FLOATING POINT

COMPUTER ARCHITECTURE AND ORGANIZATION
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Fractional binary numbers

What is 1011.101_2?
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \[\sum_{k=-j}^{i} b_k \times 2^k \]
Fractional Binary Numbers: Examples

<table>
<thead>
<tr>
<th>Value</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 3/4</td>
<td>101.11₂</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.111₂</td>
</tr>
<tr>
<td>1 7/16</td>
<td>1.0111₁₂</td>
</tr>
<tr>
<td>63/64</td>
<td>0.11111₁₂</td>
</tr>
</tbody>
</table>

Observations
- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.11111₁₂... are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
- Use notation $1.0 - \varepsilon$
Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

- Value
 -
 - $1/3$ 0.0101010101[01]...$_2$
 - $1/5$ 0.001100110011[0011]...$_2$
 - $1/10$ 0.0001100110011[0011]...$_2$
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard
Floating Point Representation

- **Numerical Form:**
 \[(-1)^s M \times 2^E \]
 - **Sign bit** \(s \) determines whether number is negative or positive
 - **Significand** \(M \) normally a fractional value in range \([1.0, 2.0)\).
 - **Exponent** \(E \) weights value by power of two

- **Encoding**
 - **MSB** \(S \) is sign bit \(s \)
 - **exp field** encodes \(E \) (but is not equal to \(E \))
 - **frac field** encodes \(M \) (but is not equal to \(M \))
Precisions

- **Single precision: 32 bits**

 - s
 - 8-bits
 - exp
 - 23-bits
 - frac

- **Double precision: 64 bits**

 - s
 - 11-bits
 - exp
 - 52-bits
 - frac

- **Extended precision: 80 bits (Intel only)**

 - s
 - 15-bits
 - exp
 - 63 or 64-bits
 - frac
Normallized Values

- Condition: exp \neq 000...0 and exp \neq 111...1

- Exponent coded as *biased* value: $E = Exp - Bias$
 - Exp: unsigned value exp
 - $Bias = 2^{k-1} - 1$, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

- Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - $xxx...x$: bits of frac
 - Minimum when 000...0 ($M = 1.0$)
 - Maximum when 111...1 ($M = 2.0 - \varepsilon$)
 - Get extra leading bit for “free”
Normalized Encoding Example

- **Value:** Float $F = 15213.0$;
 - $15213_{10} = 11101101101101_2$
 - $= 1.1101101101101_2 \times 2^{13}$

- **Significand**
 - $M = 1.1101101101101$
 - $\frac{frac}{frac} = 1101101101101000000000000_2$

- **Exponent**
 - $E = 13$
 - $Bias = 127$
 - $Exp = 140 = 10001100_2$

- **Result:**
 - $s 10001100 1101101101101010000000000000$
Denormalized Values

- Condition: \(\text{exp} = 000\ldots0\)
- Exponent value: \(E = \text{-Bias} + 1\) (instead of \(E = 0 - \text{Bias}\))
- Significand coded with implied leading 0: \(M = 0.xxx\ldots x_2\)
 - \(xxx\ldots x\): bits of \(\text{frac}\)
- Cases
 - \(\text{exp} = 000\ldots0, \text{frac} = 000\ldots0\)
 - Represents zero value (why +0 and -0?)
 - \(\text{exp} = 000\ldots0, \text{frac} \neq 000\ldots0\)
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced
- \(1.23 \times 10^{-6}\) is normalized, \(0.01 \times 10^{-6}\) is denormalized
 - All +/- of unequal norms have non-zero result (gradual underflow)
Special Values

- Condition: $\text{exp} = 111\ldots1$

- Case: $\text{exp} = 111\ldots1$, $\text{frac} = 000\ldots0$
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$

- Case: $\text{exp} = 111\ldots1$, $\text{frac} \neq 000\ldots0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $\infty - \infty$, $\infty \times 0$
Visualization: Floating Point Encodings
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Tiny Floating Point Example

- **8-bit Floating Point Representation**
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the *frac*

- **Same general form as IEEE Format**
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0000</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0001</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0011</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1111</td>
<td>0</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1111</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1111</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1110</td>
<td>7</td>
<td>14/8*128 = 224</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1110</td>
<td>7</td>
<td>15/8*128 = 240</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1111</td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>

Denormalized numbers
- Closest to zero
- Largest denorm
- Smallest norm

Normalized numbers
- Closest to 1 below
- Closest to 1 above
- Largest norm
Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1 = 3$

Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is 3

[Diagram showing distribution of values with labels for denormalized, normalized, and infinity.]
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>$2^{-{23,52}} \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>Single ≈ 1.4 \times 10^{-45}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double ≈ 4.9 \times 10^{-324}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>$(1.0 - \varepsilon) \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>Single ≈ 1.18 \times 10^{-38}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double ≈ 2.2 \times 10^{-308}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01</td>
<td>00...00</td>
<td>$1.0 \times 2^{-{126,1022}}$</td>
</tr>
<tr>
<td>Just larger than largest denormalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>$(2.0 - \varepsilon) \times 2^{{127,1023}}$</td>
</tr>
<tr>
<td>Single ≈ 3.4 \times 10^{38}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double ≈ 1.8 \times 10^{308}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- **FP Zero Same as Integer Zero**
 - All bits = 0

- **Can (Almost) Use Unsigned Integer Comparison**
 - Must first compare sign bits
 - Must consider $-0 = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point Operations: Basic Idea

- $x +_f y = \text{Round}(x + y)$
- $x \times_f y = \text{Round}(x \times y)$

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
Rounding

- **Rounding Modes (illustrate with $ rounding)**

<table>
<thead>
<tr>
<th>Mode</th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>$-1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$-1</td>
</tr>
<tr>
<td>Round down (-∞)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$-2</td>
</tr>
<tr>
<td>Round up (+∞)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>$-1</td>
</tr>
<tr>
<td>Nearest Even (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$-2</td>
</tr>
</tbody>
</table>

- What are the advantages of the modes?
Closer Look at Round-To-Even

- **Default Rounding Mode**
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- **Applying to Other Decimal Places / Bit Positions**
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)
Rounding Binary Numbers

- Binary Fractional Numbers
 - “Even” when least significant bit is 0
 - “Half way” when bits to right of rounding position = 100…2

- Examples
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td>(<1/2—down)</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>(>1/2—up)</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>(1/2—up)</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>(1/2—down)</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
FP Multiplication

- \((-1)^{s_1} M_1 2^{E_1} \times (-1)^{s_2} M_2 2^{E_2}\)
- **Exact Result:** \((-1)^{\cdot} M \cdot 2^E\)
 - Sign \(s\): \(s_1 \land s_2\)
 - Significand \(M\): \(M_1 \times M_2\)
 - Exponent \(E\): \(E_1 + E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \texttt{frac} precision

- **Implementation**
 - Biggest chore is multiplying significands
Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition? \(\text{Yes} \)
 - But may generate infinity or NaN
 - Commutative? \(\text{Yes} \)
 - Associative? \(\text{No} \)
 - Overflow and inexactness of rounding
 - 0 is additive identity? \(\text{Yes} \)
 - Every element has additive inverse \(\text{Almost} \)
 - Except for infinities & NaNs

- Monotonicity
 - \(a \geq b \Rightarrow a+c \geq b+c ? \) \(\text{Almost} \)
 - Except for infinities & NaNs
Mathematical Properties of FP Mult

- **Compare to Commutative Ring**
 - Closed under multiplication? *Yes*
 - But may generate infinity or NaN
 - Multiplication Commutative? *Yes*
 - Multiplication is Associative? *No*
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity? *Yes*
 - Multiplication distributes over addition? *No*
 - Possibility of overflow, inexactness of rounding

- **Monotonicity**
 - $a \geq b \land c \geq 0 \Rightarrow a \ast c \geq b \ast c$? *Almost*
 - Except for infinities & NaNs
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Floating Point in C

- **C Guarantees Two Levels**
 - `float` single precision
 - `double` double precision

- **Conversions/Casting**
 - Casting between `int`, `float`, and `double` changes bit representation
 - `double/float` → `int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin
 - `int` → `double`
 - Exact conversion, as long as `int` has ≤ 53 bit word size
 - `int` → `float`
 - Will round according to rounding mode
Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```c
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers