

trol is similar to the one adopted for recovery. Different

concurrency control policies and serialization algorithms

are appropriate for different kinds of servers. For recov-

ery QuickSilver provides a log service that is useful for

a variety of recovery algorithms and leaves the choice

of a particular algorithm to the implementer of the ser-

vice. Concurrency control is more difficult; the choice of

the best concurrency control policy depends to a much

greater extent not only on the kind of services provided

by a server, but also on how these services will be used

by its clients (e.g. short transactions vs. long-lived ones).

In the case of DFS our goal was to provide a file sys-

tem with an interface that would allow us to run stan-
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dard Unix tools and applications. As we described in

Section 3, we made specific choices for the default con-

currency control policy of DFS that we felt would be

appropriate for most applications. Some applications

need more synchronization, while in other cases an even

less restrictive locking policy would have been more con-

venient. An example of the latter case is the problem of

debugging a new program. If a software interrupt (e.g.

illegal memory address) occurs during a test run of the

program, QuickSilver starts up an interactive debugger

without killing the program. This allows the user to

inspect the state of the program in order to identify

the problem. However, since transactions created by

the program are still active at this point, output files

written by the program remain locked and cannot be

read by the user. This applies in particular to trace

files containing information written by the program as

a debugging aid! For this case it would be desirable for

DFS to allow read access to a file without obtaining a

lock. An alternative solution might be for the debug-

ger to inherit the transactions created by the program.

However, any tool used to examine the output of the

program (e.g. the grep utility or an editor) would have

to be started from within the debugger to become a par-

ticipant in the necessary transactions. Furthermore, the

program might have created several transactions, mak-

ing it difficult to determine which transaction to use to

examine a particular output file.

Since DFS releases read locks when a file is closed, an

application that reads a set of files is not guaranteed to

be serializable with respect to update transactions. An

application that needs to see a consistent snapshot of the

file system, for example a utility for installing a new ver-

sion of a soft ware package from a file server onto a user’s

machine, must keep all files it reads open until it com-

mits. Alternatively, an application can effectively lock a

whole subtree of a file system by temporarily renaming

the directory at the root of the subtree. A cleaner, more

general solution, however, would be to extend the DFS

interface to allow clients to specify, for example, that

read locks are to be held after a file is closed until the

transaction ends, or — to solve the debugging problem
— that no read locks are to be obtained.

Another problem related to concurrency control is the

possibility of deadlocks. In QuickSilver, we avoid dead-

locks by never blocking client requests in case of lock

conflicts; DFS completes a request with an error code

instead of waiting for a lock held by another transac-

tion to be released. A disadvantage of our approach

is that sometimes requests are completed with an error

code even when no deadlock is present. An alternative

would be to block client requests on lock conflicts and

use a deadlock detector [16] to abort transactions when

necessary, as do some database systems. We rejected

this alternative for two reasons. First of all, an interac-

tive program waiting for user input may prevent other

transactions from making progress even if there is no

cycle in the wait-for graph. Secondly, there is no good

way of deciding which transaction to abort when a dead-

lock is detected. Therefore, we believe it is better to let

clients decide what actions to take in case of a lock con-

flict. Our approach could be improved by letting servers

block a request for a limited time while waiting for locks

to be released. By waiting until a timeout expired be-

fore completing a request with an error return code, the

server would reduce the probability that clients observe

lock conflicts.

7 Related Work

The concept of transactions has been accepted and used

in database syst ems for many years. Both local [7]

and distributed [12] database systems have been im-

plemented that provide the failure atomicity, recover-

ability, and isolation properties of transactions. These

concepts have also been extended to specific servers pro-

vided by operating systems. Locus [18] provides a trans-

actional file system, for example.

More recently, several projects have offered transactions

as a more general operating system mechanism for re-

covery services. Avalon [5] and Argus [13], for example,

are languages that hide the details of implementing re-

coverable or distributed programs within new high-level

programming language constructs. The Camelot system

[5] provides similar functions for the C language through

macros and library routines.

QuickSilver differs from the above systems in several

ways. Lightweight extensions to the basic two-phase

commit protocol allow QuickSilver to use transactions

as a basis for all recovery management in the system, in-

cluding servers that manage volatile state. Through its

use of default transactions for programs and its support

for transactions at the lowest level in the system, namely

IPC, QuickSilver is able to make all programs in the

system benefit from the use of transactions. Transac-

tions are available to programs written in conventional

programming languages, and, with little or no modifi-

cation, to programs ported from systems that do not

provide transactions. We have found the latter proper-

ties invaluable in building a system complete enough to

support its own development.

Servers in QuickSilver must provide their own recovery

code, which makes writing them more difficult than in

a language that handles recovery. On the other hand,

by making the facilities needed to implement recovery
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available as a toolkit, QuickSilver servers may take ad-

vantage of the semantics of their operations to optimize

recovery algorithms. DFS, for example, supports con-

currency at the level of individual bits in its recoverable

space allocation component.

8

The

Conclusions

QuickSilver distributed system uses transactions

pervasively:

● All interprocess communication is done on behalf of

transactions.

o All programs run under one or more transactions.

e All updates to persistent data in the file system be-

have atomically with respect to failures.

In database systems transactions are used to provide

atomicity of updates, isolation between multiple up-

daters, and permanence of committed updates. Our

experience with QuickSilver has shown that all of these

properties are useful in a general-purpose system as

well; they aid synchronizing access to shared data and

help maintain consistency of persistent, distributed data

in the presence of failures. Transactions also provide

an undo mechanism to applications that simplifies pro-

gramming even when failures are not a concern. Be-

yond these traditional uses of transactions, lightweight

variants of the two-phase commit protocol allow trans-

actions to be used successfully throughout the system

as a unifying mechanism for distributed notification and

resource management.

We found that writing transactional applications is not

difficult. In fact, transaction support in the operating

system makes it easier to write distributed applications

(e.g. pmake) and applications that must maintain data

consistency (e.g. check). Also, porting existing appli-

cations to a transactional environment is not difficult;

many Unix tools run unchanged under QuickSilver. Be-

cause of the transactional file system and the use of

default transactions, such programs behave atomically

under QuickSilver. Writing transactional servers can be

more complex, but the additional effort is offset by the

advantage of simpler client code.

Applications that use transactions only for purposes

provided by different means in other operating systems

(e.g. termination notification) suffer no or only min-

imal additional cost due to the presence of transac-

tions. Tracking transaction participants, for example,

adds only about 5% to the cost of local IPC. Where

transactions provide additional functions, in particular

automatic cleanup and recovery by the file system, they

impose only a small performance overhead. In these

cases the benefits of simpler, more robust applications

outweigh the performance cost. Overall, we found the

performance of the QuickSilver system to be compara-

ble to a non-transactional system running on the same

hardware.

Our experience with building and using transactional

programs over several years has been mostly positive.

Although there are a few areas in which our implemen-

tation needs to be improved, we found no inherent prob-

lems with the transaction model itself. In particular,

we found that long-running transactions do not pose a

problem in a general purpose system, provided that (1)

flexible concurrency control policies allow clients to use

just the amount of concurrency control they need, and

that (2) the log service supports transactions that write

large amounts of log data.

In summary, we have shown that the transaction mech-

anism as implemented in the QuickSilver operating sys-

tem provides a particularly powerful means for solving

many of the problems introduced by operating system

extensibility and distribution. This power has a reason-

able cost; practical experience with a complete system

based on transactions shows both the implementation

complexity and performance penalty of transactions to

be small.
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