
Pipelining IV 
 

Topics 

 Implementing pipeline control 

 Pipelining and performance analysis 

 

Systems I 
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Implementing Pipeline Control 

 Combinational logic generates pipeline control signals 

 Action occurs at start of following cycle 
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Initial Version of Pipeline Control 
bool F_stall = 

 # Conditions for a load/use hazard 

 E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB } || 

 # Stalling at fetch while ret passes through pipeline 

 IRET in { D_icode, E_icode, M_icode }; 

 

bool D_stall =  

 # Conditions for a load/use hazard 

 E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB }; 

 

bool D_bubble = 

 # Mispredicted branch 

 (E_icode == IJXX && !e_Bch) || 

 # Stalling at fetch while ret passes through pipeline 

  IRET in { D_icode, E_icode, M_icode }; 

 

bool E_bubble = 

 # Mispredicted branch 

 (E_icode == IJXX && !e_Bch) || 

 # Load/use hazard 

 E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB}; 
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Control Combinations 

 Special cases that can arise on same clock cycle 

Combination A 

 Not-taken branch 

  ret instruction at branch target 

Combination B 

 Instruction that reads from memory to %esp 

 Followed by ret instruction 
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Control Combination A 

 Should handle as mispredicted branch 

 Stalls F pipeline register 

 But PC selection logic will be using M_valM anyhow 
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Condition F D E M W 

Processing ret stall bubble normal normal normal 

Mispredicted Branch normal bubble bubble normal normal 

Combination stall bubble bubble normal normal 
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Control Combination B 

 Would attempt to bubble and stall pipeline register D 

 Signaled by processor as pipeline error 
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Handling Control Combination B 

 Load/use hazard should get priority 

  ret instruction should be held in decode stage for additional 

cycle 
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Corrected Pipeline Control Logic 

 Load/use hazard should get priority 

  ret instruction should be held in decode stage for additional 

cycle 

Condition F D E M W 

Processing ret stall bubble normal normal normal 

Load/Use Hazard stall stall bubble normal normal 

Combination stall stall bubble normal normal 

bool D_bubble = 

 # Mispredicted branch 

 (E_icode == IJXX && !e_Bch) || 

 # Stalling at fetch while ret passes through pipeline 

  IRET in { D_icode, E_icode, M_icode } 

   # but not condition for a load/use hazard 

   && !(E_icode in { IMRMOVL, IPOPL }  

            && E_dstM in { d_srcA, d_srcB }); 
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Pipeline Summary 

Data Hazards 

 Most handled by forwarding 

 No performance penalty 

 Load/use hazard requires one cycle stall 

Control Hazards 

 Cancel instructions when detect mispredicted branch 

 Two clock cycles wasted 

 Stall fetch stage while ret passes through pipeline 

 Three clock cycles wasted 

Control Combinations 

 Must analyze carefully 

 First version had subtle bug 

 Only arises with unusual instruction combination 
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Performance Analysis with Pipelining 

Ideal pipelined machine: CPI = 1 

 One instruction completed per cycle 

 But much faster cycle time than unpipelined machine 

However - hazards are working against the ideal 

 Hazards resolved using forwarding are fine 

 Stalling degrades performance and instruction comletion 

rate is interrupted 

CPI is measure of “architectural efficiency” of design 
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Computing CPI 

CPI 

 Function of useful instruction and bubbles 

 

 

 Cb/Ci represents the pipeline penalty due to stalls 

Can reformulate to account for 

 load penalties (lp) 

 branch misprediction penalties (mp) 

 return penalties (rp) 
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Computing CPI - II 

So how do we determine the penalties? 

 Depends on how often each situation occurs on average 

 How often does a load occur and how often does that load 

cause a stall? 

 How often does a branch occur and how often is it 

mispredicted 

 How often does a return occur? 

We can measure these 

 simulator 

 hardware performance counters 

We can estimate through historical averages 

 Then use to make early design tradeoffs for architecture 
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Computing CPI - III 

CPI = 1 + 0.31 = 1.31 == 31% worse than ideal 

This gets worse when: 

 Account for non-ideal memory access latency 

 Deeper pipelines (where stalls per hazard increase) 

Cause Name Instructio
n 

Frequency 

Condition 
Frequency 

Stalls Product 

Load/Use lp 0.30 0.3 1 0.09 

Mispredict mp 0.20 0.4 2 0.16 

Return rp 0.02 1.0 3 0.06 

Total penalty 0.31 
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Summary 

Today 

 Pipeline control logic 

 Effect on CPI and performance 

Next Time 

 Further mitigation of branch mispredictions 

 State machine design 


