CS:APP2e Guide to Y86 Processor Simulators

W_valE

W_valM

M-
-

:

dstE | dstM | srcA | srcB

d_srcA| d_srcB]

A B
Decode Register M|
file d W_valE
u stat |icode| ifun | rA l B I valC Vi
imem_error 3 Instruction PC -
instr_valid { "
N memory increment

Randal E. Bryant
David R. O’Hallaron

May 2, 2011

*Copyright(© 2002, 2010, R. E. Bryant, D. R. O’Hallaron. All rights resetv

This document describes the processor simulators thatrgeanoy the presentation of the Y86 processor
architectures in Chapter 4 @fomputer Systems: A Programmer’s Perspective, SeconibikdiThese
simulators model three different processor designs: SEQ+5and PIPE.

1 Installing

The code for the simulator is distributed as a tar format fileadsi m t ar. You can get a copy of this
file from the CS:APP2e Web site¢app. cs. crru. edu).

With the tar file in the directory you want to install the cogteu should be able to do the following:

uni x> tar xf simtar
uni x> cd sim

uni x> nake cl ean

uni x> nake

By default, this generates GUI (graphic user interfaceyioeis of the simulators, which require that you
have Tcl/Tk installed on your system. If not, then you havedption to install TTY-only versions that emit
their output as ASCII text on stdout. See fREADME for a description of how to generate the GUI and
TTY versions.

The directorysi mcontains the following subdirectories:

m sc Source code files for utilities such a&ss (the Y86 assembler);is (the Y86 instruction set simula-
tor), andHcL2c (HCL to C translator). It also contains thesa. ¢ source file that is used by all of
the processor simulators.

seq Source code for the SEQ and SEQ+ simulators. Contains thefHglor homework problems 4.49
and 4.50. See filREADVE for instructions on compiling the different versions of simulator.

pi pe Source code for the PIPE simulator. Contains the HCL filetfonework problems 4.52-4.57. See
file README for instructions on compiling the different versions of gimulator.

y86- code Y86 assembly code for many of the example programs showmiohthpter. You can automat-
ically test your modified simulators on these benchmark ranog. See fil&READVE for instructions
on how to run these tests. As a running example, we will usertbgramasum ys in this subdirec-
tory. This program is shown as CS:APP2e Figure 4.8. The dedhpersion of the program is shown
in Figure 1.

pt est Scripts that generate systematic regression tests of ffegedit instructions, the different jump
possibilities, and different hazard possibilities. Thesgpts are very good at finding bugs in your
homework solutions. See fiREADVE for instructions on how to run these tests.

1
2 0x000:
3 0x000:
4 0x006:
5 0x00c:
6 0x011:
7
8
9 0x014:

10 0x014:

11 0x018:

12 Ox01c:

13 0x020:

14

15 0x024:

16 0x026

17 0x028:

18 0x02e:

19 0x030:

20 0x036

21 0x038:

22 0x03d:

23 0x03f:

24 0x041:

25

26

27 0x042:

28 0x044:

29 0x046:

30 0x04c:

31 0x052:

32 0x054:

33 0x056:

34 0x05b:

35 0x061:

36 0x063:

37 0x069:

38 0x06b:

39 0x071:

40 0x073:

41 0x078:

42 0Ox07a:

43 0x07c:

44

45

46 0x100:

47 0x100:

Figure 1:Sample object code file.

30f 400010000
30f 500010000
8024000000
00

0d000000
c0000000
000b0000
00a00000

a05f

2045

30f 004000000
a0of

30f 214000000
a02f
8042000000
2054

bO5f

90

a05f

2045
501508000000
50250c000000
6300

6222
7378000000
506100000000
6060

30f 304000000
6031

30f 3ffffffff
6032
745b000000
2054

b0O5f

90

Execution begins at address 0O

init:

Array

array:

Sum

Loop:

End:

.pos O

i rmovl Stack,
i rnmovl St ack,
call Main
hal t

%esp
%ebp

of 4 elements
.align 4

.1 ong Oxd

.1 ong 0xcO

.1 ong 0xb00
.1 ong 0xa000

pushl
rrmovl
i rnovl
pushl
i rnovl
pushl %edx

call Sum

rrnovl %bp, %esp
popl %ebp

ret

%ebp
Y%esp, Yebp
$4, Y%eax
Yeax
array, %edx

int Sum(int *Start,

pushl %bp

rrnovl %esp, %ebp

nr novl 8(%bp), Yecx
nrnovl 12(%ebp), %edx
xorl % ax, Yeax

andl %edx, Yedx

je End

nrnovl (%ecx), %es
addl %esi, Y%eax

i rmovl $4, %ebx

addl %ebx, %ecx
irmovl $-1, %ebx
addl %ebx, %edx

j ne Loop

rrnovl %bp, %esp
popl %ebp

ret

HH HH

i nt

H HHH

oI OH KRR

The stack starts here and grows

St ack:

. pos 0x100

Set up stack pointer
Set up base pointer
Execut e nain program
Term nat e program

Push 4

Push array

Sun(array, 4)

Count)

Start

Count

0

condi tion codes

ecx =
edx =
sum =
Set

get *Start
add to sum

Start ++

Count - -
Stop when O

to | ower addresses

This code is in the file asum yo in the y86- code subdirectory.

2 Utility Programs
Once installation is complete, time sc directory contains two useful programs:

YAS The Y86 assembler. This takes a Y86 assembly code file witneidn. ys and generates a file with
extension. yo. The generated file contains an ASCII version of the objedecsuch as that shown
in Figure 1 (the same program as shown in CS:APP2e Figure F1& easiest way to invoke the
assembler is to use or create assembly code files ig8iie code subdirectory. For example, to
assemble the program in filssum ys in this directory, we use the command:

uni x> make asum yo

YIS The Y86 instruction simulator. This program executes ttstrictions in a Y86 machine-level pro-
gram according to the instruction set definition. For examplippose you want to run the program
asum yo from within the subdirectory86- code. Simply run:

uni x> ../ msc/yis asumyo

Y1s simulates the execution of the program and then prints @gatwmany registers or memory loca-
tions on the terminal, as described in CS:APP2e Section 4.1.

3 Processor Simulators

For each of the three processors, SEQ, SEQ+, and PIPE, wephavided simulatorssim, ssim+, and
PSIM respectively. Each simulator can be run in TTY or GUI mode:

TTY mode Uses a minimalist, terminal-oriented interface. Printsrgthing on the terminal output. Not

very convenient for debugging but can be installed on anyjesysand can be used for automated
testing. The default mode for all simulators.

GUI mode Has a graphic user interface, to be described shortly. Velgfii for visualizing the processor
activity and for debugging modified versions of the desigowiver, it requires installation of Tcl/Tk
on your system. Invoked with theg command line option.

3.1 Command Line Options
You can request a number of options from the command line:

- h Prints a summary of all of the command line options.

- g Run the simulator in GUI mode (default TTY mode).

-t Runs both the processor and the ISA simulators, comparagesulting values of the memory, register
file, and condition codes. If no discrepancies are foundjiitethe message “ISA Check Succeeds.”
Otherwise, it prints information about the words of the ségji file or memory that differ. This feature
is very useful for testing the processor designs.

-1 m Sets the instruction limit, executing at mostinstructions before halting (default 10000 instruc-
tions).

-v n Sets the verbosity level to, which must be between 0 and 2 with a default value of 2.

Simulators running in GUI mode must be invoked with the narfn@noobject file on the command line. In
TTY mode, the object file name is optional, coming fremndi n by default.

Here are some typical invocations of the simulators (froeyt®6- code subdirectory):

uni x> ../seqg/ssim-h
uni x> ../seg/ssim-t < asumyo
uni x> ../ pipe/psim-t -g asumyo

The first case prints a summary of the command line options$om. The second case runs the SEQ
simulator in TTY mode, reading object filssum yo from st di n. The third case runs the PIPE simulator
in GUI mode, executing the instructions object fileum yo. In both the second and third cases, the results
are compared with the results from the higher-level ISA i,

3.2 SEQ and SEQ+ Simulators

The GUI version of the SEQ processor simulator is invokedh &it object code filename on the command
line:

uni x> ../seqg/ssim-g asumyo &

where the & at the end of the command line allows the simulator to run ackground mode. The
simulation program starts up and creates three windowluaséated in Figures 2—4.

The first window (Figure 2) is the main control panel. If the Hfle was compiled byHcL2c with the
- n narme option, then the title of the main control window will appes“Y86 Processor: nane”
Otherwise it will appear as simply¥86 Pr ocessor .”

The main control window contains buttons to control the datar as well as status information about the
state of the processor. The different parts of the windowadreled in the figure:

Control: The buttons along the top control the simulator. Clicking @uit button causes the simulator to
exit. Clicking theGo button causes the simulator to start running. ClickingStap button causes the
simulator to stop temporarily. Clicking tt&tep button causes the simulator to execute one instruction
and then stop. Clicking thReset button causes the simulator to return to its initial stateh whe
program counter at address 0, the registers set to 0s, th@ememased except for the program, the
condition codes set withF = 1, CF = 0, andOF = 0, and the program status set tAOK.

l& Y86 Processor: seq-std.hel M
Quit | Go | Stop | Step | Reset | / Controls

Simulator Speed (10"log Hz)
4

| A

Processor State

rese P C

Stage

00000071 _
PC Update Stage signals
walid
Q0000000

Chul walE

Memory Stage
H FFFFFFFF
Execute Stage

vald valB dstE dstM srcA srcB
00000000 /00000000 | 2ehx —-—- —--~|----
Decode Stage

Instr T, rB walC walP
irmovl| ---- %ehx FFFFFFFF 00000071

Fetch Stage

PE
|00000DGE!
Register File . Register
Zean Zecx Zedx Zehx Zesp Zehp Zesi Zedi file
ed] g 3 4 ebl eb el
Stat Aok Condition Codes z0isoon Condition
- : codes
= - = =
o~ Status

Figure 2: Main control panel for SEQ simulator

B Program Code | (]
File .. /¥86-code fasum, ya Load Control
Ox0 30£40001000 init: imewl stack, %esp # set wp stack pointer
OxE F0E50001000 immowl Stack, %ebp # set wp base pointer
Oxec G024000000 call Main # Execute main program
Oxil o0 halt # Teminate progroam
Oxi14 Odooooon arcap: . long Mxd
Oxi1g cO000000 lomg Oxed
Oxle 000bOOOD long OxbOo
Ox20 00a00000 clomg Oxalon
Ox24 a05f Main: pushl %ebp 1
Ox2E 2045 comowl %esp, %ebp
Ox23 20£00400000 lmowl 4, %eax
OxZe a00f pushl %eax # Push 4
Ox30 30f£z1400000 imowl arrap, %edx
Ox36 alZf pushl %edx # Push arrap
Ox38 8042000000 call Sum # sumfaccap, 43
Ox3d 2054 ooyl %ebp, %Besp
Ox3f bOSE popl %ebp
Ox41 30 ret
Oxd2 alSE S pushl %ebp
Oxdd 2045 comowl %esp, Sebp
Oxd B S0150800000 mooel 8 {%ebp), Secx # ecx = Start ’ Assembly
Ox4e SO2S0c00000 momovl 12 (%ehp),%sedx # edx = Counk Code
Ox52 E300 xorl %ea, %eaor # sum = 0
Ox54 B222 andl e dar, %e da # set condition codes
Ox56 7378000000 je End
05h SO0E10000000 Loop: momowl {%ecx),%esi # get Titart
OxE1 EOED addl %esi, %eaor # add to sum
OxE3 20£30400000 imowl 54, %eh #
OxE3 EO31 addl %ebix, %ecx # stact++
OxEh BDEIELEEEFfLy + imowl §-1,%ebx #
O0x?1 EO32 addl %ebix, %edx # Count--
O0x?3 ?45hO00000 jne Loop # Stop when 0
- Ox78 2054 End: cimowl %ebp, %Besp
Ox?a bOSE popl %ebp
Ox7ec 90 ret
Currently executing instruction
Object code

Figure 3: Code display window for SEQ simulator

k% Memory Contents =NACIH X

Ox---0 Ox---4 0Ox--—-8 Ox—--c

Oz00f - 14 4 100 11

Oz<00e- 0] fa ad
0x00e0 0x00e4 0x00e8 0x00ec

Figure 4: Memory display window for SEQ simulator

The slider below the buttons controls the speed of the simul@hen it is running. Moving it to the
right makes the simulator run faster.

Stage signals: This part of the display shows the values of the differentpssor signals during the cur-
rent instruction evaluation. These signals are almosttickno those shown in CS:APP2e Figure
4.23. The main difference is that the simulator displaysnidw@e of the instruction in a field labeled
Instr, rather than the numeric valuesiobde andifun. Similarly, all register identifiers are shown
using their names, rather than their numeric values, with-* " indicating that no register access is
required.

Register file: This section displays the values of the eight program registThe register that has been
updated most recently is shown highlighted in light blue.giBer contents are not displayed until
after the first time they are set to nonzero values.

Remember that when an instruction writes to a program egiste register file is not updated until
the beginning of the next clock cycle. This means that youtrsiep the simulator one more time to
see the update take place.

Stat: This shows the status of the current instruction being exelcurhe possible values are:

ACK: No problem encountered.

ADR: An addressing error has occurred either trying to read druictgon or trying to read or write
data. Addresses cannot excéded FFF.

I NS: Anillegal instruction was encountered.
HLT: A hal t instruction was encountered.

Condition codes: These show the values of the three condition cod&s:SF, andOF.

Remember that when an instruction changes the conditioasgdbe condition code register is not
updated until the beginning of the next clock cycle. This nseihat you must step the simulator one
more time to see the update take place.

The processor state illustrated in Figure 2 is for the se@xedution of line 38 of thasum yo program
shown in Figure 1. We can see that the program counter@g@6b, that it has processed the instruction
addl %bx %ecx, that registe@eax holdsOxcd, the sum of the first two array elements, &¥@dx
holds 3, the count that is about to be decremented. Reistex holdsOx 1c, the address of the third array
element. Registe¥ebx still holds the value 4 (from line 36) but there is a pendingtevof Ox FFFFFFFF

to this register (sincestE is set to%ebx andvalk is set toOXx FFFFFFFF). This write will take place at
the start of the next clock cycle.

The window depicted in Figure 3 shows the object code fileithbéing executed by the simulator.The edit
box identifies the file name of the program being executed. cévuedit the file name in this window and
click the Load button to load a new program. The left hand side of the displeyvs the object code being
executed, while the right hand side shows the text from teerably code file. The center has an asterisk
(*) to indicate which instruction is currently being simulté& his corresponds to line 38 of tasum yo
program shown in Figure 1.

The window shown in Figure 4 shows the contents of the mentiosirows only those locations between the
minimum and maximum addresses that have changed sincedfi@pr began executing. Each row shows
the contents of four memory words. Thus, each row shows 1éshyft the memory, where the addresses
of the bytes differ in only their least significant hexadeaimigits. To the left of the memory values is the

“root” address, where the least significant digit is showri-ds Each column then corresponds to words

with least significant address digiix0, 0x4, 0x8, andOxc. The example shown in Figure 4 has arrows
indicating memory location8x00e0, 0x00e4, 0x00e8, andOx00ec.

The memory contents illustrated in the figure show the stackents of theasum yo program shown in
Figure 1 during the execution of tf®umprocedure. Looking at the stack operations that have takea® p
so far, we see th&tesp and%ebp were initialized to0x100 (lines 3 and 4). The call ttvai n on line 5
pushes the return point@x 011, which is written to addres8x00f c. Procedurdvhi n starts by pushing
%ebp, writing 0x100 to 0x00f 8. It then pushes the value &kax (line 18), writing0x4 to 0x00f 4
and%edx (line 20), writing0x 14 (the address of the array) @x00f 0. The call toSumon line 21 causes
the return pointefx3d to be written to addres3x00ec. Within Sum pushing¥ebp causefxf 8 to be
written to addres®x00e8. That accounts for all of the words shown in this memory @igpand for the
stack pointer being set taxe8.

Figure 5 shows the control panel window for the SEQ+ simulatben executing the same object code file
and when at the same point in this program. We can see thahthelidference is in the ordering of the
stages and the different signals listed. These signalegoond to those in CS:APP2e Figure 4.40. The
SEQ+ simulator also generates code and memory windows.eThease identical format to those for the
SEQ simulator.

3.3 PIPE Simulator

The PIPE simulator also generates three windows. Figure@skhe control panel. It has the same set
of controls, and the same display of the register file and itiondcodes. The middle section shows the
state of the pipeline registers. The different fields cqoesl to those in CS:APP2e Figure 4.52. At the
bottom of this panel is a display showing the number of cythes have been simulated (not including the
initial cycles required to get the pipeline flowing), the ruen of instructions that have completed, and the
resulting CPI.

As illustrated in the close-up view of Figure 7, each pipeliegister is displayed with two parts. The
upper values in white boxes show the current values in thelipgregister. The lower values with a gray
background show the inputs to pipeline register. Theseheilloaded into the register on the next clock
cycle, unless the register bubbles or stalls.

The flow of values through the PIPE simulator is quite différfieom that for the SEQ or SEQ+ simulator.

With SEQ and SEQ+, the control panel shows the values reguttbm executing a single instruction. Each
step of the simulator performs one complete instructiorcetien. With PIPE, the control panel shows the
values for the multiple instructions flowing through thegdipe. Each step of the simulator performs just
one stage’s worth of computation for each instruction.

Figure 8 shows the code display for the PIPE simulator. Thadb is similar to that for SEQ and SEQ+,
except that rather than a single marker indicating whictriiegion is being executed, the display indicates
which instructions are in each state of the pipeline, ushyacterd-, D, E, M andW for the fetch, decode,

B v86 Processor: seq+-std.hcl i Lﬂﬁ
Quit | Go Stop Step Reset / Controls
Simulator Speed (10"log Hz)
a4
| s
Processor State
s Stage
00000000/ signals
Memory Stage 9
Crd walE
H FFFEFFFFE
Execute Stage
vald valB dstE dsth srca srcB
00000000] 00000000 2ebs ———— | ———=|———-
Decode Stage
Instr ré rB walC walP
irmowl |----|%ebx [FFFFFEFF 00000071
Fetch Stage
FC
0D0000EE |
PC Stage
pChd plnste pfalc pifal pifalP
N || addl 00000000 00000000 0000006E
Register File Register
Zeax Zecx Zedx Zehx %esp %ehp %esi Zedi - file
cd 1c d 4] e8] ed ci
Stat amx Condition Codes z 05000 Condition
\ - codes
o~ Status

Figure 5: Main control panel for SEQ+ simulator

10

% Y86 Processor: pipe-std.hd I =LY ﬁ

Quit | Go | Stop | Step | Reset | le= Controls

Simulator Speed {10%log Hz)
3

| 2i=8
Pipeline Registers
Stat Instr walE valll dstE cstM e Pipeline
W State a0k jne 00000000 00000000 ---- ---- stages
Input A0E mrmowl 00000018 000000CO ---- %esi

Memory Stage

It Cr valE vald, dstE dsthd
Imrmowl| ¥ [DO000018/00000000)----|%es1

nop ¥ 00000000 00000000

Execute Stage

Stat Instr valC wald walB dstE dstM srcaA sreB
E State BUE nop 00000000 00000000 00000000 —--= === === —==—
Input A0K addl 00000000 000000cO 00000000 %eax ---- Zesl %eax

Decode Stage

Stat Instr r rB walC walP
) State 20¥ addl %esi %easx 00000000 DOODO0G3
Input A0 irmowl ---- Zebx 00000004 00000069

! Fetch Stage

Stat predPC
F State z0x 00000063
Input ACK 00000053

! Register

Register File | file
Feax FecK Fedx Fehx esp Tebp %esi Fedi Status &
d 18] B|EfEfEfef &8 &8 d| | condition

Stat a0k Condition Codes 2 05000 — codes

L
Performance cCyces 27 instructions | 24 [CPI 1.12 Perfgrmance
monitor

Figure 6: Main control panel for PIPE simulator

11

W

atat Instr

walE

seal i

dstE clsth

| State

ADE qne

gooooooo) 0000000l | —-——-—-) ----

Current state

[Input_&0F scmovl 00000018 000000G0 ———- zesi]« ~edisterinputs

Figure 7: View of single pipe register in control panel foPElsimulator

[!a: Program Code

==

Set wp stack pointer
Set wp base pointer
Execnte main program

4 # 4

Temdinate progran

Puzh 4

Push arrap
sumfarran, 43

ecx = Start
edx = Count
sum = 0

4 # 4

set condition codes

get Fstart
add te sum

Start++

connt--

o4 # o o o

Stop when 0

File g3 f?EE—cndei'asum. yo Load

Ox0 30£40001000 init: immeowl stack, %esp
Ox& 20£50001000 immevl stack, %ebp
Oxe 2024000000 call Main
Oxd1 o0 halt
Oxi4 Odooooon arcap: . long Oxd
Oxig cO000000 clong Oxc
Oxdec O000bOOOD clong QxbO0
OxZ0 00a00000 long Oxa0on

" Ox24 a0Gf Main: pushl %ebp
OxZe 2045 comowvl %esp, Sebp
Oxzg 20£00400000 immovl 54, %eax
OxZe a00f] pushl %eax
Ox20 20£21400000 iomowl arrap, %eds
Ox36 alZf pushl %edx
Ox38 2042000000 call sum
Oxad 2054 comowvl %ebp, sesp
Ox2f bOGE popl %ebp
Ox41 a0 et
Ox42 a0Gf S pushl %ebp
Oxd44 2045 ool %esp, %ebp
Ox4E ES0150800000 momovl 8 {%ebph, Geox
Oxd e 50250c00000] mmowl 12 {%ebp), %edx
0xEZ E200 xorl Geeam, %eax
OxE4 G222 andl Gedx, %edx
OxE6 7378000000 je End
0xEh SOG100000000@ Nt () Loop: momowl {%ecx), %Besi
OxEl EOED addl %eszi, %eax
OxE3 20L£30400000Q)F immovl 54, %ebx
OxE3 E031 addl %ebx, %ecx
OxEb ZOELIEEELLEEE dimowl $-1,%ebx
0x71 E0O3Z addl %ebx, %edx
0x73 ?45hO00000 w jne Loop
Ox78 2054 End: comowvl %ebp, Sesp
0x7a bOSE popl %ebp
Ox7c 90 ret

Object code Currently executing instructions

Control

Assembly
code

Figure 8: Code display window for PIPE simulator

12

execute, memory, and write-back stages.

The PIPE simulator also generates a window to display theaneoontents. This has an identical format
to the one shown for SEQ (Figure 4).

The example shown in Figures 6 and 8 show the status of thdmdpehen executing the loop in lines
34—-40 of Figure 1. We can see that the simulator has beguretoad iteration of the loop. The status of
the stages is as follows:

Write back: The loop-closing ne instruction (line 40) is finishing.

Memory: Thent novl instruction (line 34) has just redik0CO from addres©9x018. We can see the
address ivalE of pipeline register M, and the value read from memory attipei ofvalM to pipeline
register W.

Execute: This stage contains a bubble. The bubble was inserted dine todd-use dependency between
thenr novl instruction (line 34) and thaddl instruction (line 35). It can be seen that this bubble
acts like anop instruction. This explains why there is no instruction iigdtie 8 labeled with “E.”

Decode: Theadd! instruction (line 35) has just reéik 00Dfrom registe®eax. It also readdx00Dfrom
register%esi , but we can see that the forwarding logic has instead usedallne 0x0CO that has
just been read from memory (seen as the inputaid! in pipeline register W) as the new value of
valA (seen as the input taalA in pipeline register E).

Fetch: Thei r movl instruction (line 38) has just been fetched from addfed363. The new value of the
PC is predicted to b6x069.

Associated with each stage is its status fleticat This field shows the status of the instruction in that stage
of the pipeline. Statu&OK means that no exception has been encountered. StatusRldBiendicates
that a bubble is in this stage, rather than a normal instmctOther possible status values af®R when

an invalid memory location is referencdd\S when an illegal instruction code is encounterBdP when

a problem arose in the pipeline (this occurs when both tHeastd the bubble signals for some pipeline
register are set to 1), arkd T when a halt instruction is encountered. The simulator wapsvhen any of
these last four cases reaches the write-back stage.

Carrying the status for an individual instruction througie fpipeline along with the rest of the informa-
tion about that instruction enables precise handling ofdifferent exception conditions, as described in
CS:APP2e Section 4.5.9.

4 Some Advice

The following are some miscellaneous tips, learned froneagpce we have gained in using these simula-
tors.

e Get familiar with the simulator operatiorl.ry running some of the example programs inyl&6- code

directory. Make sure you understand how each instructias g@cessed for some small examples.
Watch for interesting cases such as mispredicted branidzesinterlocks, and procedure returns.

13

e You need to hunt around for informatioriseeing the effect of data forwarding is especially tricky.
There are seven possible sources for sigiadh in pipeline register E, and six possible sources for
signalvalB. To see which one was selected, you need to compare the opheéde pipeline register
fields to the values of the possible sources. The possibleasoare:

R[d_srcA] The source register is identified by the inpussteA in pipeline register E. The register
contents are shown at the bottom.

R[d_srcB | The source register is identified by the inpusstaB in pipeline register E. The register
contents are shown at the bottom.

D_valP This value is part of the state of pipeline register D.
e_valE This value is at the input to fiellE in pipeline register M.
M_valE This value is part of the state of pipeline register M.
m_valM This value is at the input to fieldaIM in pipeline register W.
W_valE This value is part of the state of pipeline register W.
W_valM This value is part of the state of pipeline register M.

e Do not overwrite your code.Since the data and code share the same address space, it i eas
have a program overwrite some of the code, causing comei@sovhen it attempts to execute the
overwritten instructions. It is important to set up the ktéx be far enough away from the code to
avoid this.

e Avoid large address valuesThe simulators do not allow any addresses greater thadFFF. In
addition, the memory display becomes unwieldy if you modifgmory locations spanning a wide
range of addresses.

e Be aware of some “features” of the GUI-mode simulat@sifs, ssiM+, andPSiM.)

— You must must execute the programs from their home direxotin other words, to ruasim
or ssiM+, you must be in theeq directory, while you must be in thel pe subdirectory to run
PSIM. This requirement arises due to the way the Tcl interpreteaites the configuration file
for the simulator.

— If you are running in GUI mode on a Unix box, remember to itlitiathe DISPLAY environ-
ment variable:

uni x> setenv DI SPLAY nyhost. edu: 0
— With some Unix X Window managers, the “Program Code” windosgibs life as a closed

icon. If you don't see this window when the simulator stayw®,’ll need to expand the expand
manually by clicking on it.

— With some Microsoft Windows X servers, the “Memory Conténtendow does not automat-
ically resize itself when the memory contents change. Isdlmases, you'll need to resize the
window manually to see the memory contents.

— The simulators will terminate with a segmentation faultayask them to execute a file that is
not a valid Y86 object file.

14

