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Cache Memories 
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Today 

 Cache memory organization and operation 

 Performance impact of caches 
 The memory mountain 

 Rearranging loops to improve spatial locality 

 Using blocking to improve temporal locality 
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Cache Memories 

 Cache memories are small, fast SRAM-based memories 
managed automatically in hardware.  
 Hold frequently accessed blocks of main memory 

 CPU looks first for data in caches (e.g., L1, L2, and L3), 
then in main memory. 

 Typical system structure: 

Main 

memory 
I/O 

bridge 
Bus interface 

ALU 

Register file 

CPU chip 

System bus Memory bus 

Cache  

memories 
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General Cache Organization (S, E, B) 

E = 2e lines per set 

S = 2s sets 

set 

line 

0 1 2 B-1 tag v 

B = 2b bytes per cache block (the data) 

Cache size: 
C = S x E x B data bytes 

valid bit 
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Cache Read 

E = 2e lines per set 

S = 2s sets 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes per cache block (the data) 

t bits s bits b bits 

Address of word: 

tag set 
index 

block 
offset 

data begins at this offset 

• Locate set 
• Check if any line in set 

has matching tag 
•Yes + line valid: hit 
• Locate data starting 

at offset 
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Example: Direct Mapped Cache (E = 1) 

S = 2s sets 

Direct mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 

find set 
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Example: Direct Mapped Cache (E = 1) 
Direct mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

match: assume yes = hit valid?   + 

block offset 

tag 
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Example: Direct Mapped Cache (E = 1) 
Direct mapped: One line per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of int: 

0 1 2 7 tag v 3 6 5 4 

match: assume yes = hit valid?   + 

int (4 Bytes) is here 

block offset 

No match: old line is evicted and replaced 
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Direct-Mapped Cache Simulation 

M=16 byte addresses, B=2 bytes/block,  
S=4 sets, E=1 Blocks/set 
 
 
Address trace (reads, one byte per read): 
 0 [00002],  
 1 [00012],   
 7 [01112],   
 8 [10002],   
 0 [00002] 

x 
t=1 s=2 b=1 

xx x 

0 ? ? 

v Tag Block 

miss 

1 0 M[0-1] 

hit 
miss 

1 0 M[6-7] 

miss 

1 1 M[8-9] 

miss 

1 0 M[0-1] Set 0 

Set 1 

Set 2 

Set 3 
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A Higher Level Example 
int sum_array_rows(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (i = 0; i < 16; i++) 

        for (j = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} 

32 B = 4 doubles 

assume: cold (empty) cache, 
a[0][0] goes here 

int sum_array_cols(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (j = 0; i < 16; i++) 

        for (i = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} blackboard 

Ignore the variables sum, i, j 



11 

E-way Set Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

find set 
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E-way Set Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

compare both 

valid?  +  match: yes = hit 

block offset 

tag 



13 

E-way Set Associative Cache (Here: E = 2) 
E = 2: Two lines per set 
Assume: cache block size 8 bytes 

t bits 0…01 100 

Address of short int: 

0 1 2 7 tag v 3 6 5 4 0 1 2 7 tag v 3 6 5 4 

compare both 

valid?  +  match: yes = hit 

block offset 

short int (2 Bytes) is here 

No match:  
• One line in set is selected for eviction and replacement 
• Replacement policies: random, least recently used (LRU), … 
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2-Way Set Associative Cache Simulation 

M=16 byte addresses, B=2 bytes/block,  
S=2 sets, E=2 blocks/set 
 
Address trace (reads, one byte per read): 
 0 [00002],  
 1 [00012],   
 7 [01112],   
 8 [10002],   
 0 [00002] 

xx 
t=2 s=1 b=1 

x x 

0 ? ? 

v Tag Block 

0 

0 

0 

miss 

1 00 M[0-1] 

hit 
miss 

1 01 M[6-7] 

miss 

1 10 M[8-9] 

hit 

Set 0 

Set 1 
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A Higher Level Example 
int sum_array_rows(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (i = 0; i < 16; i++) 

        for (j = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} 

32 B = 4 doubles 

assume: cold (empty) cache, 
a[0][0] goes here 

int sum_array_rows(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (j = 0; i < 16; i++) 

        for (i = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} 
blackboard 

Ignore the variables sum, i, j 
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Chapter 5 — Large and 

Fast: Exploiting Memory 

Hierarchy — 16 

Spectrum of Associativity 

 For a cache with 8 entries 



17 

What about writes? 

 Multiple copies of data exist: 
 L1, L2, Main Memory, Disk 

 What to do on a write-hit? 
 Write-through (write immediately to memory) 

 Write-back (defer write to memory until replacement of line) 

 Need a dirty bit (line different from memory or not) 

 What to do on a write-miss? 
 Write-allocate (load into cache, update line in cache) 

 Good if more writes to the location follow 

 No-write-allocate (writes immediately to memory) 

 Typical 
 Write-through + No-write-allocate 

 Write-back + Write-allocate 
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Intel Core i7 Cache Hierarchy 

Regs 

L1  

d-cache 

L1  

i-cache 

L2 unified cache 

Core 0 

Regs 

L1  

d-cache 

L1  

i-cache 

L2 unified cache 

Core 3 

… 

L3 unified cache 

(shared by all cores) 

Main memory 

Processor package 

L1 i-cache and d-cache: 
32 KB,  8-way,  
Access: 4 cycles 

 
L2 unified cache: 

 256 KB, 8-way,  
Access: 11 cycles 
 

L3 unified cache: 
8 MB, 16-way, 
Access: 30-40 cycles 
 

Block size: 64 bytes for 
all caches.  
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Cache Performance Metrics 

 Miss Rate 
 Fraction of memory references not found in cache (misses / accesses) 

= 1 – hit rate 

 Typical numbers (in percentages): 

 3-10% for L1 

 can be quite small (e.g., < 1%) for L2, depending on size, etc. 

 Hit Time 
 Time to deliver a line in the cache to the processor 

 includes time to determine whether the line is in the cache 

 Typical numbers: 

 1-2 clock cycle for L1 

 5-20 clock cycles for L2 

 Miss Penalty 
 Additional time required because of a miss 

 typically 50-200 cycles for main memory (Trend: increasing!) 
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Lets think about those numbers 

 Huge difference between a hit and a miss 
 Could be 100x, if just L1 and main memory 

 

 Would you believe 99% hits is twice as good as 97%? 
 Consider:  

cache hit time of 1 cycle 
miss penalty of 100 cycles 

 

 Average access time = hit time + miss rate * miss penalty 

  97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles 

  99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles 

 

 This is why “miss rate” is used instead of “hit rate” 



21 

Writing Cache Friendly Code 

 Make the common case go fast 
 Focus on the inner loops of the core functions 

 

 Minimize the misses in the inner loops 
 Repeated references to variables are good (temporal locality) 

 Stride-1 reference patterns are good (spatial locality) 

Key idea: Our qualitative notion of locality is quantified 
through our understanding of cache memories. 
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Today 

 Cache organization and operation 

 Performance impact of caches 
 The memory mountain 

 Rearranging loops to improve spatial locality 

 Using blocking to improve temporal locality 
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The Memory Mountain 

 Read throughput (read bandwidth) 
 Number of bytes read from memory per second (MB/s) 

 

 Memory mountain: Measured read throughput as a 
function of spatial and temporal locality. 
 Compact way to characterize memory system performance.  

 



24 

Memory Mountain Test Function 

/* The test function */ 

void test(int elems, int stride) { 

    int i, result = 0;  

    volatile int sink;  

 

    for (i = 0; i < elems; i += stride) 

 result += data[i]; 

    sink = result; /* So compiler doesn't optimize away the loop */ 

} 

 

/* Run test(elems, stride) and return read throughput (MB/s) */ 

double run(int size, int stride, double Mhz) 

{ 

    double cycles; 

    int elems = size / sizeof(int);  

 

    test(elems, stride);                     /* warm up the cache */ 

    cycles = fcyc2(test, elems, stride, 0);  /* call test(elems,stride) */ 

    return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */ 

} 
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The Memory Mountain 
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The Memory Mountain 
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The Memory Mountain 
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Today 

 Cache organization and operation 

 Performance impact of caches 
 The memory mountain 

 Rearranging loops to improve spatial locality 

 Using blocking to improve temporal locality 
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Miss Rate Analysis for Matrix Multiply 

 Assume: 
 Line size = 32B (big enough for four 64-bit words) 

 Matrix dimension (N) is very large 

 Approximate 1/N as 0.0 

 Cache is not even big enough to hold multiple rows 

 Analysis Method: 
 Look at access pattern of inner loop 

A 

k 

i 

B 

k 

j 

C 

i 

j 
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Matrix Multiplication Example 

 Description: 
 Multiply N x N matrices 

 O(N3) total operations 

 N reads per source 
element 

 N values summed per 
destination 

 but may be able to 
hold in register 

/* ijk */ 

for (i=0; i<n; i++)  { 

  for (j=0; j<n; j++) { 

    sum = 0.0; 

    for (k=0; k<n; k++)  

      sum += a[i][k] * b[k][j]; 

    c[i][j] = sum; 

  } 

}  

Variable sum 
held in register 
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Layout of C Arrays in Memory (review) 

 C arrays allocated in row-major order 
 each row in contiguous memory locations 

 Stepping through columns in one row: 
 for (i = 0; i < N; i++) 

sum += a[0][i]; 

 accesses successive elements 

 if block size (B) > 4 bytes, exploit spatial locality 

 compulsory miss rate = 4 bytes / B 

 Stepping through rows in one column: 
 for (i = 0; i < n; i++) 

sum += a[i][0]; 

 accesses distant elements 

 no spatial locality! 

 compulsory miss rate = 1 (i.e. 100%) 
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Matrix Multiplication (ijk) 

/* ijk */ 

for (i=0; i<n; i++)  { 

  for (j=0; j<n; j++) { 

    sum = 0.0; 

    for (k=0; k<n; k++)  

      sum += a[i][k] * b[k][j]; 

    c[i][j] = sum; 

  } 

}  

A B C 

(i,*) 

(*,j) 
(i,j) 

Inner loop: 

Column- 
wise 

Row-wise Fixed 

Misses per inner loop iteration: 
  A B C 
  0.25 1.0 0.0 
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Matrix Multiplication (jik) 

/* jik */ 

for (j=0; j<n; j++) { 

  for (i=0; i<n; i++) { 

    sum = 0.0; 

    for (k=0; k<n; k++) 

      sum += a[i][k] * b[k][j]; 

    c[i][j] = sum 

  } 

} 

A B C 

(i,*) 

(*,j) 
(i,j) 

Inner loop: 

Row-wise Column- 
wise 

Fixed 

Misses per inner loop iteration: 
  A B C 
  0.25 1.0 0.0 
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Matrix Multiplication (kij) 

/* kij */ 

for (k=0; k<n; k++) { 

  for (i=0; i<n; i++) { 

    r = a[i][k]; 

    for (j=0; j<n; j++) 

      c[i][j] += r * b[k][j];    

  } 

} 

 

A B C 

(i,*) 
(i,k) (k,*) 

Inner loop: 

Row-wise Row-wise Fixed 

Misses per inner loop iteration: 
  A B C 
  0.0 0.25 0.25 
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Matrix Multiplication (ikj) 

/* ikj */ 

for (i=0; i<n; i++) { 

  for (k=0; k<n; k++) { 

    r = a[i][k]; 

    for (j=0; j<n; j++) 

      c[i][j] += r * b[k][j]; 

  } 

} 

A B C 

(i,*) 
(i,k) (k,*) 

Inner loop: 

Row-wise Row-wise Fixed 

Misses per inner loop iteration: 
  A B C 
  0.0 0.25 0.25 
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Matrix Multiplication (jki) 

/* jki */ 

for (j=0; j<n; j++) { 

  for (k=0; k<n; k++) { 

    r = b[k][j]; 

    for (i=0; i<n; i++) 

      c[i][j] += a[i][k] * r; 

  } 

}  

A B C 

(*,j) 

(k,j) 

Inner loop: 

(*,k) 

Column- 
wise 

Column- 
wise 

Fixed 

Misses per inner loop iteration: 
  A B C 
  1.0 0.0 1.0 
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Matrix Multiplication (kji) 

/* kji */ 

for (k=0; k<n; k++) { 

  for (j=0; j<n; j++) { 

    r = b[k][j]; 

    for (i=0; i<n; i++) 

      c[i][j] += a[i][k] * r; 

  } 

}  

A B C 

(*,j) 
(k,j) 

Inner loop: 

(*,k) 

Fixed Column- 
wise 

Column- 
wise 

Misses per inner loop iteration: 
  A B C 
  1.0 0.0 1.0 
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Summary of Matrix Multiplication 

ijk (& jik):  
• 2 loads, 0 stores 
• misses/iter = 1.25 

kij (& ikj):  
• 2 loads, 1 store 
• misses/iter = 0.5 

jki (& kji):  
• 2 loads, 1 store 
• misses/iter = 2.0 

for (i=0; i<n; i++) { 

  for (j=0; j<n; j++) { 

   sum = 0.0; 

   for (k=0; k<n; k++)  

     sum += a[i][k] * b[k][j]; 

   c[i][j] = sum; 

 } 

}  

for (k=0; k<n; k++) { 

 for (i=0; i<n; i++) { 

  r = a[i][k]; 

  for (j=0; j<n; j++) 

   c[i][j] += r * b[k][j];    

 } 

} 

for (j=0; j<n; j++) { 

 for (k=0; k<n; k++) { 

   r = b[k][j]; 

   for (i=0; i<n; i++) 

    c[i][j] += a[i][k] * r; 

 } 

} 
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Core i7 Matrix Multiply Performance 
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Today 

 Cache organization and operation 

 Performance impact of caches 
 The memory mountain 

 Rearranging loops to improve spatial locality 

 Using blocking to improve temporal locality 
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Example: Matrix Multiplication 

a b 

i 

j 

* 

c 

= 

c = (double *) calloc(sizeof(double), n*n); 

 

/* Multiply n x n matrices a and b  */ 

void mmm(double *a, double *b, double *c, int n) { 

    int i, j, k; 

    for (i = 0; i < n; i++) 

 for (j = 0; j < n; j++) 

             for (k = 0; k < n; k++) 

     c[i*n+j] += a[i*n + k]*b[k*n + j]; 

} 
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Cache Miss Analysis 
 Assume:  

 Matrix elements are doubles 

 Cache block = 8 doubles 

 Cache size C << n (much smaller than n) 

 

 First iteration: 
 n/8 + n = 9n/8 misses 

 

 

 Afterwards in cache: 
(schematic) 

* = 

n 

* = 

8 wide 
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Cache Miss Analysis 
 Assume:  

 Matrix elements are doubles 

 Cache block = 8 doubles 

 Cache size C << n (much smaller than n) 

 

 Second iteration: 
 Again: 

n/8 + n = 9n/8 misses 

 

 

 Total misses: 
 9n/8 * n2 = (9/8) * n3  

n 

* = 

8 wide 
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Blocked Matrix Multiplication 
c = (double *) calloc(sizeof(double), n*n); 

 

/* Multiply n x n matrices a and b  */ 

void mmm(double *a, double *b, double *c, int n) { 

    int i, j, k; 

    for (i = 0; i < n; i+=B) 

 for (j = 0; j < n; j+=B) 

             for (k = 0; k < n; k+=B) 

   /* B x B mini matrix multiplications */ 

                  for (i1 = i; i1 < i+B; i++) 

                      for (j1 = j; j1 < j+B; j++) 

                          for (k1 = k; k1 < k+B; k++) 

                       c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1]; 

} 

a b 

i1 

j1 

* 

c 

= 
c 

+ 

Block size B x B 
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Cache Miss Analysis 
 Assume:  

 Cache block = 8 doubles 

 Cache size C << n (much smaller than n) 

 Three blocks       fit into cache: 3B2 < C 

 

 First (block) iteration: 
 B2/8 misses for each block 

 2n/B * B2/8 = nB/4 
(omitting matrix c) 

 

 

 Afterwards in cache 
(schematic) 

* = 

* = 

Block size B x B 

n/B blocks 
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Cache Miss Analysis 
 Assume:  

 Cache block = 8 doubles 

 Cache size C << n (much smaller than n) 

 Three blocks       fit into cache: 3B2 < C 

 

 Second (block) iteration: 
 Same as first iteration 

 2n/B * B2/8 = nB/4 

 

 

 Total misses: 
 nB/4 * (n/B)2 = n3/(4B) 

* = 

Block size B x B 

n/B blocks 
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Summary 

 No blocking: (9/8) * n3 

 Blocking: 1/(4B) * n3 

 

 Suggest largest possible block size B, but limit 3B2 < C! 

 

 Reason for dramatic difference: 
 Matrix multiplication has inherent temporal locality: 

 Input data: 3n2, computation 2n3 

 Every array elements used O(n) times! 

 But program has to be written properly 
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Concluding Observations 

 Programmer can optimize for cache performance 
 How data structures are organized 

 How data are accessed 

 Nested loop structure 

 Blocking is a general technique 

 All systems favor “cache friendly code” 
 Getting absolute optimum performance is very platform specific 

 Cache sizes, line sizes, associativities, etc. 

 Can get most of the advantage with generic code 

 Keep working set reasonably small (temporal locality) 

 Use small strides (spatial locality) 


