BITS, BYTES, AND INTEGERS

COMPUTER ARCHITECTURE AND ORGANIZATION
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Making ints from bytes
- Summary
Encoding Byte Values

- **Byte = 8 bits**
 - Binary: 00000000₂ to 11111111₂
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal: 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Boolean Algebra

-developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And

- $A \& B = 1$ when both $A=1$ and $B=1$

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

- $A | B = 1$ when either $A=1$ or $B=1$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not

- $\neg A = 1$ when $A=0$

<table>
<thead>
<tr>
<th>\neg</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

- $A ^ B = 1$ when either $A=1$ or $B=1$, but not both

<table>
<thead>
<tr>
<th>$^$</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise
 - $01101001 \& 01010101 = 01000001$
 - $01101001 \mid 01010101 = 01111101$
 - $01101001 \^ 01010101 = 00111100$
 - $\sim 01010101 = 10101010$

- All of the Properties of Boolean Algebra Apply
Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- Examples (Char data type [1 byte])
 - In gdb, p/t 0xE prints 1110
 - ~0x41 → 0xBE
 - ~01000001₂ → 10111110₂
 - ~0x00 → 0xFF
 - ~00000000₂ → 11111111₂
 - 0x69 & 0x55 → 0x41
 - 01101001₂ & 01010101₂ → 01000001₂
 - 0x69 | 0x55 → 0x7D
 - 01101001₂ | 01010101₂ → 01111101₂
Representing & Manipulating Sets

- **Representation**
 - Width w bit vector represents subsets of $\{0, \ldots, w-1\}$
 - $a_i = 1$ if $j \in A$
 - 01101001 $\{0, 3, 5, 6\}$
 - 76543210
 - MSB Least significant bit (LSB)
 - 01010101 $\{0, 2, 4, 6\}$
 - 76543210

- **Operations**
 - & Intersection 01000001 $\{0, 6\}$
 - | Union 01111101 $\{0, 2, 3, 4, 5, 6\}$
 - ^ Symmetric difference 00111100 $\{2, 3, 4, 5\}$
 - ~ Complement 10101010 $\{1, 3, 5, 7\}$
Contrast: Logic Operations in C

- **Contrast to Logical Operators**
 - &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Short circuit

- **Examples (char data type)**
 - !0x41 → 0x00
 - !0x00 → 0x01
 - !!0x41 → 0x01
 - 0x69 && 0x55 → 0x01
 - 0x69 || 0x55 → 0x01
 - p && *p (avoids null pointer access)
Shift Operations

- **Left Shift:** \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right Shift:** \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on left

- **Undefined Behavior**
 - Shift amount \(< 0 \) or \(\geq \) word size

Example Table

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(01100010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>(00010000)</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>(00011000)</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>(00011000)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>(10100010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>(00010000)</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>(00101000)</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>(11101000)</td>
</tr>
</tbody>
</table>
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

- Making ints from bytes
- Summary
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
How to encode unsigned integers?

- Just use exponential notation (4 bit numbers)
 - \(0110 = 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 6\)
 - \(1001 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 9\)
 - (Just like \(13 = 1 \times 10^1 + 3 \times 10^0\))

- No negative numbers, a single zero (0000)

- What happens if we represent positive & negative numbers as an unsigned number plus sign bit?
How to encode signed integers?

- Want: Positive and negative values
- Want: Single circuit to add positive and negative values (i.e., no subtractor circuit)
- Solution: Two’s complement
- Positive numbers easy (4 bits)
 - $0110 = 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 6$
- Negative numbers a bit weird
 - $1 + -1 = 0$, so $0001 + X = 0$, so $X = 1111$
 - $-1 = 1111$ in two’s complement
Unsigned & Signed Numeric Values

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>$B2U(X)$</th>
<th>$B2T(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

C short 2 bytes long

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example (Cont.)

\[
x = \quad 15213: \ 00111011 \ 01101101 \\
y = \quad -15213: \ 11000100 \ 10010011
\]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum
15213
-15213
Numeric Ranges

Unsigned Values
- \(U_{\text{Min}} = 0 \) (000...0)
- \(U_{\text{Max}} = 2^w - 1 \) (111...1)

Two's Complement Values
- \(T_{\text{Min}} = -2^{w-1} \) (100...0)
- \(T_{\text{Max}} = 2^{w-1} - 1 \) (011...1)

Other Values
- Minus 1 (111...1)

Values for \(W = 16 \)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>TMax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

- **Observations**
 - $\mid T_{Min} \mid = T_{Max} + 1$
 - Asymmetric range
 - $U_{Max} = 2 \times T_{Max} + 1$

- **C Programming**
 - `#include <limits.h>`
 - Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
 - Values platform specific
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- **Conversion, casting**
- Expanding, truncating
- Addition, negation, multiplication, shifting

- Making ints from bytes
- Summary
Mappings between unsigned and two’s complement numbers: keep bit representations and reinterpret.
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Conversion Visualized

- 2’s Comp. → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

![Diagram showing two’s complement range and unsigned range conversion](attachment:image)

- **2’s Complement Range**:
 - \(T_{Min} \)
 - \(T_{Max} \)

- **Unsigned Range**:
 - \(U_{Max} - 1 \)
 - \(U_{Max} \)
 - \(U_{Max} + 1 \)

- **Unsigned Conversion**:
 - \(T_{Max} \to U_{Max} - 1 \)
 - \(T_{Max} + 1 \to U_{Max} \)
 - \(0 \to 0 \)
 - \(-1 \to U_{Max} - 1 \)
 - \(-2 \to U_{Max} - 2 \)
Negation: Complement & Increment

Claim: Following Holds for 2’s Complement
\[\sim x + 1 = -x \]

Complement

Observation: \[\sim x + x = 1111...111 = -1 \]

\[\begin{array}{c}
x \quad \text{100111101} \\
+ \quad \sim x \quad \text{01100010} \\
\hline
-1 \quad \text{111111111}
\end{array} \]
Complement & Increment Examples

$x = 15213$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$\sim x$</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>$\sim x + 1$</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~ 0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>$\sim 0 + 1$</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U

- **Casting**
 - Explicit casting between signed & unsigned same as U2T and T2U
    ```c
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```
 - Implicit casting also occurs via assignments and procedure calls
    ```c
    tx = ux;
    uy = ty;
    ```
Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, *signed values implicitly cast to unsigned*
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`

<table>
<thead>
<tr>
<th>Constant₁</th>
<th>Constant₂</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td><code>==</code></td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><code><</code></td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td><code>></code></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td><code>></code></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><code><</code></td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td><code>></code></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td><code>></code></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><code><</code></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td><code>></code></td>
<td>signed</td>
</tr>
</tbody>
</table>
Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

- Similar to code found in FreeBSD's implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf("%s\n", mybuf);
}
Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 . . .
}

/* Declaration of library function memcpy */
void *memcpy(void *dest, void *src, size_t n);
Summary

Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - `int` is cast to `unsigned`!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting

- Making ints from bytes
- Summary
Sign Extension

- **Task:**
 - Given \(w\)-bit signed integer \(x\)
 - Convert it to \(w+k\)-bit integer with same value

- **Rule:**
 - Make \(k\) copies of sign bit:
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0\)

\(k\) copies of MSB

\(X \rightarrow X'\)

\(k \leftarrow \rightarrow w\)
Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

Code Example:
```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```
Summary:
Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- **Integers**
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - **Addition, negation, multiplication, shifting**
- Summary
Unsigned Addition

Operands: w bits

True Sum: $w+1$ bits

Discard Carry: w bits

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**

$$s = \text{UAdd}_w(u, v) = u + v \mod 2^w$$

$$\text{UAdd}_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}$$
Visualizing (Mathematical) Integer Addition

- Integer Addition
 - 4-bit integers u, v
 - Compute true sum $\text{Add}_4(u, v)$
 - Values increase linearly with u and v
 - Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum ≥ 2^w
 - At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

UAdd$_4$(u, v)

Overflow
Mathematical Properties

- **Modular Addition Forms an Abelian Group**
 - **Closed** under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
 - **Commutative**
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
 - **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
 - **0 is additive identity**
 \[\text{UAdd}_w(u, 0) = u \]
 - **Every element has additive inverse**
 - Let \[\text{UComp}_w(u) = 2^w - u \]
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two's Complement Addition

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

- **TAdd and UAdd have Identical Bit-Level Behavior**
 - **Signed vs. unsigned addition in C:**
    ```
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```
 - Will give \(s == t \)
TAdd Overflow

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 111...1</td>
<td>011...1</td>
</tr>
<tr>
<td>0 100...0</td>
<td>000...0</td>
</tr>
<tr>
<td>0 000...0</td>
<td>100...0</td>
</tr>
<tr>
<td>1 011...1</td>
<td>-2^w-1-1</td>
</tr>
<tr>
<td>1 000...0</td>
<td>-2^w</td>
</tr>
</tbody>
</table>

- \(000...0 \) represents 0
- \(100...0 \) represents \(-2^w\)
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

- **Functionality**
 - True sum requires \(w+1 \) bits
 - Drop off MSB
 - Treat remaining bits as 2’s comp. integer

\[
TAdd(u, v) = \begin{cases}
 u + v + 2^w & u + v < T_{\text{Min}}^w \\
 u + v & T_{\text{Min}}^w \leq u + v \leq T_{\text{Max}}^w \\
 u + v - 2^w & T_{\text{Max}}^w < u + v
\end{cases} \tag{NegOver} \tag{PosOver}
\]
Multiplication

- Computing Exact Product of \(w \)-bit numbers \(x, y \)
 - Either signed or unsigned

- Ranges
 - Unsigned: \(0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1 \)
 - Up to \(2^w \) bits
 - Two’s complement min: \(x \times y \geq (-2^{w-1}) \times (2^{w-1}-1) = -2^{2w-2} + 2^{w-1} \)
 - Up to \(2^{w-1} \) bits
 - Two’s complement max: \(x \times y \leq (-2^{w-1})^2 = 2^{2w-2} \)
 - Up to \(2^w \) bits, but only for \((TMin_w)^2\)

- Maintaining Exact Results
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits
- **Implements Modular Arithmetic**
 \[\text{UMult}_w(u, v) = u \cdot v \mod 2^w \]
Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

```c
malloc(ele_cnt * ele_size)
```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL) {
 /* malloc failed */
 return NULL;
 }
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
XDR Vulnerability

```c
malloc(ele_cnt * ele_size)
```

- What if:
 - `ele_cnt` = $2^{20} + 1$
 - `ele_size` = 4096 = 2^{12}
 - Allocation = ??

- How can I make this function secure?
Signed Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

- **Standard Multiplication Function**
 - Ignores high order w bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same
Power-of-2 Multiply with Shift

- **Operation**
 - \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned

- **Examples**
 - \(u \ll 3 \) \(\equiv \) \(u \times 8 \)
 - \(u \ll 5 - u \ll 3 \) \(\equiv \) \(u \times 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
C Function

```c
int mul12(int x) {
    return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sal1 $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

- C compiler automatically generates shift/add code when multiplying by constant
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
- \(u >> k \) gives \(\lfloor u / 2^k \rfloor \)
- Uses logical shift

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D 0111011 01101101</td>
</tr>
<tr>
<td>(x >> 1)</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6 00011101 10110110</td>
</tr>
<tr>
<td>(x >> 4)</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6 00000011 10110110</td>
</tr>
<tr>
<td>(x >> 8)</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B 00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```c
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- Quotient of Signed by Power of 2
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

Operands:

\[
\begin{array}{c|c|c}
\hline
& x & 2^k \\
\hline
\hline
\end{array}
\]

Division:

\[
\begin{array}{c|c|c}
\hline
& x / 2^k \\
\hline
\hline
\end{array}
\]

Result: \(\text{RoundDown}(x / 2^k) \)

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)
Arithmetic: Basic Rules

- Unsigned ints, 2’s complement ints are isomorphic rings: isomorphism = casting

- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
Today: Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary

- Making ints from bytes
- Summary
Properties of Unsigned Arithmetic

- **Unsigned Multiplication with Addition Forms Commutative Ring**
 - Addition is commutative group
 - Closed under multiplication
 \[0 \leq \text{UMult}_w(u,v) \leq 2^w - 1 \]
 - Multiplication Commutative
 \[\text{UMult}_w(u,v) = \text{UMult}_w(v,u) \]
 - Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u,v)) = \text{UMult}_w(\text{UMult}_w(t,u), v) \]
 - 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
 - Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u,v)) = \text{UAdd}_w(\text{UMult}_w(t,u), \text{UMult}_w(t,v)) \]
Properties of Two’s Comp. Arithmetic

- **Isomorphic Algebras**
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two’s complement multiplication and addition
 - Truncating to w bits

- **Both Form Rings**
 - Isomorphic to ring of integers mod 2^w

- **Comparison to (Mathematical) Integer Arithmetic**
 - Both are rings
 - Integers obey ordering properties, e.g.,

 $u > 0 \implies u + v > v$
 $u > 0, v > 0 \implies u \cdot v > 0$

 - These properties are not obeyed by two’s comp. arithmetic

 $T_{Max} + 1 == T_{Min}$
 $15213 \times 30426 == -10030$ (16-bit words)
Why Should I Use Unsigned?

- *Don’t Use Just Because Number Nonnegative*
 - Easy to make mistakes

    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```
 - Can be very subtle

    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
        ...
    ```

- *Do Use When Performing Modular Arithmetic*
 - Multiprecision arithmetic

- *Do Use When Using Bits to Represent Sets*
 - Logical right shift, no sign extension
Today: Integers

- Representing information as bits
- Bit-level manipulations

Integers
- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary

- Making ints from bytes
- Summary
Byte-Oriented Memory Organization

- Programs Refer to Virtual Addresses
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - System provides address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

- Compiler + Run-Time System Control Allocation
 - Where different program objects should be stored
 - All allocation within single virtual address space
Machine Words

- **Machine Has “Word Size”**
 - Nominal size of integer-valued data
 - Including addresses
 - Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems use 64 bits (8 bytes) words
 - Potential address space \(\approx 1.8 \times 10^{19} \) bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- Addresses Specify Byte Locations
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Where do addresses come from?

- The compilation pipeline

```plaintext
prog P:
  foo():
  end P

P:
  push ...
  inc SP, x
  jmp _foo
  foo: ...

Library Routines:
  push ...
  inc SP, 4
  jmp 75
  ...

Library Routines:
  jmp 175
  ...

Compilation Assembly Linking Loading
```

Compilation
Assembly
Linking
Loading
```c
int A[10];

int main() {
    int j = 10;
    printf("Location and difference %p %ld(1-0) %ld(1-0)\n", 
           &A[0],
           &A[1] - A);
    printf("Int differences %ld(sizeof) %ld(1-0) %ld(2-0) %ld(3-0)\n", 
           sizeof(A[0]),
    printf("Byte differences %ld(sizeof) %ld(1-0) %ld(2-0) %ld(3-0)\n", 
           sizeof(A[0]),
           (char*)&A[1] - (char*)&A[0],
           (char*)&A[2] - (char*)&A[0],
    printf(" j Value %d pointer %p\n", j, &j);

    return 0;
}
```
```c
int A[10];

int main() {
    int j = 10;
    printf("Location and difference \%p
            \%ld(1-0)  \%ld(1-0)\n",
            &A[0],
            &A[1] - A);
}
```
int A[10];

int main() {
 int j = 10;
 printf("Location and difference %p %ld(1-0) %ld(1-0)\n",
 &A[0],
 &A[1] - A);

 Location and difference 0x601040 1(1-0) 1(1-0)
int A[10];

int main() {
...
 printf(" Int differences
%ld(sizeof) %ld(1-0) %ld(2-0) %ld(3-0)\n",
 sizeof(A[0]),
```c
int A[10];

int main() {
...
    printf("    Int differences
%ld(sizeof) %ld(1-0) %ld(2-0) %ld(3-0)\n",
    sizeof(A[0]),

    Int differences 4(sizeof) 1(1-0) 2(2-0) 3(3-0)
```
int A[10];

int main() {
 int j = 10;
 ...
 printf(" Byte differences %ld(sizeof)
 %ld(1-0) %ld(2-0) %ld(3-0)\n",
 sizeof(A[0]),
 (char*)&A[1] - (char*)&A[0],
 (char*)&A[2] - (char*)&A[0],
 printf(" j Value %d pointer %p\n",
 j, &j);
```c
int A[10];

int main() {
    int j = 10;
    ...
    printf(" Byte differences %ld(sizeof)
    %ld(1-0) %ld(2-0) %ld(3-0)\n",
    sizeof(A[0]),
    (char*)&A[1] - (char*)&A[0],
    (char*)&A[2] - (char*)&A[0],
    printf(" j Value %d pointer %p\n", j, &j);
    Byte differences 4(sizeof) 4(1-0) 8(2-0) 12(3-0)
```
int A[10];

int main() {
 int j = 10;
...
 printf("j Value %d pointer %p\n", j, &j);

 return 0;
}

int A[10];

int main() {
 int j = 10;
 ...
 printf("j Value %d pointer %p\n", j, &j);
 return 0;
}

j Value 10 pointer 0x7fff860787ec
How should bytes within a multi-byte word be ordered in memory?

Conventions

- Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
- Little Endian: x86
 - Least significant byte has lowest address
Byte Ordering Example

- **Big Endian**
 - Least significant byte has highest address

- **Little Endian**
 - Least significant byte has lowest address

- **Example**
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

Big Endian

<table>
<thead>
<tr>
<th></th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>

Little Endian

<table>
<thead>
<tr>
<th></th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
<td></td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

- Disassembly
 - Text representation of binary machine code
 - Generated by program that reads the machine code
- Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- Deciphering Numbers
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, start[i]);
    printf(\"\n\");
}
```

Printf directives:
- `%p`: Print pointer
- `%x`: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11fffffcbb 0x6d
0x11fffffcba 0x3b
0x11fffffcbb 0x00
```

```c
0x11fffffcbb 0x00
```
Data alignment

- A memory address a, is said to be n-byte aligned when a is a multiple of n bytes.
 - n is a power of two in all interesting cases
 - Every byte address is aligned
 - A 4-byte quantity is aligned at addresses 0, 4, 8,…
- Some architectures require alignment (e.g., MIPS)
- Some architectures tolerate misalignment at performance penalty (e.g., x86)
Data alignment in C structs

- Struct members are never reordered in C & C++
- Compiler adds padding so each member is aligned
 - struct {char a; char b;} no padding
 - struct {char a; short b;} one byte pad after a
- Last member is padded so the total size of the structure is a multiple of the largest alignment of any structure member (so struct can go in array)
 - struct containing int requires 4-byte alignment
 - struct containing long requires 8-byte (on 64-bit arch)
Data alignment malloc

- malloc(1)
 - 16-byte aligned results on 32-bit
 - 32-byte aligned results on 64-bit
- int posix_memalign(void **memptr, size_t alignment, size_t size);
 - Allocates size bytes
 - Places the address of the allocated memory in *memptr
 - Address will be a multiple of alignment, which must be a power of two and a multiple of sizeof(void *)
Representing Integers

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3B6D

int A = 15213;

long int C = 15213;

int B = -15213;

Two’s complement representation (Covered later)
Representing Pointers

Different compilers & machines assign different locations to objects

<table>
<thead>
<tr>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td>D4</td>
<td>0C</td>
</tr>
<tr>
<td>FF</td>
<td>F8</td>
<td>89</td>
</tr>
<tr>
<td>FB</td>
<td>FF</td>
<td>EC</td>
</tr>
<tr>
<td>2C</td>
<td>BF</td>
<td>FF</td>
</tr>
</tbody>
</table>

```c
int B = -15213;
int *P = &B;
```
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30$+i$
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```c
char S[6] = "18243";
```
Integer C Puzzles

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

- \(x < 0 \) \(\Rightarrow \) \((x*2) < 0\)
- \(ux >= 0 \)
- \(x & 7 == 7 \) \(\Rightarrow \) \((x<<30) < 0\)
- \(ux > -1 \)
- \(x > y \) \(\Rightarrow \) -x < -y
- \(x * x >= 0 \)
- \(x > 0 && y > 0 \) \(\Rightarrow \) x + y > 0
- \(x >= 0 \) \(\Rightarrow \) -x <= 0
- \(x <= 0 \) \(\Rightarrow \) -x >= 0
- \((x|-x)>>31 == -1\)
- \(ux >> 3 == ux/8 \)
- \(x >> 3 == x/8 \)
- \(x & (x-1) != 0 \)