
1

Cache Memories

2

Today

 Cache memory organization and operation

 Performance impact of caches
 The memory mountain

 Rearranging loops to improve spatial locality

 Using blocking to improve temporal locality

3

Cache Memories

 Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
 Hold frequently accessed blocks of main memory

 CPU looks first for data in caches (e.g., L1, L2, and L3),
then in main memory.

 Typical system structure:

Main

memory
I/O

bridge
Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache

memories

4

General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1 tag v

B = 2b bytes per cache block (the data)

Cache size:
C = S x E x B data bytes

valid bit

5

Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
•Yes + line valid: hit
• Locate data starting

at offset

6

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4

find set

7

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7 tag v 3 6 5 4

match: assume yes = hit valid? +

block offset

tag

8

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7 tag v 3 6 5 4

match: assume yes = hit valid? +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced

9

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1] Set 0

Set 1

Set 2

Set 3

10

A Higher Level Example
int sum_array_rows(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (i = 0; i < 16; i++)

 for (j = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (j = 0; i < 16; i++)

 for (i = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

} blackboard

Ignore the variables sum, i, j

11

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

find set

12

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

compare both

valid? + match: yes = hit

block offset

tag

13

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4

compare both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

14

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

15

A Higher Level Example
int sum_array_rows(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (i = 0; i < 16; i++)

 for (j = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_rows(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (j = 0; i < 16; i++)

 for (i = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

}
blackboard

Ignore the variables sum, i, j

16

Chapter 5 — Large and

Fast: Exploiting Memory

Hierarchy — 16

Spectrum of Associativity

 For a cache with 8 entries

17

What about writes?

 Multiple copies of data exist:
 L1, L2, Main Memory, Disk

 What to do on a write-hit?
 Write-through (write immediately to memory)

 Write-back (defer write to memory until replacement of line)

 Need a dirty bit (line different from memory or not)

 What to do on a write-miss?
 Write-allocate (load into cache, update line in cache)

 Good if more writes to the location follow

 No-write-allocate (writes immediately to memory)

 Typical
 Write-through + No-write-allocate

 Write-back + Write-allocate

18

Intel Core i7 Cache Hierarchy

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 0

Regs

L1

d-cache

L1

i-cache

L2 unified cache

Core 3

…

L3 unified cache

(shared by all cores)

Main memory

Processor package

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:

 256 KB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MB, 16-way,
Access: 30-40 cycles

Block size: 64 bytes for
all caches.

19

Cache Performance Metrics

 Miss Rate
 Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate

 Typical numbers (in percentages):

 3-10% for L1

 can be quite small (e.g., < 1%) for L2, depending on size, etc.

 Hit Time
 Time to deliver a line in the cache to the processor

 includes time to determine whether the line is in the cache

 Typical numbers:

 1-2 clock cycle for L1

 5-20 clock cycles for L2

 Miss Penalty
 Additional time required because of a miss

 typically 50-200 cycles for main memory (Trend: increasing!)

20

Lets think about those numbers

 Huge difference between a hit and a miss
 Could be 100x, if just L1 and main memory

 Would you believe 99% hits is twice as good as 97%?
 Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

 Average access time = hit time + miss rate * miss penalty

 97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

 99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

 This is why “miss rate” is used instead of “hit rate”

21

Writing Cache Friendly Code

 Make the common case go fast
 Focus on the inner loops of the core functions

 Minimize the misses in the inner loops
 Repeated references to variables are good (temporal locality)

 Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

22

Today

 Cache organization and operation

 Performance impact of caches
 The memory mountain

 Rearranging loops to improve spatial locality

 Using blocking to improve temporal locality

23

The Memory Mountain

 Read throughput (read bandwidth)
 Number of bytes read from memory per second (MB/s)

 Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
 Compact way to characterize memory system performance.

24

Memory Mountain Test Function

/* The test function */

void test(int elems, int stride) {

 int i, result = 0;

 volatile int sink;

 for (i = 0; i < elems; i += stride)

 result += data[i];

 sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */

double run(int size, int stride, double Mhz)

{

 double cycles;

 int elems = size / sizeof(int);

 test(elems, stride); /* warm up the cache */

 cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */

 return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

}

25

The Memory Mountain

6
4

M 8
M 1

M

1
2
8

K 1
6

K 2
K

0

1000

2000

3000

4000

5000

6000

7000
s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1
5

s
3
2 Working set size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

26

The Memory Mountain

6
4

M 8
M 1

M

1
2
8

K 1
6

K 2
K

0

1000

2000

3000

4000

5000

6000

7000
s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1
5

s
3
2 Working set size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Slopes of
spatial
locality

27

The Memory Mountain

6
4

M 8
M 1

M

1
2
8

K 1
6

K 2
K

0

1000

2000

3000

4000

5000

6000

7000
s
1

s
3

s
5

s
7

s
9

s
1
1

s
1
3

s
1
5

s
3
2 Working set size (bytes)

R
e
a
d

th

ro
u

g
h

p
u

t
(M

B
/s

)

Stride (x8 bytes)

L1

L2

Mem

L3

Intel Core i7
32 KB L1 i-cache
32 KB L1 d-cache
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Slopes of
spatial
locality

Ridges of
Temporal
 locality

28

Today

 Cache organization and operation

 Performance impact of caches
 The memory mountain

 Rearranging loops to improve spatial locality

 Using blocking to improve temporal locality

29

Miss Rate Analysis for Matrix Multiply

 Assume:
 Line size = 32B (big enough for four 64-bit words)

 Matrix dimension (N) is very large

 Approximate 1/N as 0.0

 Cache is not even big enough to hold multiple rows

 Analysis Method:
 Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

30

Matrix Multiplication Example

 Description:
 Multiply N x N matrices

 O(N3) total operations

 N reads per source
element

 N values summed per
destination

 but may be able to
hold in register

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

Variable sum
held in register

31

Layout of C Arrays in Memory (review)

 C arrays allocated in row-major order
 each row in contiguous memory locations

 Stepping through columns in one row:
 for (i = 0; i < N; i++)

sum += a[0][i];

 accesses successive elements

 if block size (B) > 4 bytes, exploit spatial locality

 compulsory miss rate = 4 bytes / B

 Stepping through rows in one column:
 for (i = 0; i < n; i++)

sum += a[i][0];

 accesses distant elements

 no spatial locality!

 compulsory miss rate = 1 (i.e. 100%)

32

Matrix Multiplication (ijk)

/* ijk */

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0 0.0

33

Matrix Multiplication (jik)

/* jik */

for (j=0; j<n; j++) {

 for (i=0; i<n; i++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum

 }

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 0.25 1.0 0.0

34

Matrix Multiplication (kij)

/* kij */

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wise Fixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

35

Matrix Multiplication (ikj)

/* ikj */

for (i=0; i<n; i++) {

 for (k=0; k<n; k++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wise Fixed

Misses per inner loop iteration:
 A B C
 0.0 0.25 0.25

36

Matrix Multiplication (jki)

/* jki */

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

37

Matrix Multiplication (kji)

/* kji */

for (k=0; k<n; k++) {

 for (j=0; j<n; j++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

Fixed Column-
wise

Column-
wise

Misses per inner loop iteration:
 A B C
 1.0 0.0 1.0

38

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 sum = 0.0;

 for (k=0; k<n; k++)

 sum += a[i][k] * b[k][j];

 c[i][j] = sum;

 }

}

for (k=0; k<n; k++) {

 for (i=0; i<n; i++) {

 r = a[i][k];

 for (j=0; j<n; j++)

 c[i][j] += r * b[k][j];

 }

}

for (j=0; j<n; j++) {

 for (k=0; k<n; k++) {

 r = b[k][j];

 for (i=0; i<n; i++)

 c[i][j] += a[i][k] * r;

 }

}

39

Core i7 Matrix Multiply Performance

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

C
y
c
le

s
 p

e
r

in
n

e
r

lo
o

p
 i
te

ra
ti

o
n

Array size (n)

jki
kji
ijk
jik
kij
ikj

jki / kji

ijk / jik

kij / ikj

40

Today

 Cache organization and operation

 Performance impact of caches
 The memory mountain

 Rearranging loops to improve spatial locality

 Using blocking to improve temporal locality

41

Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (k = 0; k < n; k++)

 c[i*n+j] += a[i*n + k]*b[k*n + j];

}

42

Cache Miss Analysis
 Assume:

 Matrix elements are doubles

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 First iteration:
 n/8 + n = 9n/8 misses

 Afterwards in cache:
(schematic)

* =

n

* =

8 wide

43

Cache Miss Analysis
 Assume:

 Matrix elements are doubles

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Second iteration:
 Again:

n/8 + n = 9n/8 misses

 Total misses:
 9n/8 * n2 = (9/8) * n3

n

* =

8 wide

44

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=B)

 for (j = 0; j < n; j+=B)

 for (k = 0; k < n; k+=B)

 /* B x B mini matrix multiplications */

 for (i1 = i; i1 < i+B; i++)

 for (j1 = j; j1 < j+B; j++)

 for (k1 = k; k1 < k+B; k++)

 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*

c

=
c

+

Block size B x B

45

Cache Miss Analysis
 Assume:

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Three blocks fit into cache: 3B2 < C

 First (block) iteration:
 B2/8 misses for each block

 2n/B * B2/8 = nB/4
(omitting matrix c)

 Afterwards in cache
(schematic)

* =

* =

Block size B x B

n/B blocks

46

Cache Miss Analysis
 Assume:

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Three blocks fit into cache: 3B2 < C

 Second (block) iteration:
 Same as first iteration

 2n/B * B2/8 = nB/4

 Total misses:
 nB/4 * (n/B)2 = n3/(4B)

* =

Block size B x B

n/B blocks

47

Summary

 No blocking: (9/8) * n3

 Blocking: 1/(4B) * n3

 Suggest largest possible block size B, but limit 3B2 < C!

 Reason for dramatic difference:
 Matrix multiplication has inherent temporal locality:

 Input data: 3n2, computation 2n3

 Every array elements used O(n) times!

 But program has to be written properly

48

Concluding Observations

 Programmer can optimize for cache performance
 How data structures are organized

 How data are accessed

 Nested loop structure

 Blocking is a general technique

 All systems favor “cache friendly code”
 Getting absolute optimum performance is very platform specific

 Cache sizes, line sizes, associativities, etc.

 Can get most of the advantage with generic code

 Keep working set reasonably small (temporal locality)

 Use small strides (spatial locality)

