MetalM &
TxLinux

Hany Ramadan, Christopher Rossbach, Donald Porter,
Owen Hofmann, Aditya Bhandari, Emmett Witchel

University of Texas at Austin



TM Background

. Transactional programming Is an
emerging alternative to locks

- Avoids problems such as deadlock
- Avoids performance-complexity tradeoffs

« HTM holds the promise of
- simpler programming and
- good performance



TM: “What'’s the OS got to do with i1t?”

« Lack of realistic workloads (counter, splash-2)

- Will current results hold on real programs?
- Unclear design tradeoffs; Feature set unsettled

« OS iIs a real-life, parallel workload
« OS will benefit from transactions

- Reduces synchronization complexity
- System-call and interrupt control paths will benefit

« Architectural support iIs needed for OS
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TxLinux 2.6.16.1

Converted —30% of dynamic synchronization to transactions
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MetaTM: Design goals

. HTM model co-designed with TxLinux

- Extensions to x86 ISA
- Architectural support for OS
- Execution-driven simulation

. A platform for TM research

- Multiple HTM design points
- Eager & lazy version management
- Eager conflict detection



MetaTM: Model features

Tx demarcation

Multiple Tx

Contention

management
(eager)

Backoff policy

Version
management

Xbegin xend
xpush Xpop
polite karma eruption
timestamp polka sizematters
exponential linear random

commit cost
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abort cost
(eager)




TxLinux: Interrupt handling

Question: What happens to active tx on
an interrupt?

Interrupt handlers allowed to use
transactions

Factors weighing against abort
- Transaction length growing
- Interrupt frequency

Answer: Active transactions are
suspended on interrupt



MetaTM: Multiple Tx support

« Multiple active transactions on a processor
- At most one running, all others are suspended
o Interface

- Xpush suspends current transaction
- Xpop resumes suspended transaction
- Suspended transactions maintained in LIFO order

« New execution context is unrelated to old one

- Same conflict semantics with all other transactions
- May start new transactions
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Issue: Stack memory

. Transactions can span stack frames

- Why: Retain same flexibility as locks

- Problem: Live stack overwrite (correctness)

- Solution: Stack Pointer Checkpoint

foo ()

{

atomic

{
}

foo ()
{
bar ()
baz ()
}

bar () { xbegin }
baz () { xend }
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Live stack overwrite
.

&

OXCOr%00

locals
oo+4: call bar)

\V

l; bar+0: xbegin
F\\ y\\\\ bar+4: ret

do irqg: iret

StkPtr OX Error: invalid N foo+8: <work>
return address < foo+12:xend

0x00

Tx Reg. Checkpoint
PC: bar+4

StkPtr: OX40@

(other regs..)

. Only interrupts that arrive in kernel mode have this problem



Live stack overwrite, fixe
OXCO[zeg

locals

( foo+4: call bar)
StkPtr OXSO bar foo+8: <work>

foo+12 :xend

foo+8
bar+0: xbegin
OX4O do irg bar+4: ret
iNntr state do irg: iret

0x00

Tx Reg. Checkpoint

PC: bar+4
StkPtr: 0x40

(other regs..)

. Fixed by setting ESP to Checkpointed ESP on interrupt
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Experiments

Setup
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System characteristics

~ Execution time
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- Transaction origins

Studies

- Contention management
- Commit & Abort penalties



Setup

Simics 3.0.17
8-processor, x86 system (1 Ghz)

Memory hierarchy

- L1: sep D/I, 16KB, 4-way, 1-cycle hit

- L2: 4MB, 8-way, 16-cycle hit, MESI protocol
- Main memory: 1GB, 200-cycle hit

Other devices

- Disk device (DMA, 5.5ms latency)
- Tigon3 gigabit nic (DMA,0.1ms latency)



Workloads to exercise TxXLInux

o CcOunter . MAB
- shared counter micro- - simulates software
benchmark (8 threads) development file
system workloads
. pmake .
- Runs make -j 8 to - contigure
compile files from - 8 Instances of
libFLAC 1.1.2 configure for tetex
. Netcat . find
- streams data over TCP - 8 Iinstances of find on
network conn. a 78MB directory

searching for text

Note: Only TxLinux creates transactions



Kernel Execution Time
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. High kernel time justifies transactions in the OS




Transaction Rates
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. Find workload has highest contention in TxXLinux




Transaction Origins
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« Kernel locks accessed from both system call and
interrupt handling contexts




Contention Management Study
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. Polka best performer, but complex to implement; SizeMatters viable

« Stall-on-conflict — reduces conflicts, but not always performance



Commit & Abort Study
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« Performance sensitive to commit penalty, not abort

. Confirms benefit of eager version management (fast commits)



Related Work

TM Models

- TCC [HammondO04], UTM [Anaian05],
LogTM [MooreO6], VTM [Rajwar05]

Suspension technigues

- Escape actions [ZillesO6] — can’t start tx
Interrupt handling

- XTM [ChungO6] — also tries to avoid aborts
Contention management

- Scherer & Scott [PODC’0O5] — in STM context



Conclusions

. TM needs realistic workloads

- TxLinux the largest TM benchmark
« OS needs TM

- Complex synchronization; large % of runtime
. Building & running TxLinux reveals much

- Architectural support needed (Tx suspension)
- Contention management is important
- Cost studies confirm fast commits

... more In the paper



