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The Domain

n We are attempting to reduce power consumed by the 
caches and memory system.
o Not discs or screens.
o 16% of processor + cache energy for StrongARM is 

dissipated in the data cache.

n We focus on the data cache.  The instruction cache is 
amenable to hardware-only techniques.

n We are interested in power optimizations that are not 
just existing speed optimizations.

n Exploit compile time knowledge to avoid runtime work.
o Partially evaluate a program for certain hardware 

resources.

n We show how software can eliminate cache tag checks 
which saves energy.



The First Problem — Cache Tags

n Both set-associative and CAM-tag caches spend the 
major ity of their  energy in the tag check.

Individual 
accesses are 
moderate power. 
Most of the 
energy is in the 
tag check.

Individual 
accesses are high 
power because of 
multiple tag and 
data reads.

Individual 
accesses are low 
power.

Lowest miss 
rates.

Moderate miss 
rates.

High miss rates 
which means 
high energy 
usage.

Each memory 
location can be 
anywhere in a 
sub bank.

Each memory 
location has a 
small number 
(e.g., 4) homes.

Each memory 
location has a 
unique home.

CAM-tagSet-AssociativeDirect Mapped



The Solution — Pass Software 
Information To Hardware

n The compiler often knows when the program is 
accessing the same piece of memory.  Don’t 
check the cache tags for the second access.

n HW challenge — make this path low power.

n SW challenge — find the opportunities for use.
o Two compiler algorithms for two languages (C and 

Java).

n Interface challenge — minimize ISA changes, 
don’t disrupt HW, don’t expose too much HW 
detail.
o New flavors of memory ops are a common ISA 

change.

n Security challenge — Protect process data 
from other processes.
o Snoop on evicts, detect invalid state early in pipeline
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Direct Addressing

5 (Sext)

Instruction 
Fetch

lwda offset

32

r1 r2

1 sub-bank

Data

32

Offset 
Calculation

3 bank 18 tag

Hit?

5 offset

DA registers

da2

CAM
Tag       Stat

Software directly indexes 
into data RAM:
No tag checksRegister 

File



Spill Code Using Direct Address 
Registers

n Old code
o subu $sp, 64

o sw   $ra, 60($sp)

o sw   $fp, 56($sp)

o sw   $s0, 52($sp)

n Transformed code
o subu  $sp, 64

o swlda $ra,60($sp),$da0

o swda  $fp,56($sp),$da0

o swda  $s0,52($sp),$da0

n One tag check per line used for spilling.

n It is a simple transformation.
o Similar to load/store multiple on StrongARM

l Ld/st multiple is a limited model – can’t handle 
read-modify-write.

o Hardware only schemes capture many 
references, but add latency.



Compiler Algorithm (C)

§ Find dominance 
relationship.
§ E.g., Read of P[1] in A 

dominates read of P[0] in 
D.

§ Determine distance.
§ P[0] is offset –4 from P[1].
§ If dist == 0, done.

§ Determine alignment.
§ Stack & static data are 

aligned by our backend.
§ Loop unrolling to 

increase alignment.

§ Eliminate tag check in 
the read of P[0].

temp = P[1];

if (temp < 0)

if (P[0] < temp) {

temp = -temp;

A

B

C

D

Code from gsm in mediabench

int P[8];



C Compiler Infrastructure

§ We use SUIF, with a C backend.

§ Loop unrolling to increase aligned references.

§ Distance information from memory object offset.
§ Use simple, local information for aliases.

§ Profile information to set pre-loop break condition.
for(i=0; i<N; i++) {

A[i] = 0;

}

for(i=0; i<N; i++) {

if(&A[I] % line_size == 0) 
break;

A[I] = 0;

}

for(; i<N; i += 4) {

A[i + 0] = 0; A[i + 1] = 0;

A[i + 2] = 0; A[i + 3] = 0;

}



Results — C Implementation

Mediabench
n Data cache energy reduction 8.7 - 40%.

n Function entry/exit code not included — expect greater 
savings.



Java Compiler Infrastructure

§ FLEX is a bytecode to native compiler 
developed at MIT.

§ We wrote a MIPS back end
§ Modified GNU as to accept new memory operations.
§ Modified ISA simulator to track DAR state.

§ Loops are unrolled.

§ Object type is tracked for additional 
opportunity.
§ Allows low level optimization of access to e.g., hash 

code.



Results — Java Implementation
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n One big advantage —
function entry/exit 
code was 
transformed.
o Calling convention 

modified.

n Data cache power 
savings 26-31%

n No profile feedback.
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Results — Comparison with L0 
Cache
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n DARs usually tie L0 
or exceed it.

n When L0 exceeds 
DARs, DARs help L0.

Mediabench



Related Work

n Fisher & Ellis used loop unrolling to 
reduce memory bank conflicts.
o Barua expanded the work with Modulo 

Unrolling.

n Burd and Kin have proposed hardware L0 
caches.

n Andras’ FlexCache does software way-
prediction to software controlled array of 
tag registers.
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