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Talk overview

• Why OSes are interesting workloads (1)
• Interrupts (2)

– Transaction stacking (3)
• Configurable contention management (1)
• Other issues considered in the paper (1)
• Preliminary results (2)



Why OSes are interesting workloads

• Large concurrent program with interacting 
subsystems

• Complex, will benefit from ease of 
programming and maintainability

• Lack of OS scalability will harm application 
performance

• Diverse primitives for managing 
concurrency
– spinlocks, semaphores, per-CPU variables, 

RCU, seqlocks, completions, mutexes



Interrupts

• Cause asynchronous transfer of control
• Do not cause a thread switch
• Are more frequent than thread switches 
• May interrupt other interrupt handlers

• Question: How does a kernel which uses 
transactional memory handle interrupts?



Using transactions in interrupt handlers
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Benefits of multiple active Tx

• Most flexibility for programmer
– Interrupt handlers free to use Tx as necessary

• Aborts only when necessary
– Interrupts are frequent

• Interrupt handlers stay independent

• Implies..
– Multiple transactions on a single thread !



Multiple transactions per thread

• Many transactions may be simultaneously active 
but at most one is running per thread
– They can conflict with each other
– Independent (no nesting relation)

• Stacked transactions
– Transactions complete in LIFO order
– Each thread has a logical stack of transactions

• Stacked transactions ideal for interrupts
– Stack grows and shrinks as interrupts occur and 

complete



Multiple Tx Per Thread - Open questions

• What are the roles of HW and SW
– ISA changes for managing multiple transactions
– Efficient HW implementation

• Contention management must know about 
stacking
– Stacked transactions can livelock

• Identifying other scenarios where this is useful
– Non-interrupt cases?
– Forms other than stacking?

• Program stack issues



Configurable Contention Management

• Contention can be heavy within OS
– Transactions most effective when contention 

is rare
• OS contains programmer hints for 

contention management
– RCU (read-change-update) favor readers
– Seqlocks favor writers

• Hardware TM should accept programmer 
hints
– XBEGIN takes contention mgmt parameter



Other issues considered in the paper

• Primitives for which transactional memory 
might not be suitable
– Per-CPU data structures
– Blocking operations

• I/O in transactions
– Big issue for Linux

• I/O is frequently performed while spinlock held
– May be possible to just allow it

• TLB shootdown



Implementation

• Implemented HTM as extensions to x86
– With multiple active transactions

• Modified many spinlocks in Linux kernel 
(2.6.16.1) to use transactional memory

• Simulation environment
– Simics 3.0.10 machine simulator
– 16KB L1 ; 4MB L2 ;  256MB RAM
– 1 cycle/instruction, 200 cycle/memory miss



Preliminary Results
• We are booting Linux

– Transactions speed up boot by ~2%
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