
The Linux Kernel:
A Challenging Workload for Transactional Memory

Hany E. Ramadan
Christopher J. Rossbach

Emmett Witchel

Operating Systems & Architecture Group
University of Texas at Austin

Talk overview

• Why OSes are interesting workloads (1)
• Interrupts (2)

– Transaction stacking (3)
• Configurable contention management (1)
• Other issues considered in the paper (1)
• Preliminary results (2)

Why OSes are interesting workloads

• Large concurrent program with interacting
subsystems

• Complex, will benefit from ease of
programming and maintainability

• Lack of OS scalability will harm application
performance

• Diverse primitives for managing
concurrency
– spinlocks, semaphores, per-CPU variables,

RCU, seqlocks, completions, mutexes

Interrupts

• Cause asynchronous transfer of control
• Do not cause a thread switch
• Are more frequent than thread switches
• May interrupt other interrupt handlers

• Question: How does a kernel which uses
transactional memory handle interrupts?

Using transactions in interrupt handlers

0x10

0x20

0x30

0x40

TX #1 { 0x10 }

system_call()

{

XBEGIN

modify 0x10

XEND

}

intr_handler()

{

XBEGIN

modify 0x30

XEND

}

No tx in interrupts

TX #1 { 0x10 }
TX #2 { 0x30 }

Interrupts abort active tx

TX #1 { 0x10, 0x30 }

Nest the transactions

TX #1 { 0x10 }

TX #2 { 0x30 }

Multiple active transactions

TX #1 { 0x10 }

interrupt

Benefits of multiple active Tx

• Most flexibility for programmer
– Interrupt handlers free to use Tx as necessary

• Aborts only when necessary
– Interrupts are frequent

• Interrupt handlers stay independent

• Implies..
– Multiple transactions on a single thread !

Multiple transactions per thread

• Many transactions may be simultaneously active
but at most one is running per thread
– They can conflict with each other
– Independent (no nesting relation)

• Stacked transactions
– Transactions complete in LIFO order
– Each thread has a logical stack of transactions

• Stacked transactions ideal for interrupts
– Stack grows and shrinks as interrupts occur and

complete

Multiple Tx Per Thread - Open questions

• What are the roles of HW and SW
– ISA changes for managing multiple transactions
– Efficient HW implementation

• Contention management must know about
stacking
– Stacked transactions can livelock

• Identifying other scenarios where this is useful
– Non-interrupt cases?
– Forms other than stacking?

• Program stack issues

Configurable Contention Management

• Contention can be heavy within OS
– Transactions most effective when contention

is rare
• OS contains programmer hints for

contention management
– RCU (read-change-update) favor readers
– Seqlocks favor writers

• Hardware TM should accept programmer
hints
– XBEGIN takes contention mgmt parameter

Other issues considered in the paper

• Primitives for which transactional memory
might not be suitable
– Per-CPU data structures
– Blocking operations

• I/O in transactions
– Big issue for Linux

• I/O is frequently performed while spinlock held
– May be possible to just allow it

• TLB shootdown

Implementation

• Implemented HTM as extensions to x86
– With multiple active transactions

• Modified many spinlocks in Linux kernel
(2.6.16.1) to use transactional memory

• Simulation environment
– Simics 3.0.10 machine simulator
– 16KB L1 ; 4MB L2 ; 256MB RAM
– 1 cycle/instruction, 200 cycle/memory miss

Preliminary Results
• We are booting Linux

– Transactions speed up boot by ~2%

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

2 CPUs 4 CPUs 6 CPUs 8 CPUs

Tranactionalized Linux
Unmodified Linux

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

2 CPUs 4 CPUs 6 CPUs 8 CPUs

N
o

rm
a
li

ze
d

 R
e
la

ti
v
e
 S

p
e
e
d

u
p

Transactionalized Linux

Unmodified Linux

Fin

	The Linux Kernel:�A Challenging Workload for Transactional Memory
	Talk overview
	Why OSes are interesting workloads
	Interrupts
	Using transactions in interrupt handlers
	Benefits of multiple active Tx
	Multiple transactions per thread
	Multiple Tx Per Thread - Open questions
	Configurable Contention Management
	Other issues considered in the paper
	Implementation
	Preliminary Results

