MetalM &
TxLinux

Hany Ramadan, Christopher Rossbach, Donald Porter,
Owen Hofmann, Aditya Bhandari, Emmett Witchel

University of Texas at Austin

TM Background

. Transactional programming Is an
emerging alternative to locks

- Avoids problems such as deadlock
- Avoids performance-complexity tradeoffs

« HTM holds the promise of
- simpler programming and
- good performance

TM: “What'’s the OS got to do with i1t?”

« Lack of realistic workloads (counter, splash-2)

- Will current results hold on real programs?
- Unclear design tradeoffs; Feature set unsettled

« OS iIs a real-life, parallel workload
« OS will benefit from transactions

- Reduces synchronization complexity
- System-call and interrupt control paths will benefit

« Architectural support iIs needed for OS

Average Transaction Count

Average Tx/Benchmark

3,500,000

3,000,000

2,500,000

2,000,000

1,500,000

1,000,000

500,000

0

Other TMs

Nearest TM

MetaTM

Outline

TXLINUuX
MetalM

- Goals
- Features
- Interrupt handling

Issue: Stack memory
Experimental results

TxLinux 2.6.16.1

Converted —30% of dynamic synchronization to transactions

Sequence
locks

RCU

(read-copy-
update)

Directory
cache

Pathname
translation

IP routing

File system

Socket
locking

allocator

Slab

Networking

Zzone

Various MM

allocator | structures

Memory management

MetaTM: Design goals

. HTM model co-designed with TxLinux

- Extensions to x86 ISA
- Architectural support for OS
- Execution-driven simulation

. A platform for TM research

- Multiple HTM design points
- Eager & lazy version management
- Eager conflict detection

MetaTM: Model features

Tx demarcation

Multiple Tx

Contention

management
(eager)

Backoff policy

Version
management

Xbegin xend
xpush Xpop
polite karma eruption
timestamp polka sizematters
exponential linear random

commit cost
(lazy)

abort cost
(eager)

TxLinux: Interrupt handling

Question: What happens to active tx on
an interrupt?

Interrupt handlers allowed to use
transactions

Factors weighing against abort
- Transaction length growing
- Interrupt frequency

Answer: Active transactions are
suspended on interrupt

MetaTM: Multiple Tx support

« Multiple active transactions on a processor
- At most one running, all others are suspended
o Interface

- Xpush suspends current transaction
- Xpop resumes suspended transaction
- Suspended transactions maintained in LIFO order

« New execution context is unrelated to old one

- Same conflict semantics with all other transactions
- May start new transactions

Outline

Issue: Stack memory

Issue: Stack memory

. Transactions can span stack frames

- Why: Retain same flexibility as locks

- Problem: Live stack overwrite (correctness)

- Solution: Stack Pointer Checkpoint

foo ()

{

atomic

{
}

foo ()
{
bar ()
baz ()
}

bar () { xbegin }
baz () { xend }

.Q

A\

Live stack overwrite
.

&

OXCOr%00

locals
oo+4: call bar)

\V

l; bar+0: xbegin
F\\ y\\\\ bar+4: ret

do irqg: iret

StkPtr OX Error: invalid N foo+8: <work>
return address < foo+12:xend

0x00

Tx Reg. Checkpoint
PC: bar+4

StkPtr: OX40@

(other regs..)

. Only interrupts that arrive in kernel mode have this problem

Live stack overwrite, fixe
OXCO[zeg

locals

(foo+4: call bar)
StkPtr OXSO bar foo+8: <work>

foo+12 :xend

foo+8
bar+0: xbegin
OX4O do irg bar+4: ret
iNntr state do irg: iret

0x00

Tx Reg. Checkpoint

PC: bar+4
StkPtr: 0x40

(other regs..)

. Fixed by setting ESP to Checkpointed ESP on interrupt

Outline

Experimental results

Experiments

Setup
Workloads

System characteristics

~ Execution time
- Transaction rates
- Transaction origins

Studies

- Contention management
- Commit & Abort penalties

Setup

Simics 3.0.17
8-processor, x86 system (1 Ghz)

Memory hierarchy

- L1: sep D/I, 16KB, 4-way, 1-cycle hit

- L2: 4MB, 8-way, 16-cycle hit, MESI protocol
- Main memory: 1GB, 200-cycle hit

Other devices

- Disk device (DMA, 5.5ms latency)
- Tigon3 gigabit nic (DMA,0.1ms latency)

Workloads to exercise TxXLInux

o CcOunter . MAB
- shared counter micro- - simulates software
benchmark (8 threads) development file
system workloads
. pmake .
- Runs make -j 8 to - contigure
compile files from - 8 Instances of
libFLAC 1.1.2 configure for tetex
. Netcat . find
- streams data over TCP - 8 Iinstances of find on
network conn. a 78MB directory

searching for text

Note: Only TxLinux creates transactions

Kernel Execution Time

14 -
0 :
g 12 B Linux
= 10 O TXLinux
s &
o 6
%
w4 - I
[T
. |
b
X) | |]
counter pmake netcat MAB config find

%Kern. time | 91% 13% 54% | 57% | 43% 50%

. High kernel time justifies transactions in the OS

Transaction Rates

1,000,000

449 322

100,000 -

10,000 -

1,000 -

100 -

Transactions / Sec

10 -

1 -

182,072

121,808

pmake

netcat

MAB

config

find

Restart Rate

2.6%

3.1%

1.7%

2.1%

10.2%

. Find workload has highest contention in TxXLinux

Transaction Origins

100

80

60 -

40 -

% Transactions

20 -

pmake

netcat

MAB

config find

O System calls
W Interrupts, kthreads

« Kernel locks accessed from both system call and
interrupt handling contexts

Contention Management Study

4.00 -
B counter
m pmake
3.50 —_—
@ netcat
T @ MAB
QO 3.00] - o configure ——
E O find
& 250 -
% 2.00 -
N
'g 1.50]
E 1.00 +
0.50 -
0.00 -
eruption karma kindergarten polka size matters timestamp
Policy

. Polka best performer, but complex to implement; SizeMatters viable

« Stall-on-conflict — reduces conflicts, but not always performance

Commit & Abort Study

. =0
2.5 Commit Cost m 100

d 1,000
2 0 10,000

Normalized Kernel Time
|_\
o1
|

counter pmake netcat MAB configure find

1.25
o)

1.20 Abort Cost m 100

1.15
O 1,000

1.10
S J 10,000
1.05 -

1.00
0.95
0.90 -
0.85
0.80
0.75

Normalized Kernel Time
|
|
|

counter pmake netcat MAB configure find

« Performance sensitive to commit penalty, not abort

. Confirms benefit of eager version management (fast commits)

Related Work

TM Models

- TCC [HammondO04], UTM [Anaian05],
LogTM [MooreO6], VTM [Rajwar05]

Suspension technigues

- Escape actions [ZillesO6] — can’t start tx
Interrupt handling

- XTM [ChungO6] — also tries to avoid aborts
Contention management

- Scherer & Scott [PODC’0O5] — in STM context

Conclusions

. TM needs realistic workloads

- TxLinux the largest TM benchmark
« OS needs TM

- Complex synchronization; large % of runtime
. Building & running TxLinux reveals much

- Architectural support needed (Tx suspension)
- Contention management is important
- Cost studies confirm fast commits

... more In the paper

