
Solving Difficult HTM Problems Without Difficult Hardware

Owen S. Hofmann, Donald E. Porter, Christopher J. Rossbach, Hany E. Ramadan, Emmett Witchel
Department of Computer Sciences, University of Texas at Austin
{osh,porterde,rossbach,ramadan,witchel}@cs.utexas.edu

Abstract
There are several classes of operations, including I/O and
memory allocation, that are considered difficult to perform
as part of a transaction. To allow such operations inside of
transactions, previous hardware transactional memory sys-
tems have proposed additional mechanisms such as open-
nested transactions that use hardware management of soft-
ware handlers. Open-nested transactions are not necessary,
and add significant complexity to both HTM systems and the
software written to take advantage of them.

MetaTM is an HTM system designed to run TxLinux, an
operating system that uses transactions for some synchro-
nization. Inside the operating system, it is necessary to ef-
ficiently handle I/O and memory allocation. MetaTM and
TxLinux handle both of these without requiring the signifi-
cant extra hardware or overhead associated with open-nested
transactions. The TxLinux kernel uses cooperative trans-
actional spinlocks which provide the concurrency of trans-
actions with the mutual exclusion needed to perform I/O.
Through explicit management of transactional system calls,
TxLinux ensures strong atomicity for system calls within a
transaction, providing user-level transactions with a power-
ful and simple transactional programming model.

1. Introduction
The location of the point that separates useful transac-
tion concepts (in the sense that they help simplify and
better control applications) from those concepts that
are too baroque (and thus create more problems than
they solve) cannot be determined by rigorous mea-
surement. It can, though, be determined to a certain
degree by preferences of style, experience and other
such criteria.
–Jim Gray and Andreas Reuter, Transaction Process-
ing: Concepts and Techniques

The transactional model of programming has recently
gained attention because hardware manufacturers are finding
it easier to scale the number of processing contexts on a chip
rather than the performance of an individual context. Trans-
actions can provide a simpler, more productive programming
tool than traditional, lock-based code, which suffers from
many well-known shortcomings, such as deadlocks, con-

voys, and priority inversions. Transactions may proceed in
parallel as long as they do not have conflicts in which one
transaction writes data read or written by another transac-
tion. The transactional programming model can have per-
formance equal to or greater than lock-based programming
when the conflicts are rare. Transactions hold the promise of
the perfect systems solution: a simpler programming model
with the same or better performance.

The problem is that some transactional programming
models, especially hardware-assisted models, have waxed
baroque: the programmer’s life is not simplified, and hard-
ware implementation is complex. Recent hardware trans-
actional memory (HTM) designs share some undesirable
properties with CISC instruction sets—bloated primitives
with expansive semantics that slow the common case. In
particular, hardware models for transaction nesting can lead
to implementing complicated semantics in hardware.

Nesting—allowing a parent transaction to contain many
child transactions—is required for composability. Among
the nesting models commonly proposed for transactional
memory are flat and open nesting. In flat nesting, a child
transaction is completely subsumed by the parent transac-
tion. Data modified during a child transaction will be com-
mitted when the outermost parent commits, and any conflicts
on data touched during a child transaction will cause the
outermost parent transaction to restart. In open nesting, the
modifications of a child transaction can be observed as soon
as the child commits. The low-level isolation on the child’s
memory cells is replaced by isolation at a higher level of ab-
straction, e.g, memory allocated in an open-nested transac-
tion is rolled back by a call to free, rather than by reverting
the memory cell values of the allocator to the pre-transaction
state.

Open nesting is used for several purposes: (i) to increase
concurrency by avoiding low-level memory-cell conflicts
(e.g. in the memory allocator) that do not represent con-
flicts at higher levels of abstraction (ii) to record information
about transactions that never commit, (iii) to perform system
calls inside transactions and (iv) to perform I/O in transac-
tions. However, open nesting requires additional hardware
and complicates the semantics of transactional memory sys-
tems. Moravan et al. [12] offer the most thorough examina-
tion of the semantic difficulties associated with open nesting,

1 TRANSACT 2007

and show that efficient implementations of open nesting im-
pose restrictions on the average programmer that we believe
are easy to violate. Open nesting also requires modifying
data structures to enable control of isolation at higher levels
of abstraction.

Hardware open nesting requires invoking stacks of abort
handlers or compensating actions [10]. These handlers must
synchronize themselves [8], and thus cannot easily perform
actions such as I/O, without reverting to primitives such
as locks. Open nesting also increases hardware complexity,
adding features such as hardware management of software
commit/abort handlers. Such generality is not needed. When
software must be invoked on a transaction commit, restart
or abort, a simple return code from the instruction that starts
the transaction suffices. A return code renders superfluous
elaborate schemes where the hardware manages stacks of
handlers.

We believe that open nesting is a poor fit for hardware
transactional memory (HTM), and that simpler solutions can
provide all of the functionality and performance of open
nesting without complicated hardware or semantics. This pa-
per makes the case for flat-nested transactions with return
codes and elimination of hardware-managed software han-
dlers. It illustrates how problems for which open nesting is
proposed as a solution, such as system calls and kernel I/O,
can be solved with simpler and more effective mechanisms.

Section 2 describes the architectural mechanisms (Sec-
tion 2) of our HTM model. Section 3 presents data for the
low-level memory-cell sharing patterns of memory alloca-
tors and system calls in the Linux kernel, concluding that
it is better to avoid synchronization than optimize it. Sec-
tion 4 proposes informing transactions that enable detailed
logging of transactional control flow while attempting to
minimize access to uncommitted transaction state. In Sec-
tion 5 we consider how the kernel can provide a transac-
tional abstraction of system state. In Section 6 we present a
novel mechanism for allowing I/O in transactions called co-
operative transactional spinlocks. Section 7 describes related
work, and Section 8 concludes.

2. The MetaTM framework
MetaTM is our implementation of hardware transactional
memory, described in detail in previous work [20]. MetaTM
appears as an x86 shared memory multiprocessor or chip
multiprocessor with additional instructions for providing
transactional features. Conflict detection and version man-
agement in MetaTM are eager [11]; conflicts are detected
and handled as they occur, and updated values are written in-
place in main memory and must be rolled back on a restart.
MetaTM provides strong atomicity, meaning that conflicts
between transactional and non-transactional threads must be
resolved in favor of non-transactional threads [4].

Table 1 shows the hardware primitives used in MetaTM
to control transactions. Transactions are started and ended by

xbegin and xend, respectively. MetaTM uses flat nesting: if
a thread that already has an active transaction invokes xbe-
gin, the nested transaction is subsumed by the outer transac-
tion. The thread ends its transaction when xend has been
called the same number of times as xbegin. This nesting
model is trivial to implement, as it only requires tracking
the nesting depth.

Flat nesting is a type of closed nesting, which also sub-
sumes child transactions within parent transactions. Closed
nesting allows for partial restart [12]. When a nested trans-
action commits its data, it becomes part of the uncommit-
ted data of its parent. When a transaction rolls back, it must
roll back only to the first ancestor without conflicts. Partial
rollback can reduce the amount of lost work on a data con-
flict. While MetaTM does not support closed nesting, adding
support for closed nesting would not complicate the trans-
actional programming model, which is our primary design
goal.

MetaTM provides support for multiple active transac-
tions per thread through the xpush and xpop primitives.
These primitives suspend a transaction, making a transac-
tional thread non-transactional. Once a transaction is sus-
pended, the same thread may start a new transaction that
is independent from the paused transaction. Transactions
are pushed and popped in LIFO order. Independent trans-
actions are simpler to reason about than nested transac-
tions. The xpush primitive is distinguished from the simi-
lar xact pause [23] and escape actions [12] primitives from
the literature, by disallowing a thread to read uncommitted
transaction state from a suspended transaction and allowing
a thread with a suspended transaction to start a new transac-
tion.

The xpush and xpop primitives allow transactional threads
to execute non-transactional code. Updates to memory will
be visible immediately and will not be rolled back if the
outer transaction aborts. If the outer transaction aborts and
then follows a different code path, these updates will have
appeared to occur with no cause. Because using xpush and
xpop requires significant effort in reasoning and code struc-
turing, most programmers should not use these primitives.
Instead they allow systems programmers to provide services
such as system calls and transactional introspection that are
normally difficult to implement in TM systems.

A transaction’s ability to communicate information about
why it has restarted is the foundation for implementing
higher-level transactional abstractions in software. The xbe-
gin primitive returns a status code with information about
the active transaction. From the status code, a thread may
determine whether the current transaction has restarted, and
what caused the restart. A restart may have been caused by
a conflict with another thread or an action within the trans-
action that is either not allowed, or requires different exclu-
sion guarantees. I/O, as we shall see shortly, cannot be per-
formed in a simple transactional context: MetaTM restarts

2 TRANSACT 2007

Primitive Parameters Returns Definition
xbegin restart reason Begin a transaction. Returns a status code indicating if and why this

transaction has restarted.
xend End a transaction, committing if there are no outstanding conflicts.
xrestart [restart reason] Force the current transaction to restart. Allows a parameter to be passed

that will be returned as a result of xbegin when this transaction restarts.
xgettxid tx id Determine if there is an active transaction. A return value of 0 means no

active transaction.
xpush Suspend the active transaction.
xpop Resume a transaction suspended with xpush.
xwait mem addr,

wait val
Wait for a memory location to take a specific value and then place
it in the read set of the active transaction if it exists. Subjects non-
transactional threads to contention manager policy.

xwait CAS mem addr,
wait val,
new val

Wait for a memory location to take a specific value and atomically swap
in a new value. Subjects non-transactional threads to contention manager
policy.

Table 1. Transactional memory instruction set of MetaTM

such transactions and sets a corresponding flag. Users may
also initiate a restart with the xrestart primitive. In this case,
a user-defined code may be passed that will be returned from
xbegin when the transaction restarts.

MetaTM also provides xwait and xwait CAS, two prim-
itives that allow transactional critical sections to interop-
erate with critical sections protected by locks. The xwait
primitive stalls a processor until a memory location takes
on a specified value. When xwait is called from within a
transaction, the address is then added to the read-set of the
transaction. Xwait CAS is similar to xwait, but also atom-
ically swaps the stored value. Both transactional and non-
transactional threads are subject to the contention manager’s
policies when using these primitives. Section 6.4 describes
how this allows transactional and non-transactional threads
to contend fairly for the same critical section.

The xwait primitives allow threads to busy-wait with-
out executing instructions, therefore allowing the processor
to reduce its energy consumption. To implement xwait, the
cache controller snoops the bus (or enters the directory no-
tification list) for the line containing the xwait address. The
xwait CAS primitive further requires the controller to get
exclusive access to the line if the current value of the vari-
able equals the wait val.

Unlike open nesting, MetaTM’s extensions to the basic
transactional model do not encode complicated semantics in
hardware. However, they allow programmers to implement
solutions to several problems that plague HTM systems, as
illustrated in Sections 4, 5 and 6.

3. Low-level conflicts
One risk of flat nesting or closed nesting is that low-level
conflicts can hinder progress of operations that do not have
conflicts at higher levels of abstraction. Consider two threads
that each insert elements into a shared hash table. The two

Conflict source Conflicting Avg. Conflict
Calls (Bytes)

Allocation 1.5% 6
System calls - self 45.8% 26
System calls - other 9.1% 17

Table 2. Low-level conflicts in memory allocation and sys-
tem calls in the Linux kernel running the Modified Andrew
Benchmark. Conflicting Calls is the percent of all calls that
would conflict if invoked during a transaction. Avg. Conflict
is the average number of bytes that conflict for calls with any
conflicts.

threads may each insert elements with different keys, and
thus do not have conflicts within the hash table abstraction.
Inserting those keys, however, may cause lower-level con-
flicts due to the implementation of the hash table. For in-
stance, if the two keys map to the same hash value then the
insertion of both elements may cause a conflict. Open nest-
ing solves this problem by releasing isolation after the op-
eration is performed, while continuing to detect conflicts at
higher levels of abstraction, in this case by detecting oper-
ations on the same key. Open nesting, however, is compli-
cated and costly. Using open nesting over flat or closed nest-
ing is only justified if low level conflicts occur often enough
to reduce performance. In this section we examine the likeli-
hood of low-level conflicts in two areas that are often consid-
ered difficult for transactions: memory allocation and system
calls.

3.1 Open nesting for memory allocation
Memory allocation is a frequently invoked example of low
level conflicts possibly hindering forward progress [12, 13,
23]. Memory allocators that are shared among threads must
maintain some global pool of memory. Transactions that

3 TRANSACT 2007

Allocator Tx/sec Expected Restarts Time
SLOB - tx 25306 32.45 > 25.00s
Slab - tx 576608 0.02 4.27s
Slab - nontx – – 4.29s

Table 3. Memory allocator performance in TxLinux for
a Modified Andrew Benchmark, including the number of
transactions created per second, the expected number of
restarts for each transaction, and execution time

allocate memory may unnecessarily conflict on this global
state. This example is especially salient with a simple heap-
based allocator with a single free list, such as the Simple List
Of Blocks (SLOB) allocator in the Linux kernel. Any allo-
cation or deallocation both reads and writes a shared pointer
to the free list, so there is no possibility for concurrency be-
tween transactions that allocate memory.

Although simple memory allocator implementations will
exhibit many low-level conflicts, memory allocators de-
signed for high performance avoid synchronization, pri-
marily by avoiding global data sharing. Hoard [2], McRT-
Malloc [9] and the Slab allocator used in Solaris and Linux [6]
achieve performance and parallelism by avoiding sharing
and synchronization between threads, dramatically reducing
the frequency of unnecessary low-level conflicts. Although
these allocators will occasionally cause unnecessary low-
level conflicts, open nesting for memory allocation is only
justified if conflicts are frequent.

3.2 Measuring low-level conflicts in Linux
To examine the probability of low-level conflicts in the
Linux kernel, we used syncchar, a tool for collecting detailed
data about synchronization, including addresses read and
written during critical sections [16]. Every time the mem-
ory allocator was called, we compare the working set of that
operation to the 128 previous operations. The results are
presented in Table 2. The vast majority of memory allocator
operations (over 98%), do not conflict with each other. Even
if transactions use flat nesting or closed nesting for memory
allocation, spurious conflicts are unlikely.

Linux’s scalable allocator has few spurious conflicts. Ta-
ble 3 shows performance on a Modified Andrew Benchmark
for transactional Linux kernels with Slab and SLOB allo-
cators, and a non-transactional kernel with the Slab alloca-
tor. Under the SLOB allocator, 97% of transactions must
restart. With the Slab allocator, less than 2% of all trans-
actions restart (including restarts not caused by the alloca-
tor). The SLOB allocator decreases performance by a fac-
tor of at least 5, while the slab maintains its performance
when using transactions. Scalable memory allocators cause
few low-level conflicts, so the complexity of open nesting
is not necessary to maintain a high level of concurrency (a
result also demonstrated by Moravan et al. [12]. We believe
that the complexity of a scalable allocator is preferable to the
programming complexity of open nesting.

xbegin ;
. . .
i f (v a l u e > 10) {

xpush ;
p r i n t f (“Value i s g r e a t e r t h a n 10\n”) ;
xpop ;

}
. . .
xend ;

Figure 1. Illustration of using xpush and xpop to release
isolation during a transaction.

System calls also present the possibility of low-level con-
flicts hindering forward progress. Through system calls,
even unrelated threads can modify shared state in the kernel.
As with memory allocation, we measured conflicts between
system calls using syncchar (Table 2). When calling differ-
ent functions, over 90% of dynamic system calls are data
independent—they contain no conflicts. When calling the
same function, the majority of calls are data independent.

4. Recording transactional events
In transactional systems, events that occur on control paths
that end in transaction restart are never visible outside of the
transaction. This is often the desired behavior. When trans-
actions are used to express optimistic concurrency, the user
generally considers completed transactions as work accom-
plished and uncompleted transactions as work wasted, the
equivalent of time spent busy-waiting in a lock-based pro-
gram.

Sometimes a program wants to record events that hap-
pen during transactions that do not commit. Open nesting
proposes a solution to this problem by dropping isolation be-
fore recording the event, without registering an abort handler
(or compensatory action) to remove the record. The open
nested transaction can read and record uncommitted trans-
action state, even for transactions that will eventually abort.

MetaTM provides two ways to record events during an
uncommitted transaction, depending on the type of data.
MetaTM provides xpush and xpop to suspend the current
transaction and record anything that does not involve un-
committed transaction state. On an xpush, the thread be-
comes non-transactional, so it no longer has access to the
uncommitted state of the xpushed transaction, however the
thread’s position in program control flow can provide useful
information, as shown in Figure 1. A programmer can often
construct the critical region such that recording only the PC
provides vital clues to how transactions progress.

MetaTM allows indirect access to information about
transactions that never commit through informing transac-
tions. As shown in Figure 2, several architectural registers
provide information about the current transaction. These

4 TRANSACT 2007

xbegin ;
xpush ;
l a s t p c = r e a d r e g (TX LAST PC) ;
r e s t a r t r e a s o n = r e a d r e g (TX RESTART REASON) ;
p r i n t f (

“ T r a n s a c t i o n r e s t a r t e d a t %p b e c a u s e %d” ,
l a s t p c , r e s t a r t r e a s o n) ;

xpop ;
. . .
xend ;

Figure 2. Illustration of using informing transactions to
record detailed transactional control paths.

registers may be read even when the transaction has been
suspended with xpush, allowing the programmer to record
information about uncommitted transactions. Through these
registers the programmer may access the return code of the
previous xbegin, and thus determine if the transaction has
restarted and why (either through hardware-set flags or codes
passed explicitly to xrestart). The programmer can also read
the address of the last instruction executed by the transaction
before restarting, providing a detailed view of transaction
control flow.

Programmers can use informing transactions for perfor-
mance debugging of the transactional system itself. They are
flexible enough to perform most types of introspection into
the transactional system. The programmer has control over
how much the return codes and the PC of the last transaction
instruction indicate about a program’s semantics. It is easy
for a programmer to assign different return codes to each
event she cares about in an uncommitted transaction. The
PC provides additional execution context, avoiding the need
to create excessive quantities of return codes.

Informing transactions do not provide the same level
of access to uncommitted transaction state as open-nested
transactions. While informing transactions allow less in-
formation to flow out of a transaction than open nesting,
information leakage generally leads to semantic difficulties.
Leaked information can compromise the correctness of com-
pensating actions that are intended to provide isolation for
unsuccessful transaction attempts. Informing transactions
expose some implementation details of the HTM (differ-
ent versions of the hardware might provide different sets of
informational registers), but this is a more manageable prob-
lem than the erosion of transactional semantics caused by
open nesting.

Another problem with recording transactional events is
that the code that records events can cause conflicts between
transactions that would not normally conflict. For instance,
events could be recorded by updating a global pointer to
an output buffer. This problem is not specific to recording
transactional events, but is a specific example of the general
problem of low-level memory-cell conflicts that do not re-

flect high-level data structure conflicts. This is addressed in
Section 3.

5. Transactions and the user/kernel
boundary

The relationship between user and kernel mode transactions
is central to a successful programming model. The issues of
I/O in a transaction and a system call in a transaction are con-
flated by the current literature [5, 12, 23] and the conflation
has harmed the programming model, e.g., system calls made
within a user transaction are not isolated, and several pro-
posals forbid the OS from starting a transaction if it is called
from a user-level transaction [12, 23]. We believe that the
operating system, as a performance-critical parallel program
with extremely complicated synchronization, should be able
to benefit from transactional memory [20].

Transactions require the ability to rollback, and it can be
impossible to rollback I/O. A pure transactional model can-
not accomodate I/O without resorting to heavy-weight mu-
tual exclusion, i.e., only one, globally distinguished transac-
tion that can perform I/O at a time [5]. However, only the
OS kernel actually changes the state of I/O devices, so it
is possible to shield user-initiated transactions from the I/O
problem. MetaTM and TxLinux provide a pure transactional
model for user code, even user code that includes system
calls, while they mix transactions and locking in the operat-
ing system kernel (explained in Section 6).

5.1 Handling system calls with open nesting
Existing proposals for performing system calls during a
transaction, including escape actions [12], xact pause [23],
and unrestricted transactions [5], address problems of non-
idempotency and rollback of system calls. These propos-
als, however, do not necessarily maintain isolation between
transactional and non-transactional threads, or even among
transactional threads. Even open nesting requires signifi-
cant OS modifications to provide the atomicity and isolation
guarantees of transactional memory.

Open nesting is one proposed mechanism for allowing
system calls in transactions [10]. When a thread in an active
transaction enters the kernel, an open-nested transaction is
started. For system calls with side effects, the open-nested
transaction registers an abort handler to undo the effects of
the system call in case the outer transaction must restart.

Open-nested transactions allow transactional threads to
perform actions with side effects on kernel data structures.
Because isolation on kernel data is released when the open
nested transaction commits, conflicts between unrelated sys-
tem calls are reduced. This approach has several problems.
In theory, open-nested transactions should be able to up-
date data modified by an ancestor [10], e.g. a call to read
may fill a user-supplied buffer. Existing proposals that con-
tain enough information to implement open nesting in hard-
ware [12], however, do not allow this property. Moravan

5 TRANSACT 2007

vo id
p r o c e s s q u e u e (queue *q , i n t r f d , i n t wfd){

c h a r buf [4 0 9 6] ;
i n t nby t e s , i ;
xbegin ;
/ / User w r i t e s buf
n b y t e s = w r i t e o u t p u t (q , buf , 4 0 9 6) ;
w r i t e (wfd , buf , n b y t e s) ;
/ / S y s c a l l w r i t e s buf
n b y t e s = r e a d (r f d , buf , 4 0 9 6) ;
p a r s e i n p u t (q , buf , n b y t e s) ;
xend ;

}

Figure 3. Code to write a response to one file descrip-
tor (wfd), and then read and parse a new request from
another file descriptor (rfd) while reusing a temporary
buffer. The buffer is written both by the user code (in
write response), and by the read system call. The
code illustrates the difficulty of guaranteeing that a buffer
passed to a system call is not modified by the user.

et al. refer to the condition that a descendant transaction
may not write the same data written by an ancestor transac-
tion as O1, and they encourage most programmers to write
code that obeys the condition. Violating O1 risks subtle is-
sues surrounding the leakage of uncommitted transactional
state [13], and semantic complications for undo actions.

Consider the code in Figure 3, where the user writes a
response to one request and then reads and parses a new
request. The buf buffer is written both by the user (in
write response) and by the system in an open-nested
transaction for the read syscall. This directly violates con-
dition O1.

There are many subtler ways a programmer can violate
condition O1. For instance, in Figure 3, instead of stack-
allocating a single buffer, the user might allocate and free
the buffer for the write, and again allocate and free the buffer
for the read. However, an allocator that uses LIFO ordering
of memory blocks (which increases the probability of dy-
namically allocated memory being in-cache) could return the
same memory for both calls to malloc, creating the same
reuse problem in Figure 3.

Condition O1 unacceptably complicates the program-
ming model of transactions. Code that is correct with one
memory allocator might fail with another. Code that was
correct can become incorrect if the user initializes a buffer
written by a system call. While Moravan et al. admit that an
advanced programmer can violate O1 under certain circum-
stances, the above discussion illustrates how system calls
in open-nested transactions invite subtle, difficult bugs into
software.

In order to avoid transactions in the operating system,
there have been proposals to pause transactions and exe-

cute system calls in a non-transactional context [12, 23]
called an escape action. Unfortunately, Moravan et al. iden-
tify condition X1, which is identical to O1, but applies to
these non-transactional escape actions. Because escape ac-
tions can read uncommitted transactional state, they have
the same problems when an ancestor transaction writes the
same memory as an escape action. Using escape actions for
system calls invites the same subtle, difficult bugs into the
software as open-nested transactions.

In addition to the semantic quirks associated with im-
plementing open nesting, there are cases where user-level
commit and abort handlers cannot undo the effects of sys-
tem calls. Suppose a thread maps file A into its address
space, as in Figure 4. The file is then closed and unlinked, so
that the memory mapping is the only remaining link (keep-
ing the file from being reclaimed by the file system). The
thread begins a transaction, and then maps a different file
over file A. This mapping implicitly removes the first,
thus causing deletion of file A by removing its last link.
No compensating action registered when calling mmap can
be sufficient to undo the effects of the system call—it cannot
restore the original mapping because the filesystem has re-
claimed file A. If the transaction must restart, the system
will be unable to restore pre-transaction state, compromising
correctness.

One technique to make open-nesting or escape actions
a more powerful programming technique is to modify data
structures to manage uncommitted results explicitly. Mora-
van et al. use the example of a B-tree with a lock field that
is set explicitly in open-nested transactions and then cleared
on a commit. The performance impact of commit handlers
is not discussed in this work, but other work on the Linux
kernel [20] indicates that performance degrades noticeably

fd A = open (“ f i l e A ”) ;
vo id *map A = mmap(s i z e =4096 , fd =fd A)
c l o s e (fd A) ;
u n l i n k (“ f i l e A ”) ;

xbegin ;
m o d i f y d a t a (map A) ;
f d b = open (“ f i l e B ”)
vo id *map B = mmap(s t a r t =map A , s i z e =4096 ,

fd = fd B) ;
x r e s t a r t ;

Figure 4. Code that maps two files at the same address. The
program closes and unlinks file A. Mapping file B over
file A implicitly removes the mapping for file A, thus
removing the last link to file A and causing the file to
be deleted. When the transaction restarts, no compensating
action can return it to its original state. The code illustrates
that user-level abort actions (as a part of the mmap call) may
not be able to roll back the effects of common system calls.

6 TRANSACT 2007

(more than 10%) once commit handlers average more than
1,000 cycles. Concurrent accesses to the B-tree that find en-
tries with the lock field set ignore those entries. Managing
isolation explicitly is the subject of the next Section.

5.2 Decoupling I/O from system calls
Most system calls, even those that change state visible to
other processes, do not actually change the state of I/O de-
vices. For example, creating a file in the file system changes
kernel data structures, it does not (necessarily) write any-
thing to disk. If TxLinux can buffer in memory the effect of
system calls initiated by a user transaction, then it can de-
couple I/O from system calls.

The task of decoupling I/O from system calls reduces to
making sure enough system resources are available for a
user-initiated sequence of system calls to complete having
updated only memory. To achieve this, the OS might need
to free system resources, e.g., creating more free memory
by writing back data from the disk cache that is unrelated
to the current transaction. In order to free up resources, the
kernel xpushes the current transaction, and performs the
I/O outside of the transactional context. Enough information
must leak out of the transaction to let the kernel learn the
type and amount of resources that must be made available.

If the kernel cannot free enough resources to perform a
user-initiated sequence of system calls using only memory,
then it kills the user process. Transaction virtualization is
important for hardware limits like cache size, but MetaTM
cannot support a transaction whose updates are larger than
available memory.

5.3 Explicit OS management of transactional syscalls
We now sketch how an OS could be modified to support
transactional system calls by explicitly managing atomicity
and isolation. Some system calls can safely execute non-
transactionally (using xpush) even when called from a user-
level transaction, e.g, getpid. When a user program makes
a system call that is not always safe, the OS marks the
transaction status word, setting the syscall bit. The kernel
performs any necessary actions to allow the user thread to
proceed as if the call were not speculative, such as reading a
file into the page cache. The kernel maintains the necessary
information to commit or undo the effects of all speculative
system calls. On an attempted commit of a transaction that
has the syscall bit set, the hardware traps to the OS. The
OS tries to commit the effects of all of the system calls
performed by the current transaction. In order to commit the
effects atomically, the OS can use a hardware transaction.

To avoid flowing large amounts of information out of a
transaction, TxLinux and MetaTM allow user-level transac-
tions to flow into the kernel. Consider the write system
call which communicates a large user-supplied data buffer to
the kernel. In Linux, the majority of the code path for read
and write system calls deals with bringing the necessary
pages into the page cache, actions which do not change the

abstract state of the system. The necessary data is copied to
or read from the user buffer once the OS has made space
in the page cache. To execute these system calls transac-
tionally, TxLinux uses xpush to suspend the user transac-
tion. The necessary pages are brought into the page cache.
TxLinux then executes xpop to resume the user transaction
while still in kernel mode. The speculative data is copied to
or read from the page cache before returning to user mode.
Thus, the TM hardware manages versioning and conflict de-
tection for file data, providing the same strong atomicity as
for memory updates.

Different transactional threads might perform system
calls that conflict, e.g., both try to open the same file name
with exclusive permissions. In this case, the OS contention
manager decides which thread should win, and updates the
data structures accordingly. When the losing thread makes
its system call while trying to commit, the system call re-
turns with an error code. Either the OS or the hardware can
restart the user transaction.

Explicit tracking of transactional system calls is similar
to explicit tracking of speculative state, e.g., RPCs in a net-
worked file system [15]. System calls made during a trans-
action are speculative until the transaction commits. This
method also limits user-initiated transactions to sequences
of system calls whose effects can be buffered in memory. It
requires substantial OS programming effort.

5.4 Limitations to system calls in a transaction
TxLinux and MetaTM do not allow transactional code that
would increase the sphere of control of a transaction beyond
the current OS thread. User-level code that starts a transac-
tion and then writes a request to the network and reads a
reply cannot remain isolated without propagating the trans-
action across the network. User-level code that does an inter-
process request and reply requires propagating the transac-
tion from one OS process to another. These cases are beyond
the scope of this work.

A programmer can read from and write to the network
during a transaction, but the semantics in TxLinux and
MetaTM are that the read is satisfied from kernel memory
buffers, and the write goes to kernel memory buffers. This
is a generous programming model, and anything stronger
(e.g., actually allowing network communication) is contrary
to most intuitive definitions of a transaction.

System calls that are conceptually synchronous with re-
spect to an I/O device are not allowed or they are ignored.
The fsync system call specifies that the file data being
synced is on disk before the system call returns. These se-
mantics conflict with the intuitive definition of a transac-
tion. What does it mean to ensure that the state updated by
a partially executed transaction must reside on disk? The
programmer must verify that the system calls executed in
a transaction do not have semantics directly at odds with the
semantics of transactions.

7 TRANSACT 2007

6. Cooperative transactional locking
The effects of I/O during a critical section are difficult or
impossible to roll back in the event of a transaction abort.
Writes to a disk device, for example, would require signif-
icant additional logic and device support to roll back. With
open nesting, the programmer is able to register compen-
sating actions to undo the effects of I/O without having to
incorporate such logic into hardware.

This section describes the cooperative transactional spin-
lock (cxspinlock), a construct that provides an alternative
mechanism for I/O in an operating system kernel. Cxspin-
locks are only needed inside the OS kernel. They allow a
single critical region to be safely protected by either a lock
or a transaction. A non-transactional thread can perform I/O
inside a protected critical section without concern for undo-
ing operations on a restart. Many transactional threads can
simultaneously enter critical sections protecting the same
shared data, improving performance. Simple return codes in
MetaTM allow the choice between locks and transactions to
be made dynamically, simplifying programmer reasoning.

6.1 Programming with cxspinlocks
As with traditional locking, shared data protected by cxspin-
locks is associated with a lock variable. However, cxspin-
locks do not always enforce mutual exclusion, instead the
functions cx optimistic and cx exclusive are used
to choose between mutual exclusion and transactions when
acquiring a cxspinlock. If the protected code path requires
mutual exclusion, or must be guaranteed not to restart, then
cx exclusive is used. Otherwise, cx optimistic is
used to protect the same shared data using transactions.

All occurences of a spinlock acquire can be mechani-
cally replaced by cx optimistic and spinlock releases
can be replaced by cx end. However, if a particular criti-
cal region always performs I/O, the cx optimistic will
always restart, which might be a performance concern. In
these cases the programmer can optimize the system by
calling cx exclusive directly (see Section 6.3). Calls
to cx optimistic and cx exclusive nest arbitrarily
(Section 6.3).

Because any critical section protected by cx opti-
mistic may be forced to revert to mutual exclusion, the
programmer must reason about which locks protect which
shared data. In addition, standard locking practices such
as enforcing a global lock order must be followed. These
necessities seem contradictory to the goal of transactional
memory. However, because most uses of cxspinlocks will
be transactional, they allow locking structure to be coarse-
grained, while retaining the concurrency of fine-grained
locks. Reasoning about coarse-grained locks is far easier,
and cxspinlocks allow advanced behaviors, such as enforc-
ing mutual exclusion and performing I/O, that are not usually
possible when sharing data protected by transactions.

vo id c x o p t i m i s t i c (l o c k) {
s t a t u s = xbegin ;
/ / Use mutua l e x c l u s i o n i f r e q u i r e d
i f (s t a t u s == NEED EXCLUSIVE) {

xend ;
/ / x r e s t a r t f o r c l o s e d n e s t i n g
i f (g e t t x i d) x r e s t a r t (NEED EXCLUSIVE) ;
e l s e c x e x c l u s i v e (l o c k) ;
r e t u r n ;

}
/ / P l a c e t h e u n l o c k e d l o c k i n t h e read−s e t
xwait (lock , 1) ;

}
vo id c x e x c l u s i v e (l o c k) {

i f (g e t t x i d) x r e s t a r t (NEED EXCLUSIVE) ;
/ / Wait f o r 1 , a t o m i c a l l y make i t 0
/ / C o n t e n t i o n manager a r b i t r a t e s l o c k
xwait CAS (lock , 1 , 0) ;

}
vo id cx end (l o c k) {

i f (x g e t t x i d) {
xend ;

} e l s e {
* l o c k = 1 ;

}
}

Figure 5. Functions for acquiring cxspinlocks with either
transactions, or mutual exclusion.

In TxLinux, we have used cxspinlocks to convert a num-
ber of critical sections that perform I/O to use transactions,
and have found them to be ideal cases for cxspinlocks. The
converted critical sections all perform I/O at some time, but
any individual critical section performs I/O at most 5% of
the time. Without cxspinlocks, these critical sections would
be forced to always use mutual exclusion. With cxspinlocks,
we have observed as many as 14 concurrent threads entering
these critical sections on a 15 processor system.

6.2 Implementation
The code for cx optimistic and cx exclusive is
given in Figure 5. These functions comprise the main
kernel API to create transactions. Either cx optimis-
tic or cx exclusive can start a critical section and
cx end ends a critical section. A critical section might al-
low many, non-interfering threads to execute inside it at once
(cx optimistic), or it might allow only a single thread
to execute inside it at a time (cx exclusive).

The cx optimistic call creates a transaction and uses
the xwait primitive to wait for the lock protecting the critical
region to hold the value indicating an unlocked condition,
typically 1. When this condition is met, the lock variable
is added to the set of addresses read by the transaction.
While the lock is unlocked, transactional threads can share

8 TRANSACT 2007

the critical region. The cx end function ends the transaction
started by the call to cx optimistic.

The cx exclusive function is an implementation of
a traditional spinlock, but one that takes advantage of HTM
resources to arbitrate for access to the lock, using the xwait -
CAS instruction. The xwait CAS instruction combines a
condition variable-style wait with a compare and swap.
The instruction blocks until the given memory address has
value1, and it then atomically swaps value2 into the memory
location. If the swap is unsuccessful, the primitive continues
to block.

6.3 Nesting cxspinlocks
Threads may not restart inside a critical section protected by
cx exclusive. To allow cx exclusive to be nested
inside cx optimistic, return codes are used to com-
municate information about transaction restarts. If cx -
exclusive is called during an active transaction (deter-
mined using xgettxid), xrestart is invoked and passed the
NEED EXCLUSIVE flag. When the transaction restarts,
this flag is returned from xbegin. If cx optimistic re-
ceives the NEED EXCLUSIVE flag, it ends its transaction.
If closed nesting is used, cx optimistic must verify that
it is no longer in a transaction, and possibly invoke xrestart
to pass the flag to the outermost transaction.

Using return codes, critical sections protected by either
transactions or mutual exclusion may be arbitrarily nested
inside each other. However, certain nesting patterns may
cause pathologically bad performance. If N transactional
critical sections protected by cx optimistic are nested,
and then cx exclusive is called, the thread will return to
the outermost transaction. The next critical section, however,
will optimistically begin a transaction. The thread will likely
follow the same code path and again be forced to restart,
reverting the next deepest transaction to mutual exclusion,
and so on. The transaction will restart N times, wasting a
significant amount of work. One solution would be for the
outermost lock to record its address in per-thread storage
space. Until that lock is released, all nested calls to cx -
optimistic immediately fall back on cx exclusive.
The outermost lock then removes its address when it is
released.

Although cx optimistic and cx exclusive can
be safely nested, invoking only xbegin without checking the
return code may result in deadlock if the transaction latter
requires exclusion by either performing I/O or by calling
cx exclusive. The cxspinlock implementation, however,
requires very few instructions and will not adversely affect
performance over using raw transactions. Xbegin should be
used only as an optimization when the code path of the
critical section is statically known.

6.4 Role of the contention manager
In transactional memory systems, the contention manager
is responsible for deciding which transactions restart when

conflicts occur, and is thus responsible for thread progress.
All contention for memory resources should go through
the contention manager. MetaTM provides strong atomic-
ity: conflicts between transactional and non-transactional
threads must be resolved in favor of non-transactional threads.
For fairness, however, non-transactional threads should not
always be given priority when contending for critical sec-
tions protected by cxspinlocks. MetaTM uses the xwait and
xwait CAS primitives to subject non-transactional threads
to the decisions of the contention manager, which may en-
force any policy.

A transactional thread entering a critical section uses the
xwait primitive to stall until the lock variable changes to
the unlocked state. The variable is then placed in the read-
set of the transaction. Any transaction inside the critical
section will have the lock variable in its read-set. A non-
transactional thread uses xwait CAS to both wait on the lock
as well as atomically acquire the lock. If a non-transactional
thread attempts to enter a critical section currently in use
by a transactional thread, the contention manager can decide
whether to allow the swap in xwait CAS. The contention
manager can choose to stall the non-transactional thread and
allow the transaction to complete, or to abort the transaction
and allow the non-transactional thread to acquire the lock.

The fast path for contention management should be in
hardware, but complicated cases can trap to the operating
system. The contention manager can bias related critical
regions to prefer non-transactional or transactional threads.
For instance, critical regions protected by a reader-writer
lock can be biased in favor of transactional threads, because
multiple readers are the common case.

6.5 Detecting I/O
With cxspinlocks, I/O is handled by restarting a transaction
and falling back on locking, so that restarts are not possible.
The MetaTM model assumes that the processor can detect
I/O, e.g., the opcodes in the x86 that write to I/O ports
or devices mapped in the memory space. On detecting I/O
during a transaction, the processor restarts the transaction,
returning the NEEDS EXCLUSIVE flag from the xbegin
instruction. The hardware does not roll-back I/O, it simply
rolls back any transaction in which I/O occurs, before the I/O
operation is issued. The thread then re-executes the critical
section, but after acquiring the lock by calling cx exclu-
sive.

6.6 Disadvantages of mixing locks and transactions
Allowing a critical section to be protected by both locks
and transactions brings the concurrency of transactions to
code which previously would have been incompatible, such
as functions that only perform I/O on some code paths.
This cooperation, however, also reintroduces some of the
problems that transactions are intended to solve.

Like spinlocks, cxspinlocks can enforce mutual exclusion
for non-transactional threads. A poor locking discipline can

9 TRANSACT 2007

lead to deadlock, a problem that would normally be solved
by transactions. Lock ordering is still needed, but only OS
code must handle this complexity and it can be avoided in
user code (Section 5).

7. Related Work
Proposals for hardware transactional memory systems incor-
porate a range of nesting semantics, from flat nesting [1, 7,
19], to closed nesting and open nesting [10, 12]. Most rele-
vant to this paper are the models in LogTM and TCC. With
LogTM, Moravan et al. offer the most thorough examination
of the semantic difficulties associated with open nesting. We
believe that these problems along with the complicated im-
plementation necessary for open nesting make it inappropri-
ate for HTM. In systems similar to TCC, however, threads
always execute transactionally. Open nesting is necessary
for communicating between threads as well as other oper-
ations that require isolation to be released. In these cases, a
simpler hardware implementation might serve to accelerate
a software implementation that provides more complicated
semantics such as open nesting.

Unrestricted Transactional Memory [5] uses unrestricted
transactions for performing I/O and system calls, as well as
simplifying handling for transactions that overflow hard-
ware resources. Unrestricted transactions cannot restart.
However, because no reasoning is possible about shared
data protected by unrestricted transactions, only one un-
restricted transaction may execute at any time. An unre-
stricted transaction must stall all other threads in an ap-
plication. Later work [3] presents an implementation that
allows multiple non-transactional threads to execute con-
currently with a single transactional thread. Critical sec-
tions protected by cx optimistic handle I/O similarly
by falling back on cx exclusive, which cannot restart.
However, because the shared data protected by cxspinlocks
is associated with a lock variable, a critical section that must
fall back on cx exclusive does not restrict concurrency
of unrelated transactional or non-transactional critical sec-
tions. The ability of unrestricted transactional threads to stall
non-transactional threads can cause system deadlock in an
operating system where non-transactional threads process
interrupts and do other activity necessary for the continued
operation of the system.

Some HTM designs [3, 19, 22] propose detecting con-
flicts only between threads within a single process or ad-
dress space. Unrestricted transactions, for example, require
this property for isolation; otherwise I/O or overflow within a
single thread in one process could stall transactional threads
in all other processes. We believe that this requirement is too
restrictive, because it prevents different processes from using
transactions to synchronize access to shared memory. Shared
memory is used for inter-process communication, often in
large, performance-critical applications such as the X server.
These applications should be able to benefit from the sim-

pler programming model offered by transactions. Operating
system kernels are often mapped into the address space of
every process in order to reduce switching overhead. Filter-
ing conflict detection based on address spaces would make
using transactions in the kernel much more difficult.

Cooperative transactional spinlocks use transactions to
increase concurrency and fall back on locking when transac-
tions fail, an approach similar to speculative lock elision [17,
18]. Analogous techniques have been used to improve per-
formance in software transactional memory (STM) systems
where the overhead of acquiring a lock can be much lower
than starting a transaction [21]. Locks are used when con-
tention is low, switching to transactions when contention is
high and concurrency is more important. Cooperative trans-
actional spinlocks are a programmer-visible construct that
can be used for larger code regions and for more types of
locks (e.g., reader/writer locks) than speculative lock elision.
Moreover, cooperative, transactional spinlocks are intended
only as a kernel primitive to satisfy the mutual exclusion re-
quired by real device I/O. User-level programs can take full
advantage of the semantics and concurrency of transactions
without requiring a locking discipline.

Zilles and Baugh [23] use the xact pause primitive to
suspend transactions and allow complicated behaviors such
as I/O and system calls. Similar to our proposal for sys-
tem calls, suspended transactions are used to implement
software-managed stacks of commit and abort handlers,
avoiding the complexity of a hardware implementation.

Open nesting is also used in STM systems for many of the
same reasons as HTM systems. Unlike HTM systems, most
STM systems do not provide strong atomicity, leading to sit-
uations which require some form of open nesting. For in-
stance, memory allocators shared between transactional and
non-transactional threads in an STM must use open nesting
to isolate transactional threads from non-transactional ac-
cesses [9]. Open nesting in STMs shares the semantic and
implementation caveats of HTMs. Ni et al. [14] address the
care necessary in writing correct commit and compensating
actions, and examine implementation issues posed by over-
lapping read-write sets between ancestor and open nested
transactions. These issues are similar to those motivating
condition O1 presented by Moravan et al. Although open
nesting may be necessary in software TM systems, it re-
mains a difficult programming construct.

8. Conclusion
Hardware transactional memory promises to make concur-
rent programming both simpler and faster. However ad-
vanced transactional features can complicate programming
semantics rather than simplifying them; some advanced fea-
tures are also difficult to implement efficiently in hardware.
This paper argues that simple transaction models are effec-
tive for HTM systems. Simple transaction models are suffi-
cient to record transactional events, make system calls in a

10 TRANSACT 2007

transaction, and manage I/O. Abandoning transactional fea-
tures like open nesting simplifies the programming model
without reducing the scope of what can be built with HTM.

9. Acknowledgements
We would like to thank the anonymous reviewers for their
feedback on this paper. This research is supported by NSF
CISE Research Infrastructure Grant EIA-0303609 and NSF
Career Award 0644205.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and

S. Lie. Unbounded transactional memory. In HPCA ’05: Proceed-
ings of the 11th International Symposium on High-Performance Com-
puter Architecture, pages 316–327, Washington, DC, USA, 2005.
IEEE Computer Society.

[2] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: a scalable memory allocator for multithreaded applications.
In ASPLOS-IX: Proceedings of the ninth international conference
on Architectural support for programming languages and operating
systems, pages 117–128, New York, NY, USA, 2000. ACM Press.

[3] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin. Mak-
ing the fast case common and the uncommon case simple in un-
bounded transactional memory. In ISCA ’07: Proceedings of the 34th
annual international symposium on Computer architecture, pages 24–
34, New York, NY, USA, 2007. ACM Press.

[4] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing
transactions: The subtleties of atomicity. In Fourth Annual Workshop
on Duplicating, Deconstructing, and Debunking. Jun 2005.

[5] C. Blundell, E. C. Lewis, and M. M. K. Martin. Unrestricted transac-
tional memory: Supporting I/O and system calls within transactions.
Technical Report CIS-06-09, University of Pennsylvania, Apr 2006.

[6] J. Bonwick. The slab allocator: an object-caching kernel memory al-
locator. In USTC’94: Proceedings of the USENIX Summer 1994 Tech-
nical Conference on USENIX Summer 1994 Technical Conference,
pages 6–6, Berkeley, CA, USA, 1994. USENIX Association.

[7] W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. V. Bies-
brouck, G. Pokam, B. Calder, and O. Colavin. Unbounded page-based
transactional memory. In ASPLOS-XII: Proceedings of the 12th in-
ternational conference on Architectural support for programming lan-
guages and operating systems, pages 347–358, New York, NY, USA,
2006. ACM Press.

[8] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen,
C. Kozyrakis, and K. Olukotun. Programming with transactional co-
herence and consistency (TCC). In ASPLOS-XI: Proceedings of the
11th international conference on Architectural support for program-
ming languages and operating systems, pages 1–13, New York, NY,
USA, 2004. ACM Press.

[9] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg.
McRT-Malloc: a scalable transactional memory allocator. In ISMM
’06: Proceedings of the 2006 international symposium on Memory
management, pages 74–83, New York, NY, USA, 2006. ACM Press.

[10] A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun. Architectural semantics for practi-
cal transactional memory. In ISCA ’06: Proceedings of the 33rd an-
nual international symposium on Computer Architecture, pages 53–
65, Washington, DC, USA, 2006. IEEE Computer Society.

[11] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based transactional memory. In Proceedings of the 12th
International Symposium on High-Performance Computer Architec-
ture, pages 254–265. Feb 2006.

[12] M. J. Moravan, J. Bobba, K. E. Moore, L. Yen, M. D. Hill, B. Liblit,
M. M. Swift, and D. A. Wood. Supporting nested transactional mem-
ory in LogTM. In ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming languages and
operating systems, pages 359–370, New York, NY, USA, 2006. ACM
Press.

[13] J. E. B. Moss and A. L. Hosking. Nested transactional memory:
model and architecture sketches. Sci. Comput. Program., 63(2):186–
201, 2006.

[14] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson,
J. E. B. Moss, B. Saha, and T. Shpeisman. Open nesting in software
transactional memory. In PPoPP ’07: Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 68–78, New York, NY, USA, 2007. ACM Press.

[15] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in
a distributed file system. In SOSP ’05: Proceedings of the twentieth
ACM symposium on Operating systems principles, pages 191–205,
New York, NY, USA, 2005. ACM Press.

[16] D. E. Porter, O. S. Hofmann, and E. Witchel. Is the optimism in
optimistic concurrency warranted? In Workshop on Hot Topics in
Operating Systems, May 2007.

[17] R. Rajwar and J. R. Goodman. Speculative lock elision: enabling
highly concurrent multithreaded execution. In MICRO 34: Proceed-
ings of the 34th annual ACM/IEEE international symposium on Mi-
croarchitecture, pages 294–305, Washington, DC, USA, 2001. IEEE
Computer Society.

[18] R. Rajwar and J. R. Goodman. Transactional lock-free execution of
lock-based programs. In ASPLOS-X: Proceedings of the 10th inter-
national conference on Architectural support for programming lan-
guages and operating systems, pages 5–17, New York, NY, USA,
2002. ACM Press.

[19] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory.
In ISCA ’05: Proceedings of the 32nd annual international symposium
on Computer Architecture, pages 494–505, Washington, DC, USA,
2005. IEEE Computer Society.

[20] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann, A. Bhan-
dari, and E. Witchel. MetaTM/TxLinux: Transactional memory for an
operating system. In ISCA ’07: Proceedings of the 34th annual inter-
national symposium on Computer architecture, pages 92–103, New
York, NY, USA, 2007. ACM Press.

[21] A. Welc, A. L. Hosking, and S. Jagannathan. Transparently recon-
ciling transactions with locking for Java synchronization. In Euro-
pean Conference on Object-Oriented Programming, pages 148–173,
Jul 2006.

[22] L. Yen, J. Bobba, , M. Marty, K. E. Moore, H. Volos, M. D. Hill,
, M. M. Swift, and D. A. Wood. LogTM-SE: Decoupling hardware
transactional memory from caches. In HPC. Feb 2007.

[23] C. Zilles and L. Baugh. Extending hardware transactional memory
to support nonbusy waiting and nontransactional actions. In Proceed-
ings of the First ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing, Jun 2006.

11 TRANSACT 2007

