
Pipelining IV

Topics

 Implementing pipeline control

 Pipelining and performance analysis

Systems I

2

Implementing Pipeline Control

 Combinational logic generates pipeline control signals

 Action occurs at start of following cycle

E

M

W

F

D

CCCC

rB

srcA

srcB

icode valE valM dstE dstM

Bchicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

d_srcB

d_srcA

e_Bch

D_icode

E_icode

M_icode

E_dstM

Pipe

control

logic

D_bubble

D_stall

E_bubble

F_stall

3

Initial Version of Pipeline Control
bool F_stall =

 # Conditions for a load/use hazard

 E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB } ||

 # Stalling at fetch while ret passes through pipeline

 IRET in { D_icode, E_icode, M_icode };

bool D_stall =

 # Conditions for a load/use hazard

 E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB };

bool D_bubble =

 # Mispredicted branch

 (E_icode == IJXX && !e_Bch) ||

 # Stalling at fetch while ret passes through pipeline

 IRET in { D_icode, E_icode, M_icode };

bool E_bubble =

 # Mispredicted branch

 (E_icode == IJXX && !e_Bch) ||

 # Load/use hazard

 E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB};

4

Control Combinations

 Special cases that can arise on same clock cycle

Combination A

 Not-taken branch

 ret instruction at branch target

Combination B

 Instruction that reads from memory to %esp

 Followed by ret instruction

LoadE

UseD

M

Load/use

JXXE

D

M

Mispredict

JXXE

D

M

Mispredict

E

retD

M

ret 1

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

E

retD

M

ret 1

E

retD

M

ret 1

retE

bubbleD

M

ret 2

retE

bubbleD

M

ret 2

bubbleE

bubbleD

retM

ret 3

bubbleE

bubbleD

retM

ret 3

Combination B

Combination A

5

Control Combination A

 Should handle as mispredicted branch

 Stalls F pipeline register

 But PC selection logic will be using M_valM anyhow

JXX E

D

M

Mispredict

JXX E

D

M

Mispredict

E

ret D

M

ret 1

E

ret D

M

ret 1

E

ret D

M

ret 1

Combination A

Condition F D E M W

Processing ret stall bubble normal normal normal

Mispredicted Branch normal bubble bubble normal normal

Combination stall bubble bubble normal normal

E

M

W

F

D

Instruction

memory

Instruction

memory
PC

increment

PC

increment

Register

file

Register

file

ALUALU

Data

memory

Data

memory

Select

PC

rB

dstE dstMSelect

A

ALU

A

ALU

B

Mem.

control

Addr

srcA srcB

read

write

ALU

fun.

Fetch

Decode

Execute

Memory

Write back

icode

data out

data in

A B
M

E

M_valA

W_valM

W_valE

M_valA

W_valM

d_rvalA

f_PC

Predict

PC

valE valM dstE dstM

Bchicode valE valA dstE dstM

icode ifun valC valA valB dstE dstM srcA srcB

valC valPicode ifun rA

predPC

CCCC

d_srcBd_srcA

e_Bch

M_Bch

CCCC

d_srcBd_srcA

e_Bch

M_Bch

6

Control Combination B

 Would attempt to bubble and stall pipeline register D

 Signaled by processor as pipeline error

Load E

Use D

M

Load/use

E

ret D

M

ret 1

E

ret D

M

ret 1

E

ret D

M

ret 1

Combination B

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall bubble +
stall

bubble normal normal

7

Handling Control Combination B

 Load/use hazard should get priority

 ret instruction should be held in decode stage for additional

cycle

Load E

Use D

M

Load/use

E

ret D

M

ret 1

E

ret D

M

ret 1

E

ret D

M

ret 1

Combination B

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal

8

Corrected Pipeline Control Logic

 Load/use hazard should get priority

 ret instruction should be held in decode stage for additional

cycle

Condition F D E M W

Processing ret stall bubble normal normal normal

Load/Use Hazard stall stall bubble normal normal

Combination stall stall bubble normal normal

bool D_bubble =

 # Mispredicted branch

 (E_icode == IJXX && !e_Bch) ||

 # Stalling at fetch while ret passes through pipeline

 IRET in { D_icode, E_icode, M_icode }

 # but not condition for a load/use hazard

 && !(E_icode in { IMRMOVL, IPOPL }

 && E_dstM in { d_srcA, d_srcB });

9

Pipeline Summary

Data Hazards

 Most handled by forwarding

 No performance penalty

 Load/use hazard requires one cycle stall

Control Hazards

 Cancel instructions when detect mispredicted branch

 Two clock cycles wasted

 Stall fetch stage while ret passes through pipeline

 Three clock cycles wasted

Control Combinations

 Must analyze carefully

 First version had subtle bug

 Only arises with unusual instruction combination

10

Performance Analysis with Pipelining

Ideal pipelined machine: CPI = 1

 One instruction completed per cycle

 But much faster cycle time than unpipelined machine

However - hazards are working against the ideal

 Hazards resolved using forwarding are fine

 Stalling degrades performance and instruction comletion

rate is interrupted

CPI is measure of “architectural efficiency” of design

Cycle

Seconds

nInstructio

Cycles

Program

nsInstructio

Program

Seconds
 timeCPU 

11

Computing CPI

CPI

 Function of useful instruction and bubbles

 Cb/Ci represents the pipeline penalty due to stalls

Can reformulate to account for

 load penalties (lp)

 branch misprediction penalties (mp)

 return penalties (rp)



CPI 
Ci Cb

Ci
1.0

Cb

Ci



CPI 1.0 lpmp rp

12

Computing CPI - II

So how do we determine the penalties?

 Depends on how often each situation occurs on average

 How often does a load occur and how often does that load

cause a stall?

 How often does a branch occur and how often is it

mispredicted

 How often does a return occur?

We can measure these

 simulator

 hardware performance counters

We can estimate through historical averages

 Then use to make early design tradeoffs for architecture

13

Computing CPI - III

CPI = 1 + 0.31 = 1.31 == 31% worse than ideal

This gets worse when:

 Account for non-ideal memory access latency

 Deeper pipelines (where stalls per hazard increase)

Cause Name Instructio
n

Frequency

Condition
Frequency

Stalls Product

Load/Use lp 0.30 0.3 1 0.09

Mispredict mp 0.20 0.4 2 0.16

Return rp 0.02 1.0 3 0.06

Total penalty 0.31

14

Summary

Today

 Pipeline control logic

 Effect on CPI and performance

Next Time

 Further mitigation of branch mispredictions

 State machine design

