CS 429, Fall 2012
Architecture Lab:
Optimizing the Performance of a Pipelined Processor

1 Introduction

In this lab, you will learn about the design and implementatif a pipelined Y86 processor, optimizing both
it and a benchmark program to maximize performance. Youlleed to make any semantics preserving
transformations to the benchmark program, or to make emma@iats to the pipelined processor, or both.
When you have completed the lab, you will have a keen apgiecifor the interactions between code and
hardware that affect the performance of your programs.

The lab is organized into three parts, each with its own hanidi Part A you will write some simple Y86
programs and become familiar with the Y86 tools. In Part By yall extend the SEQ simulator with two
new instructions. These two parts will prepare you for Path€ heart of the lab, where you will optimize
the Y86 benchmark program and the processor design.

2 Logistics

You will work on this lab alone.
Any clarifications and revisions to the assignment will betpd on the course Web page.

3 Handout Instructions

1. Start by copying the filarchlab-handout.tar to a (protected) directory in which you plan to
do your work.

2. Then give the commandlr xvf archlab-handout.tar . This will cause the following files
to be unpacked into the directorREADMBMakefile ,sim.tar ,archlab.ps ,archlab.pdf ,
andsimguide.pdf

3. Next, give the commanthr xvf sim.tar . This will create the directorgim , which contains
your personal copy of the Y86 tools. You will be doing all ofuyavork inside this directory.

4. Finally, change to theim directory and build the Y86 tools:

unix> cd sim
unix> make cl ean; nmake

4 Part A - Assigned: Sep 21, Due: Oct 4, 11:59PM

You will be working in directorysim/misc in this part.

Your task is to write and simulate the following three Y86 gmams. The required behavior of these pro-
grams is defined by the example C functiongkxamples.c . Be sure to put your name, EID, and CS ID
in a comment at the beginning of each program. You can testpragrams by first assemblying them with

the progranvas and then running them with the instruction set simulatier.

In all of your Y86 functions, you should follow the 1A32 comgons for the structure of the stack frame and
for register usage instructions, including saving andor@gsg any callee-save registers that you use. Also
you should make sure your programs resawkeast 4096 bytedor the stack.

sum ys: Iteratively sum linked list elements

Write a Y86 progransum.ys that iteratively sums the elements of a linked list. Yourgweon should
consist of some code that sets up the stack structure, isv@Kenction, and then halts. In this case, the
function should be Y86 code for a functiosum_list) that is functionally equivalent to the €um_list
function in Figure 3.You should label the elements of your input list as eleXX whex XX is the 1-based
index of the element (e.g. elel, ele23)est your program using the following three-element list:

Sample linked list

.align 4
elel:
.long 0x00a
long ele2
ele2:
.long 0x0b0
long ele3
ele3:
.long 0xc00
dong O

rsum ys: Recursively sum linked list elements

Write a Y86 progranrsum.ys that recursively sums the elements of a linked list. Thisecskould be
similar to the code isum.ys , except that it should use a functiosum _list that recursively sums a list
of numbers, as shown with the C functicsum _list in Figure 3.You should label the elements of your
input list the same as you did aboveTest your program using the above sample list.

copy. ys: Copy a source block to a destination block

Write a program ¢opy.ys) that copies a block of words from one part of memory to anothen-
overlapping area) area of memory, computing the checksuom) @f all the words copied.

Your program should consist of code that sets up a stack framaekes a functiorcopy _block , and
then halts. The function should be functionally equivaterthe C functiorcopy _block shown in Figure
Figure 3. Test your program using the following three-eletrurce and destination blocks:

.align 4
Source block
Src:
.long 0x00a
.long 0x0b0
.long 0xc00
Destination block
dest:
Jong 0x111
long 0x222
.long 0x333

5 Part B - Assigned: Nov 02, Due: Nov 8, 11:59PM

You will be working in directorysim/seq in this part.

Your task in Part B is to extend the SEQ processor to suppartnigw instructions:iaddl (described

in Homework problems 4.47 and 4.49) aedve (described in Homework problems 4.48 and 4.50). To
add these instructions, you will modify the fi&eqg-full.hcl , which implements the version of SEQ
described in the CS:APP2e textbook. In addition, it corstaiaclarations of some constants that you will
need for your solution.

Your HCL file must begin with a header comment containing tilfving information:
e Your name, EID, and CSID.

e A description of the computations required for tlzeldl instruction. Use the descriptions of
irmovl andOPI in Figure 4.18 in the CS:APP2e text as a guide.

¢ A description of the computations required for feave instruction. Use the description pbpl
in Figure 4.20 in the CS:APP2e text as a guide.

Building and Testing Your Solution

Once you have finished modifying tiseq-full.hcl file, then you will need to build a new instance of
the SEQ simulatorssim) based on this HCL file, and then test it:

¢ Building a new simulatorYou can usemake to build a new SEQ simulator:

unix> (cd ../msc; make clean all) && make cl ean && make VERSI ON=f ul

This builds a version agsim that uses the control logic you specifiedsiq-full.hcl . To save
typing, you can assigiERSION=full in the Makefile.

e Testing your solution on a simple Y86 prograrRor your initial testing, we recommend running
simple programs such asumi.yo (testingiaddl) andasumlyo (testingleave)in TTY
mode, comparing the results against the ISA simulation:

unix> (cd ../y86-code/; make clean all;) & ./ssim-t ../y86-code/asuni.yo
unix> (cd ../y86-code/; make clean all;) & ./ssim-t ../y86-code/asun .yo

If the ISA test fails, then you should debug your impleméntaby single stepping the simulator in
GUI mode:

unix> (cd ../y86-code/; make clean all;) & ./ssim-g ../y86-code/asuni.yo
unix> (cd ../y86-code/; make clean all;) & ./ssim-g ../y86-code/asun .yo

e Retesting your solution using the benchmark prograr@nce your simulator is able to correctly
execute small programs, then you can automatically teshithe Y86 benchmark programs in
..ly86-code

unix> (cd ../y86-code; make testssim

This will run ssim on the benchmark programs and check for correctness by cormgphae resulting
processor state with the state from a high-level ISA sinmfatNote that none of these programs test
the added instructions. You are simply making sure that wolution did not inject errors for the
original instructions. See file/y86-code/README file for more details.

e Performing regression testsOnce you can execute the benchmark programs correctly, yiben
should run the extensive set of regression tests/rest . To test everything excepadd]
andleave :
unix> (cd ../ptest; make SI M. ./seq/ssim
To test your implementation d@addl
unix> (cd ../ptest; make SI M= ./seq/ssimTFLAGS=-i)

To test your implementation d¢ave
unix> (cd ../ptest; make SI M= ./seq/ssimTFLAGS=-1)

To test bothaddl andleave :

unix> (cd ../ptest; make SI M. ./seq/ssimTFLAGS=-il)

For more information on the SEQ simulator refer to the hah@stAPP2e Guide to Y86 Processor Simu-
lators (simguide.pdf).

6 Part C - Assigned: Nov 9, Due: Nov 29, 11:59PM

You will be working in directorysim/pipe in this part.

Thencopy function in Figure 1 copies ken -element integer arragrc to a non-overlappingist , re-
turning a count of the number of positive integers containesic . The filepipe-full.hcl contains a
copy of the HCL code for PIPE, along with a declaration of thestant valuélADDL .

Your task in Part C is to modifpcopy.ys andpipe-full.hcl with the goal of makingicopy.ys
run as fast as possible.

You will be handing in two filespipe-full.hcl andncopy.ys . Each file should begin with a header
comment with the following information:

e Your name, EID, and CSID.

¢ A high-level description of your code. In each case, desdniiw and why you modified your code.

Coding Rules

You are free to make any modifications you wish, with the felley constraints:

e Your ncopy.ys function must work for arbitrary array sizes. You might benpged to hardwire
your solution for 64-element arrays by simply coding 64 copstructions, but this would be a bad
idea because we will be grading your solution based on if®peance on arbitrary arrays.

e Your ncopy.ys function must run correctly withris. By correctly, we mean that it must correctly
copy thesrc block andreturn (in%eax) the correct number of positive integers.

e The assembled version of yoncopy file must not be more than 1000 bytes long. You can check the
length of any program with thecopy function embedded using the provided scdpéck-len.pl

unix> ./ check-len.pl < ncopy.yo

e Your pipe-full.hcl implementation must pass the regression test$i86-code and../ptest
(without the-il flags that testaddl andleave).

Other than that, you are free to implement thddl instruction if you think that will help. You may
make any semantics preserving transformations tondapy.ys function, such as reordering instruc-
tions, replacing groups of instructions with single instions, deleting some instructions, and adding other
instructions. You may find it useful to read about loop unngllin Section 5.8 of CS:APP2e.

Figure 2 shows the baseline Y86 versiomaobpy .

1 /=

2 * ncopy - copy src to dst, returning number of positive ints
3 * contained in src array.

4 x|

5 int ncopy(int *Src, int xdst, int len)
6 {

7 int count = 0;

8 int val,

9

10 while (len > 0) {

11 val = =srct++;

12 *dst++ = val:

13 if (val > 0)

14 count++;

15 len--;

16 }

17 return count;

18 }

Figure 1:C version of the ncopy function. See sim/pipe/ncopy.c.

Building and Running Your Solution

In order to test your solution, you will need to build a driygogram that calls youncopy function. We
have provided you with thgen-driver.pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

unix> meke drivers
will construct the following two useful driver programs:

e sdriver.yo : A smalldriver programthat tests ancopy function on small arrays with 4 elements.
If your solution is correct, then this program will halt wighvalue of 2 in registeboeax after copying
thesrc array.

e Idriver.yo . A large driver programthat tests amcopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program willthsith a value of 31 Q0x1f) in register
%eax after copying thesrc array.

Each time you modify youncopy.ys program, you can rebuild the driver programs by typing
unix> meke drivers
Each time you modify youpipe-full.hcl file, you can rebuild the simulator by typing

unix> make psi m VERSI ON=f ul |

© 0 N O O B~ WDN P

o o o aa b b D DDA DDA DEDSDOWWWWWWWWWNDNNNDNDNDNDNDMDNDNDNDNNERERRRRRRRLPRELPRE
W NP O O 0u~NO OO WNPEPOOOWNOOGOODRAWNERPROOOKNOO WG WDNMEREOOOWONOOOGMAMWDNLEREO

HHHBHH AR R R R R R R HHHAHH
ncopy.ys - Copy a src block of len ints to dst.

Return the number of positive ints (>0) contained in src.

Include your name, EID, and CSID here.

Describe how and why you modified the baseline code.

T T T g Y

HH BT T HH B
Do not modify this portion
Function prologue.

ncopy: pushl %ebp # Save old frame pointer
rrmovl %esp,%ebp # Set up new frame pointer
pushl %esi # Save callee-save regs
pushl %ebx
pushl %edi
mrmovl 8(%ebp),%ebx # src

mrmovl 16(%ebp),%edx # len
mrmovl 12(%ebp),%ecx # dst

HH B HHEHH A
You can modify this portion
Loop header

xorl %eax,%eax # count = O;
andl %edx,%edx # len <= 07?
jle Done # if so, goto Done:
Loop: mrmovl (%ebx), %esi # read val from src...
rmmovl %esi, (Yecx) # ..and store it to dst
andl %esi, %esi # val <= 0?
jle Npos # if so, goto Npos:
irmovl $1, %edi
addl %edi, %eax # count++
Npos: irmovl $1, %edi
subl %edi, %edx # len--
irmovl $4, %edi
addl %edi, %ebx # src++
addl %edi, %ecx # dst++
andl %edx,%edx # len > 0?
jg Loop # if so, goto Loop:

HHH A T
Do not modify the following section of code
Function epilogue.
Done:
popl %edi # Restore callee-save registers
popl %ebx
popl %esi
rrmovl %ebp, %esp
popl %ebp
ret
HHH A T
Keep the following label at the end of your function
End: 7

Figure 2:Baseline Y86 version of the ncopy function. See sim/pipe/ncopy.ys.

© 00 N O g b~ WDN PP

AD W W WWWWWWWWNDDNDNDNNDNDMNNNNRPRRRPRERRERRPREPRPRPRE
P O ©W 0O ~NO OO WNEPO OOWNOOOAODMWNEOOOWNOOOOGDMWNDNIEO

*/

*/

/= linked list element * [
typedef struct ELE {
int val,
struct ELE * next;
} *list_ptr;
[+ sum_list - Sum the elements of a linked list
int sum_list(list_ptr |s)
{
int val = O;
while (Is) {
val += Is->val;
Is = Is->next;
}
return val;
}
[+ rsum_list - Recursive version of sum_list
int rsum_list(list_ptr Is)
{
if (s)
return O;
else {
int val = Is->val;
int rest = rsum_list(Is->next);
return val + rest;
}
}
/= copy_block - Copy src to dest and return xor checksum of src
int copy_block(int *src, int *dest, int len)
int result = O;
while (len > 0) {
int val = * SIC++;
*dest++ = val:
result "= val;
len--;
}
return result;
}

Figure 3:C versions of the Y86 solution functions

. See sim/misc/examples.c

*/

If you want to rebuild the simulator and the driver progratypge
unix> make VERSI ON=f ul

To test your solution in GUI mode on a small 4-element arget
unix> .I'psim-g sdriver.yo

To test your solution on a larger 63-element array, type

unix> .Ipsim-g ldriver.yo

Once your simulator correctly runs your versionngopy.ys on these two block lengths, you will want
to perform the following additional tests:

e Testing your driver files on the ISA simulatbtake sure that youncopy.ys function works prop-
erly with vis:

unix> make drivers
unix> ..Imsc/yis sdriver.yo

e Testing your code on a range of block lengths with the ISAlaiimu The Perl scriptorrectness.pl
generates driver files with block lengths from 0 up to sométl{default 65), plus some larger sizes.
It simulates them (by default withis), and checks the results. It generates a report showingahess
for each block length:

unix> ./correctness.p

This script generates test programs where the result cauigswrandomly from one run to another,
and so it provides a more stringent test than the standarerdri

If you get incorrect results for some lengffi, you can generate a driver file for that length that
includes checking code, and where the result varies randoml

unix> ./gen-driver.pl -f ncopy.ys -n K -rc > driver.ys
unix> make driver.yo
unix> ../msclyis driver.yo

The program will end with registéeax having the following value:

Oxaaaa : All tests pass.

Oxbbbb : Incorrect count

Oxcccc : Function ncopy is more than 1000 bytes long.

Oxdddd : Some of the source data was not copied to its destination.

Oxeeee : Some word just before or just after the destination regias worrupted.

e Testing your pipeline simulator on the benchmark progra@sce your simulator is able to correctly
executesdriver.ys andldriver.ys , you should test it against the Y86 benchmark programs
in ../y86-code

unix> (cd ../y86-code; make testpsim

This will run psim on the benchmark programs and compare results wgh

e Testing your pipeline simulator with extensive regressesis.Once you can execute the benchmark
programs correctly, then you should check it with the regjoestests in./ptest . For example, if
your solution implements thiaddl instruction, then

unix> (cd ../ptest; make SI M. ./ pipe/psimTFLAGS=-i)

e Testing your code on a range of block lengths with the pipetimulator. Finally, you can run the
same code tests on the pipeline simulator that you did eavlth the ISA simulator

unix> ./correctness.pl -p

7 Evaluation

The lab is worth 220 points: 40 points for Part A, 70 pointsFart B, and 110 points for Part C. Please
note that you need to submit a brief report for each of thretspa

Part A

Part A is worth 40 points, 10 points for each Y86 solution pamg and 10 points for the writeup. Each
solution program will be evaluated for correctness, iniclggoroper handling of the stack and registers, as
well as functional equivalence with the example C functiomexamples.c

The programsum.ys andrsum.ys will be considered correct if the graders do not spot anyrerio
them, and their respectim_list andrsum _list functions return the surixcba in register%oeax.

The programcopy.ys will be considered correct if the graders do not spot anyrerio them, and the
copy _block function returns the surixcba in register%eax, copies the three word300a , Ox0b ,
and0xc to the 12 contiguous memory locations beginning at adddess , and does not corrupt other
memory locations.

Part B

This part of the lab is worth 60 points:

e 10 points for your description of the computations requic@dheiaddl instruction.

e 10 points for your description of the computations requi@dheleave instruction.

10

¢ 10 points for passing the benchmark regression test86ncode |, to verify that your simulator still
correctly executes the benchmark suite.

e 15 points for passing the regression testptest for iaddl

e 15 points for passing the regression testptest for leave .

Part C

This part of the Lab is worth 80 point¥ou will not receive any credit if either your code for ncopy.ys
or your modified simulator fails any of the tests described edier.

e 20 points each for your descriptions in the headeraaafpy.ys and pipe-full.hcl and the
quality of these implementations.

e 60 points for performance. To receive credit here, yourtsmlumust be correct, as defined earlier.
That is,ncopy runs correctly withvis, andpipe-full.hcl passes all tests iyp86-code and
ptest

We will express the performance of your function in unitcpéles per elemeqdCPE). That is, if the
simulated code requirgS cycles to copy a block oV elements, then the CPE{/N. The PIPE
simulator displays the total number of cycles required tmpiete the program. The baseline version
of thencopy function running on the standard PIPE simulator with a |&8element array requires
914 cycles to copy 63 elements, for a CPBot/63 = 14.51.

Since some cycles are used to set up the caticlmpy and to set up the loop withincopy , you
will find that you will get different values of the CPE for d#ffent block lengths (generally the CPE
will drop asV increases). We will therefore evaluate the performanceof junction by computing
the average of the CPEs for blocks ranging from 1 to 64 elesneltbu can use the Perl script
benchmark.pl inthepipe directory to run simulations of yourcopy.ys code over a range of
block lengths and compute the average CPE. Simply run thenzord

unix> ./ benchmar k. pl

to see what happens. For example, the baseline versiontpy function has CPE values ranging
betweend6.0 and14.51, with an average of6.44. Note that this Perl script does not check for the
correctness of the answer. Use the sariptrectness.pl for this.

You should be able to achieve an average CPE of lesslthan Our best version averagé=27. If
your average CPE ig then your scoré for this portion of the lab will be:

0, c>125
S = 24.0- (125 —¢), 10.0<c<125
60, ¢ < 10.0
By default, benchmark.pl andcorrectness.pl compile and teshcopy.ys . Use the-f
argument to specify a different file name. THe flag gives a complete list of the command line

arguments.

11

8 Handin Instructions

¢ You will be handing in three sets of files:

— Part A:sum.ys ,rsum.ys ,copy.ys ,anddoc.
— Part B:seqg-full.hcl
— Part C:ncopy.ys , andpipe-full.hcl

e Your writeup file should be iIrPLAIN TEXT format and beNAMED AS doc. No other for-
mats/names will be accepted.

e Make sure you have included your name, EID, and CS ID in a camhiaiethe top of each of your
handin files, including the writeup.

e Make sure you turn iiALL files needed an@NLY files needed for each part. Files submitted to a
wrong part willNOT be graded.

unix> turnin --submt ysseung archl abA sumys rsumys copy.ys doc
unix> turnin --submt ysseung archl abB seq-full. hcl
unix> turnin --subnit ysseung archl abC ncopy.ys pipe-full. hcl

9 Hints

e By design, botlsdriver.yo andldriver.yo are small enough to debug with in GUI mode. We
find it easiest to debug in GUI mode, and suggest that you use it

e If you running in GUI mode on a Unix server, make sure that yauehinitialized the DISPLAY
environment variable:

unix> setenv DI SPLAY nyhost. edu: 0

¢ With some X servers, the “Program Code” window begins lif@@tosed icon when you ryssim
orssim in GUI mode. Simply click on the icon to expand the window.

¢ With some Microsoft Windows-based X servers, the “Memorntéats” window will not automati-
cally resize itself. You'll need to resize the window by hand

e Thepsim andssim simulators terminate with a segmentation fault if you agkriiio execute a file
that is not a valid Y86 object file.

12

