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estimation problem arises because the obvious source affdat
direct measurement (flow-level data) can be hard to obtaimark-

to unexpected problems and to assure high performance and sewide [6, 16, 27, 29, 34, 37, 39, 40]. On the other hand, Simgie N

curity in IP networks. We introduce a framework and a power-
ful class of algorithms fonetwork anomographythe problem of
inferring network-level anomalies from widely availablatd ag-
gregates. The framework contains novel algorithms, as agh
recently published approach based on Principal ComponealyA
sis (PCA). Moreover, owing to its clear separation of infex@and
anomaly detection, the framework opens the door to theioreat
of whole families of new algorithms. We introduce severattsu
algorithms here, based on ARIMA modeling, the Fourier trans
form, Wavelets, and Principal Component Analysis. We ihiice
a newdynamic anomographglgorithm, which effectively tracks
routing and traffic change, so as to alert with high fidelityion
trinsic changes in network-level traffic, yet not on intdmaating
changes. An additional benefit of dynamic anomography isitha
is robust to missing data, an important operational reality the
best of our knowledge, this is the first anomography algorithat
can handle routing changes and missing data. To evaluate #te
gorithms, we used several months of traffic data collectewh fihe
Abilene network and from a large Tier-1 ISP network. To corspa
performance, we use the methodology put forward earliettfer
Abilene data set. The findings are encouraging. Among theahew
gorithms introduced here, we see: high accuracy in dete¢téw
false negatives and few false positives), and high robastiii-
tle performance degradation in the presence of measureroiss,
missing data and routing changes).

1. INTRODUCTION

The first step in fixing a problem is knowing it exists. This is

work Management Protocol (SNMP) data on individual linkdsa
is available almost ubiquitously. Fortunately, the linladis and
traffic matrices are simply related by a linear equation

b = Ax 1

The vectorb contains the link measurements, aAds the rout-
ing matrix (defined formally below). We wish to infet, which
contains the unknown traffic matrix elements written as dorec
Tomographic inference techniques seek to invert thisicelahip
to find x.

The anomography problem is different and somewhat more com-
plex. First, note that anomaly detection is performed orri@sef
measurements over a period of time, rather than from a sémglp-
shot. In addition to changes in the traffic, the solution niustd
in the ability to deal with changes in routing. Second, nbiat t
the anomalies that we wish to infer may have dramaticallfedif
ent properties from a traffic matrix, and so different methtthn
those used for network tomography may be called for. Indefed,
find that simple extensions to network tomography methods pe
form fair poorly here. Techniques that transform the measents
prior to attempting to solve the inverse problem are préilera

As a simple example, imagine trying to detect an anomalaiis tr
fic pattern caused by a flash crowd or DDoS attack on a web site.
This type of event will cause increases in traffic flows heatbed
wards a particular set of destinations. It may be hard todigpi
identify which of the tens of thousands of ingress links oargé
network might be primarily responsible, as large surges ra¢ta
work egress link may arise from small surges on several §ggre
links (ingress links can be large, multiplexing diverse aadable

no less true in networking than anywhere else — we need to know traffic). We must infer the change in the pattern of traffiche t

about a problem before we can repair it. Networking vendyps t
ically build alarms into network equipment to facilitatesfaaccu-
rate detection and diagnosis of problems. However, in jp@&ct
there are many problems for which explicit alarms are eidfrsent
(for new or uncommon problems), or intrinsically hard togwoe.

In these cases we must infer the problem from other data esurc
For instance, many types of network problems cause abngqaal
terns to appear in the network traffic. Such traffiromaliesmay
be caused by problems ranging from security threats suchisas D
tributed Denial of Service (DDoS) attacks and network wqrtas
unusual traffic events such as flash crowds, to vendor impleme
tation bugs, to network misconfigurations. We refer to thebpr
lem of inferring anomalies from indirect measuremenheasvork
anomographycombining “anomalous” with “tomography,” a gen-
eral approach to such inference problems).

Network tomography [37] bears some resemblance, in that bot
involve the solution of a linear inverse problem. Examptediide
inference of individual link performance characteristicam path
performance characteristics, and inference of traffic icegrfrom
individual link load measurements. For example, the traffatrix

particular site from the complete set of link data, consdeto-
gether, rather than as individual time series. This il an im-
portant feature of anomography — that it extends anomalgceet
tion to network-level problems (automatically buildingdorrela-
tion across the network) where link-level anomaly detectioght
be inadequate or unreliable.

Many approaches to anomography are possible. In pioneering
work, Lakhinaet al.introduced a novel approach based on Princi-
pal Component Analysis (PCA) [23]. Our paper makes three ma-
jor contributions to understanding and solving anomogyaiob-
lems:

1. We present a simple and powerful framework that encom-
passes a wide class of methods for network anomography.
We will see that the method of [23] is a member of this
class. The framework clearly decouples the inference and
anomaly detection steps, and so immediately opens the door
to the development of new algorithms where one makes dif-
ferent choices for each step. Accordingly, we introduce sev
eral such new algorithms here, based on ARIMA modeling,



the Fourier transform, Wavelets, and Principal Component
Analysis. Moreover, the framework is not restricted to the
analysis of link traffic data, and in particular also applies
the dual problem of inferring performance anomalies from
end-to-end performance measurements.

. We introduce a new algorithm fatynamic anomography
which identifies network level traffic anomalies and works in
the presence of routing changes. That is, dynamic anomog-
raphy tracks routing and traffic change — signaling traffic
anomalies, but not internal network routing changes (which
may dramatically change internal traffic patterns but may
leave the traffic matrix, describing how traffic enters and ex
its the network, stable). In IP networks, routing changes oc
cur as part of the normal “self-healing” behavior of the net-
work, and so isolating these from traffic anomalies is advan-
tageous. An additional benefit of dynamic anomography is
that it is robust to missing link load measurements, an impor
tant operational reality (see Section 4 for why missing data
may result in changes in the routing matrix). To the best of
our knowledge, this is the first anomography algorithm that
can handle routing changes and missing data.

. Using data sets collected from a large Tier-1 ISP and from
Internet2’s Abilene network, we report on the results of an
extensive and thorough evaluation of a set of anomography
methods. To understand the fidelity of the methods and to
compare different methods, we apply the methodology in-
troduced in [23]. Under this methodology, we find that in
general the newemporal anomographgnethods introduced
here exhibit consistently high fidelity. In particular, wadi
that the most successful method (of those examined) is a
variation of dynamic anomography, combining Box-Jenkins
modeling (ARIMA) with ¢! norm minimization. Further eval-
uation suggests that this algorithm can cope well with mea-

An additional source of data used here comes from the ropting
tocols used to build the forwarding tables within each route
use routing data (e.g., gathered from a route monitor as3p [3
along with a route simulator (as in [12]) to predict the résulf
these distributed computations, and determine the networting.

The problem of inferring the OD traffic-matrix has been much
studied recently (for examples see [6, 16, 27, 29, 34, 37483,
The problem’s key characteristic is that it is massively encdn-
strained: there will be approximately? OD flows to estimate and
only O(N) link measurements. Hence tomography methods seek
to introduce additional information, often in the form ofse kind
of traffic model (for instance a Poisson model in [37, 34], ai&sa
sian model in [6], or a gravity model in [39, 40]). Anomogrgph
problems are also highly underconstrained, but the modsdsl u
to describe traffic are inappropriate for anomalies — by dtéfim
these events are generated by completely different presdéssm
normal network traffic. Furthermore, in anomography we cio@b
detection with inference, whereas in standard network gaghy
problems we seek only to infer a set of traffic matrix elements
Hence there are important differences between this pagkneta
work tomography.

It is also important to note that routing matrices changer ove
time. In much previous work, routing matrices are taken todre
stant (an exception being [29], where the traffic is assurodukt
somewhat constant, while the routing varies), but it is irtgoat
(see [35]) to allow for the fact that routing is not constantd nei-
ther is the traffic. In order to allow for variable routing, elex
not just the traffic measurements over time, but also thénguta-
trix. Given these, we may write the relationship betweenlitile
traffic, and OD traffic matrix as

b]‘ = Aij, (2)

where A; is ann x m routing matrix,x; is a lengthn vector of
unknown OD flow traffic volumes, and; is a lengthm vector of

surement noise, and degrade gracefully in the presence oflink loads, at time intervalj.

missing or corrupted data.

The paper is organized as follows. Section 2 summarizes back
ground and related work. In Section 3 we describe our framiewo
and the anomography algorithms examined in this paper, én th
context of fixed routing. In Section 4 we extend the Box-Jagaki
anomography to the case where routing may change over time. |
Section 5 we describe our evaluation methodology, and @eéti
presents the results. Section 7 provides final remarks.

2. BACKGROUND
2.1 Network Tomography

Network tomography describes several problems: infetopgl-
ogy, or link performance of a network from end-to-end measur
ments, or inferring Origin-Destination (OD) traffic demanfdom
link traffic measurements. These problems can be writteimear
inverse problems where one seeks to find unknowfi®m mea-
surementd given a linear relationship (1), wherkis the routing
matrix. For a network withn links, andm OD flows, we define
the routing matrix to be the x m matrix A = [a;;] wherea;;
indicates the fraction of traffic from floyvto appear on link.

Typically SNMP provides link measurements of traffic voluame
(bytes and packets), typically at 5 minute intervals (tlEigads de-
scribed in more detail in, for example [39]). We shall assuta@
of this type is the input to our algorithms, and we wish to infe
anomalous traffic matrix elements, but note that anomograph
not limited to this problem, and could equally be appliedrtii-
ring anomalous link performance from end-to-end measunésne

2.2 Redated work

Lakhinaet alcarried out the pioneering work in the area of in-
ference of anomalies at network level, [23, 22, 24], and sthp
Principal Components Analysis (PCA) to this setting. Dan{®,

10] introduced a powerful mathematical treatment for torapby-
like problems, wherein one seeks solutions that maximiaessy
(intuitively, solutions with fewest explanations). Thesapers in-
spired our development of the new methods introduced heck, a
our development of a framework in which a very wide class of
methods all fit.

Anomaly detection is a burgeoning field. A great deal of restea
in network anomaly detection relies on some type of infegestep,
taking a set of alarms [15, 17, 20, 31, 36] as input. While aogpm
raphy includes methods of this type, our results indicase ithis
better to delay alarm generation until after the inferertep.sin
that way, a single constructive alarm may be generatecegrrétn
a storm of redundant alarms. Moreover, in delaying the atpem
eration until after the inference step, we can in some caseglyg
improve the sensitivity of detection, as was demonstraiga3].

We approach the network anomaly detection problem from the
point of detecting unknown anomalous behavior, rather thak-
ing for particular signatures in the data, the focus of muoikvin
the security community. A large component of the work on ma-
chine learning, signal processing and time-series arslgsde-

'Note that the link load vectds, also includes the aggregated traf-
fic at different ingress/egress points; the correspondimgs in A
encode the OD flows that enter/exit the network at these @oint



voted to detecting outliers or anomalies in time-seriesis Tk

left or right multiplying transformation matrix, we can ther di-

erature has been applied to networks in a number of cases; forvide the framework into the following two classes:
examples see [1, 5, 17, 21, 36, 38]. These methods range in so-

phistication from [5], which suggests the use of the stashétolt-
Winters forecasting technique for network anomaly debegtio
[1], which uses a sophisticated wavelet based method wehtgr
potential. These methods focus on single time series raltiaer
the multi-dimensional time series that arise in anomogyaph

Most earlier work ignores noise or provides weak tests of ro-
bustness to noise (which can destroy utility). A strengtithef
work presented here is that we provide tests of effectivenéthe
methods in the presence of noise, always a factor in practice

3. NETWORK ANOMOGRAPHY

In this sectionwe shall assume that the routing matricés are
time-invariant and are denoted by. (We will extend our work
to time-varyingA; in Section 4.) Under this assumption, we can
combine allt linear systems (2) into a single equation using matrix
notation:

B = AX, (3)

whereB = [b1 b - - - b¢] is the matrix formed by havinb; as its
column vectors, and similarll’ = [x1 x2 - - - xq].

3.1 A General Framework for Anomography

We identify two basic solution strategies to network anomog
raphy: (i) early inverse and (ii) late inverse Early-inverse ap-
proaches may appear more intuitive. The early-inversecsupr
tackles the problem in two steps. The first is tiework tomogra-
phy step, where OD flow data at each interyadre inferred from
the link load measurements by solving the ill-posed lineaeise
problem (2). Given the estimated OD flow datpat different time
pointsj, in the second stepnomaly detectioran then be applied
to thex;. For this step, there are many widely used spatial and
temporal analysis techniques, which we will describe latehis
section.

Early-inverse methods, although conceptually simpleehav
obvious drawback — errors in the first step, which are unavoid
able due to the ill-posed nature of the inference problem com-
taminate the second step, sabotaging overall performa&ueeher
disadvantage is that early-inverse methods apply a patntom-
putationally expensive anomaly detection step to highedisional
data: on a network oV nodes, one must perform this step on all
N? OD pairs. As we will see, late-inverse performs anomaly de-
tection on onlyO(N) dimensional data. We focus on late-inverse
methods in this paper for these reasons, though we shaliderov
some comparisons between early- and late-inverse methods.

The idea of the late-inverse method is to defer “lossy” iefere
to the last step. Specifically, late inverse approachesa&xthe
anomalous traffic from the link load observation, then formd a
solve a new set of inference problems:

B = AX, )
where B = [by by ---b,] is the matrix of anomalous traffic in
the observables, anil = [%; Xs - - - %¢] is the matrix of OD flow
anomalies to be diagnosed, ovdime intervals.

While the new inference problems (4) share the same linear-
inverse structure as in network tomography (3), the charitics
of the unknowns are very different, and so is the soluticatsgy,
which we will explore in Section 3.4.

We now introduce a simple framework for late-inverse anomog
raphy methods. In this frameworlg is formed by multiplyingB
with a transformation matrig’. Depending on whether we use a

e spatial anomographywhere a left multiplying transforma-
tion matrix7' is used to formB, i.e., B = T'B;

e temporal anomographywhere a right multiplying transfor-
mation matrix7" is used to formB, i.e,, B = BT.

As mentioned in Section 7, future work that might combineltbst
of spatial and temporal techniques would be of interest.
Our framework encompasses a number of analysis techniques
for extracting anomalous traffiB from link load observations3,
as we next illustrate.

3.2 Spatial Anomography

Data elements in high dimensional data sets, such as the link
load observations, usually have dependencies. The imttdepen-
dency structure among the data elements can thus be exploite
filtering anomalous behavior by discovering data points\vfaate
the normal dependency structure. In our context, the psozfede-
tecting such data points can be performed by left-multgtian by
a transformation matri¥’ such thatB = T'B. An example of
such an approach is a recent study by Lakhenal. [23], where
Principal Component Analysis (PCA) is used in finding domina
patterns. We describe this method, and in particular itant@tion
as a left-multiplication operation in the following sectio

3.2.1 Spatial PCA

In[23], Lakhinaet al. proposed a subspace analysis of link traffic
for anomaly detection, which can be summarized as follows.

1. Identify a coordinate transformation & such that the link
traffic data under the new coordinate systems have the gteate
degree of variance along the first axis, the second greatest d
gree of variance along the second axis, and so forth. These ax
are called the principal axes or principal components.

Recall thatB = [b1 b - - - b¢] is the collection of link traffic
data atm links overt time intervals, where each row(1 <

1 < m) denotes the time series of th¢h link and each column

j (1 < 7 < t)represents an instance of all the link loads at
time intervalj. The principal components;;, va, ..., vy, Can

be computed iteratively as follows:
k—1
<BT — ZBTVZ'VZ-T> v
i=1

The coordinate transformation matrix can thus be obtained b
arranging the principal components as rows of a maltix=
[v1 V2...Vm]T.

HBTV

Vi = argmax

pma: , Vj = argmax
vi=

lvii=1

2. Divide the link traffic space into theormal subspacand the
anomalous subspackakhinaet al.[23] developed a threshold-
based separation method by examining the projection of the
time series of link traffic data on each principal axis in ordes
soon as a projection is found that containssad@viation from

the mean, that principal axis and all subsequent axes are as-
signed to the anomalous subspace. All previous principal ax
are assigned to the normal subspace.

We useP, = [v,V,ri1...vi]T to denote the matrix of the
principal axes in the anomalous subspace, wheris the first
axis that fails to pass the threshold test.

The anomalous traffic can now by extracted from link load ob
servation by first projecting the data into the anomalous sub
space and then transforming it back, by takivg= (P P,)B,
and so we obtain the transformation matfix= P P,.



We call the above methospatial PCAbecause it exploits the
correlation between traffic on different links (across s)ad ater
in Section 3.3.4, we will describeemporal PCA which exploits
temporal correlation by applying PCA to identify dominarat{
terns across time.

3.3 Temporal Anomography

The anomalous link traffic can also be separated by perfarmin
temporal analysis on the time series for each link. Consadest
of link traffic data over timeg: B = [b1 bs...b:]. The process of
extracting anomalies by exploiting the temporal structitgin the
data points can be modeled as a linear transformation ofirtree t
series:B = [by bs...b;] = BT, where the transformation matrix
T can be either explicit or implicit. In this paper, we consittur
types of temporal analysis: ARIMA, Fourier, Wavelet, andAPC
(for identifying dominant patterns across time). Althougimay
not be obvious at first glance, all these methods indeed fitiin o
framework of linear matrix transformation, as we will seatme

3.3.1 ARIMA Modeling

Univariate time series. The Box-Jenkins methodology, or Au-
toRegressive Integrated Moving Average (ARIMA) modeliagh-
nique [2, 3, 4], is aclass of linear time-series forecast@tniques
that capture the linear dependency of the future values ®padkt.
It is able to model a wide spectrum of time-series behaviod a
has been extensively used for anomaly detection in uniestiiae-
series.

An ARIMA model includes three order parameters: the autore-
gressive parametep), the number of differencing passe8,(and
the moving average paramete).( In the notation introduced by
Box and Jenkins, models are summarized as AR(MA, ¢). A
model described as ARIM@, 1, 2) means that it contains = 0
(zero) autoregressive parameters gnee 2 moving-average pa-
rameters which were computed for the time series after itdifas
ferenced onced(= 1).

A general ARIMA model of orde(p, d, q) can be expressed as:

p q
2k — g Qi Zp—i = € — g 0; - ex—i,
=1 j=1

wherez;, is obtained by differencing the original time serigmes
(whend > 1) or by subtracting the mean from the original time
series (whenl = 0), e is the forecast error at time, ¢; (i =
1,...,p)andd; (j = 1, ..., q) are the autoregression and moving-
average coefficients, respectively.

Many commonly used smoothing models are special instarices o
ARIMA models. For example, the Exponentially Weighted Mov-
ing Average (EWMA), is equivalent to ARIMQ), 1, 1); linear ex-
ponential smoothing, also known as non-seasonal Holt-&ksnts
equivalent to ARIMAQO, 2,2). These techniques have been used
for detecting anomalies in time-series, for instance HowtJ[17]
use an ARIMAQO, 0,2) model. See [32] for detailed equations
for various smoothing models and their equivalence with MRI
models.

There are well known techniques for estimating the pararsete
p,d,q,¢; andf; for a given time series [2, 3, 4], and given the
parameters, the model is simply applied to geta prediction of
zr. (using for instance the Durbin-Levinson algorithm [4]). €Th
prediction errors are the#,+1 = 2x+1 — Zr+1, Which then form
our anomalous traffic (the traffic which does not fit the madkd)
practice the parameters used in the ARIMA model are somstime
chosen to meet particular goals intended by the implemepes
[5] for some discussion of these choices), rather than begtig

©)

mated from the data set, because the parameters of a datayset m
change over time. However, we prefer to use adaptive teabriq
to overcome this problem.

If we consider the time series to be vectors of lengtthen the
above results can be written in matrix form. Taking the measu
mentsb = (b1, ...,b;)", we can obtain the erroes= (e1,...,¢e:)7,
via right-multiplication by a transformation matrbx” = e”

b”T. Specifically, letl denote the x ¢ identity matrix,s7 denote
the “back shift” matrix, and denote thé x ¢ unit matrix, i.e.,

100..00 010...00 111..11
010..00 001...00 111..11
000...10 000...01 111..11
000..01 000...00 111..11

The differencing resultz = [zle...zt]T, can then be represented
by

b’ (I - )%, ford > 1,

bt — %le =p’ (I— %1) for d = 0, ©)

Equation (5) can be written in matrix notation as
27— Z@ZTVZ — T _ Z ajeTvJ7
i=1 j=1

or equivalently,

p q -1
el =T (I — Z@'Vi) (I - ZOJV]) .
i=1 j=1

Extending ARIMA based models to multivariate time series is
straightforward. As noted earlier, we construct the maBiwith
the measurements at each time peigdas its columns. Via the
transformations just described, we obtain

E=2Z <1—Z¢ivi> <I—Zejvf> . )
i=1 j=1

ARIMA based anomography. ReplacingZ by the matrix form
of (6), we see thaly = BT is indeed a transformation given by
right-multiplying B with a matrixT'. In fact, anylinear filtration of
the elements of a time series can be modeled by a right myiftgpl
matrix transformation. If the transformation is time-ineat, then
the matrix in question will be Toeplitz (the values alonggtinals
will be constant).

To get back to anomaly detection, we simply identify the fast
errors as anomalous link traffi& = FE. That is, traffic behavior
that cannot be well captured by the model is considered alooisia

3.3.2 Fourier Analysis

Fourier analysis [26] is the process of decomposing a comple
periodic waveform into a set of sinusoids with different ditogles,
frequencies and phases. The sum of these sinusoids caryexact
match the original waveform. This lossless transform presea
new perspective of the signal under study (in the frequermy d
main), which has proved useful in very many applications.

For a discrete-time signab, z1, . . . , xn—1, the Discrete Fourier
Transform (DFT) is defined by

N—-1
% 2 :I;kefjl»cQTrn/N7

fn= foro<n<N -1,

0



where f,, is a complex number that captures the amplitude and traffic B. We can also comput& as the mid-frequency compo-

phase of the signal at theth harmonic frequency (with base fre-
qguencyl/N). Note that for a real signdlf.} is symmetric, i.e.,
fn = fN—1-n. LOwern corresponds to a lower frequency compo-
nent, with f, being the DC component, or the average of the input
series, andf,, with n close toN/2 corresponding to high frequen-
cies.

The Inverse Discrete Fourier Transform (IDFT) is used tonec

struct the signal in the time domain by
N-—-1 )
zp =Y fee?™TN foro<n <N -1
k=0

An efficient way to implement the DFT and IDFT is through an
algorithm called the Fast Fourier Transform (FFT). The cotap
tional complexity of the FFT i€ (N log(V)).

FFT based anomography. The idea of using the FFT to extract
anomalous link traffic,B is to filter out the low frequency com-
ponents in the link traffic time series. In general, low freqey
components capture the daily and weekly traffic patternsgjewh
high frequency components represent the sudden changesf-in t
fic behavior. Working in the frequency domain provides ushwit
the opportunity to distinguish these two kinds of behaviors

We summarize FFT based anomography as follows.

1. Transform link trafficB into the frequency domair’ = FFT(B):
apply the FFT on each row @&. (Recall that a row corresponds
to the time series of traffic data on one link.) The result & th
corresponding frequency domain series, in each row.of

2. Remove low frequency components: i.e. Bet= 0,fori €
[1,c] U [N — ¢, N], whereF; is thei-th column of ' andc is
a cut-off frequency. (For example, for the results prestirie
Section 6, we use 10-minute aggregated link traffic data ef on
week duration, and = [%N}, corresponding to a frequency

of one cycle per hour.)

3. Transform back into the time domain: i.e. we take= IFFT(F).
The result is the high frequency components in the traffia,dat
which we will use as anomalous link traffiB,

The DFT and IDFT may be represented as right-matrix products

In setting columns of’ to zero, and performing the IDFT we are

taking a linear combination of the columnsi6f which in turn are a

linear combination of those d8. Hence, the overall process above

can be modeled as a right-multiplying matrix transformatid =

BT. Note also that in thresholding at frequencwe preserve the

symmetry ofF’, and so althougl#” may contain complex elements,

the resulting transform will be real.

3.3.3 Wavelet Analysis

Wavelets [8, 14, 26] are mathematical functions that cutatp d
into different frequency components, and then study eaafpoe
nent with a resolution matched to its scale. They providewa-po
erful means for isolating characteristics of signals viambined
time-frequency representation and are often considengerisu to
traditional Fourier methods especially in situations vettee signal
contains transients, such as discontinuities and shakpspi

In [1], Barford et al. have developed a wavelet-based algorithm
for detecting anomalies in the link traffic data. It shares shme

principle as the FFT based approaches — exposing anomalies b

filtering low frequency components. More specifically, iessvavelets
to decompose the original signal into low-, mid-, and higigfiency
components and then detects anomalies by close examiéhtios
mid- and high-frequency components.

Below we compute3 as the high-frequency components of link

nents ofB in essentially the same way.

1. Use wavelets to decompogrinto different frequency levels:
W = WAVEDEC(B), by applying a multi-levell-D wavelet
decomposition on each row @. The result is a wavelet de-
composition vector, which we save as one row in makix
The wavelet we use is the Daubechies wavelet [7] of order 6.

Then remove low- and mid-frequency componenidiby set-
ting all coefficients at frequency levels higher than to 0.
Herew. is a cut-off frequency level. For the results presented
in Section 6, we usé0-minute aggregated link traffic data of
one week duration, and. is set at3. That is, we only keep
coefficients at frequency levels 2, and3, which is consistent
with [1].

3. Reconstruct the signal3 = WAVEREC(B). The result is the
high-frequency components in the traffic data.

Itis easy to verify that the process of WAVEDEC and WAVEREC
only involves linear combinations of columns 8 As a result,
the B derived through the wavelet based anomography can also be
modeled as right multiplying matrix transformation.

3.3.4 Temporal PCA

In Section 3.2.1, we presented a method of applying PCA to find
dominant patterns among different link-load time seriesirAilar
method can be used in identifying dominant patterns acnoss t

Consider the link load matri8 = [by bs...b;]. We can think
of each row as a-dimensional vector. What we are looking for is
a new coordinate system;, vo, ... ,v+, such that the projection of
them links (onvy, vo, ...,v¢) has energy concentrated on the first
several axes. This is exactly what PCA provides. The onlffgdif
ence is that we now apply PCA dB” as opposed t® (as used
in spatial PCA). Then we follow the same procedure to define an
anomalous subspace and to extract anomalies that havetmoge
in the anomalous subspace. In this way, we obtain a left piyti
ing transformation matris’, i.e., BY = TB~T. Taking transpose
on both side of the equation, we haiie= (B™)” = (TB")” =
BTT whereTT is a right multiplying transformation matrix that
extracts anomalies fro3.

3.4 Inferencealgorithms

Once we obtain the matrix of link anomaliék the next step is
to reconstruct OD flow anomali€s by solving a series of ill-posed
linear inverse probleris; = A%;. For example, Lakhinat al[23]
proposed to find the single largest anomaly in each timevatgr
by applying a greedy algorithm. We present below three commo
inference algorithms for solving these problems. All thedgo-
rithms deal with the underconstrained linear system bycéérag
for a solution that minimizes some notions of vector norme¢h
examples of which are

N

e The ¢ norm of a vectow is defined aglv|> = (3, vf)%,

whereuw; is thei-th element of vectoy.

e The!' norm of a vectow is defined agjv||: = Y, vi], i.e,
the sum of the absolute value of each element.of

e The¢® norm of a vectow is defined agv|jo = >, v?, i.e,,
the number of non-zero elementswaf

3.4.1 Pseudoinverse solution

A standard solution th = Ax is the pseudoinverse solution
% = ATb, whereA™ is the pseudoinverse (or Moore-Penrose in-
verse) of matrixA. It is known thatk = A™b is the solution to



the problemb = Ax that minimizes the> norm of the anomaly
vector, i.e. it solves:

minimize ||%||> subject to]|b — Ax||» is minimal

®)

3.4.2 Sparsity maximization

In practice, we expect only a few anomalies at any one time, so
% typically has only a small number of large values. Hence it is
natural to proceed by maximizing tparsityof x, i.e., solving the
following ¢° norm minimization problem:

minimize ||X|lo subject tob = Ax.

9)

The¢° norm is not convex and is notoriously difficult to minimize,
so in practice one needs to either approximate/theorm with a
convex function or use heuristics, for example the greeglgréhm

of Lakhinaet al [23].

3.4.2.1 ¢* norm minimization.

One common approach to approximéfenorm minimization is
to convexify (9) by replacing thé” norm with an¢! norm, so that
we seek a solution to

minimize ||x||; subjecttob = Ax (10)

As shown in [9, 10]¢* norm minimization results in the sparsest
solution for many large under-determined linear systems.

In the presence of measurement noise, the constraiats Ax
may not always be satisfiable. In this case, we can add a genalt
term||b — Ax||: to the objective and reformulate (10) as:

minimize \||x[|1 + [|b — A% (11)
where € [0, 1] controls the degree to which the constraibts-
Ax are satisfied. As shown in Section 6, the algorithm is not very
sensitive to the choice of. In the rest of this paper, unless noted
otherwise, we us@ = 0.001, which gives satisfactory results.

We can cast (11) into the following equivalent Linear Progra
ming (LP) problem, for which solutions are available everewh
is very large, owing to modern interior-point linear pragraing
methods.

minimize A3, ui + 3, v;

subjectto b = Ax + z
u>x, u>-—-x
v>z, V>-—-z

(12)

Note that it is common to ugéb — Ax||3 (instead of|b— Ax||;)
as the penalty term in (11). This alternative formulatiom ¢e
efficiently solved using methods like Iterative Reweightezhst
Squares [19] and has been successfully applied in [11] tovesc
sparse overcomplete representations in the presence s#. ndie
elect to use (11) because we find it much easier to generalide (
to detect changes when the routing matsids time varying (see
Section 4 for details).

3.4.2.2 Greedy algorithm.

Another common heuristic solution fé? norm minimization is
to apply the greedy algorithm. For example, the greedy kgari
has been successfully applied to wavelet decompositioeyevit
goes by the name @rthogonal Matching PursuiftOMP) [30]. In
the same spirit here, we develop a greedy solution to magiithiz
sparsity ofk. The algorithm starts with an empty sebf non-zero
positions forx and then iteratively adds new non-zero positions to
I. During each iteration, for each positipn¢Z I, the algorithm
tests how much it can reduce the residoat Ax by includingp as

a non-zero position. More specifically, lét= I U {p}. The algo-
rithm estimates the values for the non-zero elements(afenoted
asx ) by solving the following least squares problem

minimize |b — A % || (13)

where A; = A[., J] is a submatrix ofA formed by the column
vectors ofA corresponding to positions iA. The residual is then
computed ag; = ||b — As%s|]2. The algorithm then greedily
chooses the positiop that gives the smallegt; and adds it tal.
The algorithm stops whenever either the residual enerdy fa-
low some tolerance to inaccuraey,.. or the number of non-zero
positions exceeds some threshég,..

4. DYNAMICNETWORK ANOMOGRAPHY

Up to this point, we have assumed that the routing matrices ar
constant. However, we wish to allow for dynamic routing aies)
and so we must allowd; to vary over time. In IP networks, rout-
ing changes occur as part of the normal “self-healing” beranf
the network, and so it is advantageous to isolate these firaifict
anomalies and only signal traffic anomalies. In additiorsame
measurements are missing (say at tifpeve may still form a con-
sistent problem by setting the appropriate rowslgto zero. Thus,
for realistic SNMP measurements where missing data ara afte
issue, we still wish to varyd; even for static routing. Routing
measurements may be obtained using a route monitor, tod@ovi
accurate, up-to-date measurements of routing (at leakeairme
scale of SNMP measurements, e.g. minutes).

Where the tomography step can be done separately at each time
interval (for instance see [39, 40]), it is simple to adaptlyea
inverse methods tdynamic network anomograply inverting (2)
at each time step. Given the straight forward approach fdy-ea
inverse methods, We seek here to generalize late-invers®dse
to dynamic network anomography.

4.1 Dynamictemporal anomography

When the routing matrix is non-constant, there is no reasoe+t
lieve that the measuremenisshould follow a simple model such
as an ARIMA model. Even where the traffic itself follows such
a model, a simple routing change may change a link load mea-
surement by 100%, for instance by routing traffic complessiy
from a particular link. If we were to apply the ARIMA model to
the measurement8, we would see such a change in routing as a
level-shift anomaly. However, its cause is not an unknowange
in X (to be discovered), but rather a known change in the routing
matricesA;. Likewise, it no longer makes sense to try to exploit
spatial correlations which arose from a particular routitmythe
case of another routing.

However, it is no less reasonable to approximate the traffic m
trix X by an ARIMA model (thanB when the routing is constant),
even when routing may change. Under such a modeling assump-
tion, we can writeX = XT'. We know also that the measurements
are given by (2). A reasonable approach to the solution iethe
fore to seek a solutioX which is consistent with these equations,
but also minimizes one of the norms (described above) att@aeh
step. We choose to minimize tiié norm ||%, ||, here because (i) it
allows us to naturally incorporate link load constraintsradtiple
time intervals, and (ii) it is more accurate than both theugs@n-
verse and the greedy algorithms for static anomography ¢asillv
show in Section 6).

Unfortunately, for transform based methods (the Fouriaxelet
and PCA methods) the number of constraints becomes verg larg
(ast grows). On the other hand, the set of constraints for the
ARIMA model can be written in a form such that it does not grow



with t. Hence, in the following we concentrate on generalizing
the ARIMA approach. We first present the basic algorithm for
ARIMA (p, d, q) models withd > 1 (Section 4.2). To improve
its efficiency, we develop two simple techniques that sigaiftly
reduce the problem size (Section 4.3). We have also extetha@ed
algorithm to handle ARIMA models witd = 0 (Section 4.4). We
will also discuss model selection and parameter estimativo
important issues for applying ARIMA-based anomographyc{Se
tion 4.5).

4.2 Algorithm for ARIMA modelswith d > 1

We are going to seek solutions that are consistent with thee me
surementsdh; = A;x;, forj = 1,...,¢, and an ARIMA model
that givesX = XT whereT is the same transformation matrix im-
plicitly defined by (6) and (7). Importantly, we do not wishttave
to estimateX (or we may as well use an early-inverse method).
The advantage of the ARIMA model, is we do not need to know
X, but only linear combinations of.

Let L be the backshift operator, whose effect on a proeesan
be summarized ad.z), = zx—1. Let the AR polynomialb(L) be

(1 - i ¢Z~Li> (1— L)

Letyr—i = vixi—i. We now identifye = x in the ARIMA model
described in (5) (or rather its multivariate extension).dgfinition
the sumY) P yy s =z, — -7, ¢izp—s, and so, fod > 1, the
ARIMA model (5) can be rewritten

d+p

i def
(L) =Y L' =
1=0

d+p q

E Ye—i :f(k — E 0]'5(167]‘.
i=0 j=1

Definecy—; = vibr—i, then asyx_; = vixx—:, the measurement
equation (2) implies

(14)

Ap—iVk—i = Cr—i, 1=0,1,---,d+p. (15)

We can compute, X2, - - - , X; iteratively by solving a series of
£' norm minimization problem®y, (k = 1,2, -- - ,t):

Pr :  minimize||x||1 subject to (14) and (15). (16)

As an illustrative example, consider the simplest ARIMA rabd
ARIMA (0, 1,0). In this casep = ¢ = 0, so we can write

®(L) =3 vl =(1-1),

s07o = 1 andy; = —1, and (14) become®, = 3! _, yx—i, thus
problemP;, is simply

minimize [|Xx||1
Xy =  Yrt+Yr-1
subject to Aryr = by 7
Ar-1yr—1 = —br

We apply zero-padding to handle the initial condition wier
g or k < d+ p. Specifically, for the MA part of the model, we set
x,—; toOwheneverk < j. For the AR part of the model, we apply
zero-padding on the differenced ser{és — L)?x;}, which can be
achieved by redefining the AR polynomia(L) = 3, v L' as

(1-3P ¢ L)1 —-L)* Vk>d+p

(1=, L)1 — L) Vk € (d,d + p]
0 Vk <d

(1) %€

As in Section 3.4.2.1, we can accommodate measurement noise
by incorporating penalty terms into the objective to peretigainst
violation of constraints (14) and (15). We can then solveréseailt-
ing ¢! norm minimization problem by reformulating it as an equiv-
alent LP problem. We omit such details in the interest of ityev

4.3 Reducing the problem size

One potential problem with the above algorithm is its highneo
putational cost. Even though the computational cost is figtative
tot, itis still highly dependent on the number of traffic matrlg-e
mentsn, and the order paramete(s d, ¢), and so thé' minimiza-
tion problemP,, can be very large even whety,_; stays constant.

In contrast, the static anomography algorithm had quitelgmmon-
putation properties for constadt;. Below we develop two simple
techniques to significantly reduce the siz&af These techniques
are motivated by the following observations: (i) the rogtmatri-
ces are often quite stable and tend not to change in everyribare
val; and (ii) when the changes occur, they tend to be locaigbs
and most rows of the routing matrix will remain the same. Our
techniques seek to merge constraints if the corresponitikdplad

is unaffected by the change of the routing matrix. In pafécifor
time invariantA;, our techniques reduce the dynamic anomogra-
phy to the static anomography algorithm.

Eliminating duplicate Ax_;.  Our first technique reduces the
problem size by merging constraints for intervals with thens
routing matrix. Specifically, if there exist < i» suchthatd,_;, =
Ay_i,, We can use a single unknown vecig_, to represent
Yk—i, + Yk—i, in (14) and then replace the two sets of constraints
on yr—i, andyx—;, in (15) with a single set of constraints on
Yi—i,:

/ / def
Ap—i1Yk—i, = Cr—iy = Chk—i; + Criy

We can repeat this process until dl}. _; are distinct.

Eliminating rows common to all A;_;. Our second technique
exploits the fact that there is often a large subset of romsnaon
to all A;_,;. Before describing the technique, we first introduce
some notations. Lef be a set of integers. Given a matiiX, let
M* be the submatrix of/ that consists of all rows with indices
in S. Similarly, given a vectow, let v be the subvector of that
consists of elements with indices $h

Using the above notations, 1€t be the set of row indices such
that all A, are equal (denoted byt“). Let C be the set of row
indices not inC'. We can then decompose (15) into

A = S, i=0,1,---,d+p  (18)
A iyks = o i=01,,d+p (19
Summing up all the constraints in (18) ovekrve obtain
d+p d+p
(20)

A“ Z}’kﬂ‘ = z Ckc—i
i=0 i=0

Combining (20) and (14), we get a single set of constraints on
Xk:

d+p q
Z e = A%, — A¢ Z 0 Xk (21)
i=0 j=1
We can then replace (18) with (21), reduciRg to
minimize||xx |1 subject to (14), (19), and (21). (22)

In the special case whed; is time invariant, we hav€ = (.
So the constraints og,—; (19) become empty, causing._; to



become free variables in (22). In this case, we can furtmeply
(22) by eliminatingy—; and the corresponding constraint (14),
resulting in

minimize ||xx |1 subject to (21). (23)

Itis easy to verify that (23) is equivalent to our originajalithm
for time invariant4;, which first compute$3 by applying ARIMA
modeling onB and then estimates, by minimizing||xx||1 subject

to b, = Ax,. This is appealing in that we now have one unified
algorithm for ARIMA-based anomography.

4.4 Algorithmsfor ARIMA modelswith a=0

We now extend the algorithm to deal with ARIMA, d, ¢) mod-
els withd = 0. The main difference from ARIMA models with
d > 1is that we need to subtract the mean of process (de-
noted byu) from x; in the analysis. That is, we have

(k=) =Y Gi(Xhi—p) =%p — > O;%k;  (24)

Clearly, if u is a constant vector known in advance, we can estimate
X1,X2,- -+ , X iteratively by minimizing||xx |1 subject to (24) and
Ag—iXp—i = br—; (i = 0,1,--- ,p). If uis unknown, we can
impose the following constraints gn

t
uo= %le (25)
b, = A;x_i, i=0,1,---,¢ (26)
We can then estimate eagh by solving
minimize||xx||1  subject to (24), (25) and (26). 27

Note that the abov&' norm minimization problem involves con-
straints at all¢ time intervals. Although we can apply the tech-
niques in Section 4.3 to reduce the problem size, the siraglifi

The first question is what data to use for model selection and p
rameter estimation. This is important because the datandigtes
the model and the parameters that we can learn.

In the context of network anomography, we would like the niode
and parameters to capture the normal behaviot; ofor this pur-
pose, we propose to select our models and parameters bates on
traffic aggregated at differeimigresspoints. More specifically, let
I be the set of indices corresponding to all the ingress pairttse
link load vectorsb;. We will use the series of subvectds$ as the
input data for model selection and parameter estimation.

This has several advantages. Fiisf, is readily available and
does not require any inference. More importantly, ingresfi¢ is
largely invariant to internal topology and routing changethe lo-
cal domain under consideration, making our algorithmsiagple
even in the presence of topology and routing changes. Iriiaddi
each element ob! aggregates a number of OD flows. So the ef-
fect of anomalies or missing data on individual OD flows isles
significant, making our results more robust.

4.5.2 How to estimate; ande, given(p, d, q)?

Given (p,d, q) and input vector seriebl}, we can estimate
the autoregression and moving-average coefficientand§; by
constructing a state-space model and then applying thelatdn
Kalman filter adaptation [18, 25]. Our implementation is éxhs
on thearmax function in Matlab’s System Identification Tool-
box [25].

To ensure the size of the resulting state-space model iptate
by Matlab, we currently estimatg; and6; based on the&0 rows
with the highest row sums in matrib? b - - - b!]. We have also
experimented with an alternative scheme that partitidrte@krows
of [bibi .. b}] into 10 groups and estimates the parameters from
the 10 aggregated traffic series (one per group). We find that the
estimated coefficients are similar under the two schemes.

4.5.3 How to select the model orderd, ¢)?
We first select the degree of differencing).( As noted in [28,

problem can still be more expensive to solve than the case for Lecture 9], the optimal degree of differencing is often tme at

ARIMA models withd > 1. A second limitation is that the al-
gorithm can only be used for offline analysis, becausgepends
on future time intervals.

There are many possible ways to alleviate the above liroitati
For example, one can redefipeas the mean ak; within a small
fixed time window observed in the past. Alternatively, one de-
fine u on a sliding windowij.e., definep, = = > | x4—;, where
w is the width of the sliding window. Note that the use of a slid-
ing window effectively maked > 1, because the AR polynomial
®(L) is now

®(L) = <1 - i¢L> <1 - %iy) ,

which has a unit roof. = 1. We will not further explore these
possibilities in this paper, because we find that we néed 1 on
all our datasets as determined by our model selection puoeed
(described in Section 4.5.3).

45 Model selection and parameter estimation

In this section, we address two important issues on applying
ARIMA type models: model selection.¢., determiningp, d, q)
and parameter estimationg(, determining coefficients;, 6,). We
do so by answering the following three questions.

4.5.1 What data to use?

which the standard deviation of the differenced seriesdddtvest.
We can apply this rule to determirke More specifically, for each
d € {0,1,2,3,4}, we compute the differenced series

Zq = [Zd1242 - 244 = (1 — L)*[bib] ---b]]
LetE[Zd] =1 21?21 Zd,; andV[Zd] = % ZZ:l sz,i_E[Zd]”%-

We then pickttheizthat results in the minimum variandé[Z,]. In
all the datasets we tested in this paper, we find that we deed.
Once we havel, we can automate the choice paindqg by ap-
plying an information based criterion such as the AIC or AICC
(see [4, pp. 171-174]). Information based criteria aregiesi to
achieve a good balance between model parsimony and lowcpredi
tion error. In our Matlab implementation, we use AIC (Akdike
Information Criterion) as our model selection criterionor each
p,q € {0,1,2,3,4}, we estimatep; andé, (as in Section 4.5.2)
and compute the resulting AIC based on the residuals andakelm
complexity. We then choose the pair(@f ¢) with the lowest AIC.

5. EVALUATION METHODOLOGY
5.1 Data Sets

We apply our techniques to real network measurement data gat
ered from two large backbone networks — Internet2’s Abileet
work and a Tier-1 ISP network. Both networks span the contale
USA. However, the networks are very different in terms of bem
of nodes, traffic volume and traffic characteristics. Theld&ie



backbone is relatively small, with 12 core routers, 15 backb
links and 144 OD flow elements in its traffic maffixin contrast,
the Tier-1 ISP backbone is relatively large, consisting widreds
of routers, thousands of links and tens of thousands ofrdifteOD

flows. To reduce computation complexity without loss ofitytilve

use the technique in [39] to lump edge routers with topolaigjic
equivalent connectivity. This reduces the total number Dffows

to about 6000.

Another important distinction between the Abilene and thea-T
1 ISP networks is in the traffic they carry. Abilene is usuailjte
lightly loaded. Abilene’s traffic comes mainly from majoraac
demic institutions, a significant portion of which consiefstraf-
fic whose characteristics resemble bulk data transfer atwdorie
measurement traffic. On the other hand, the Tier-1 ISP né&tigor
moderately loaded, carrying primarily commercial traffion in-
spection of the traffic behavior, we found that the Abilerafic
exhibits irregularity and much higher variability than the the
Tier-1 ISP. These distinctions will impact the performanéghe
anomaly detection techniques explored here; in particalama-
lies stand out more strikingly in Abilene data.

The primary data inputs for our anomaly diagnosis are the tim
series of link loads (bytes across interfaces) for everyvoek,
gathered through SNMP. We use flow level data, where availabl
for validation. As is often the case, the flow data is incortgle
The flow data are collected at the edge of the network whewe dat
packets are sampled and aggregated by the IP source anbéesti
tion address, and the TCP port number. Adjusted for sampditey
and combined with BGP and ISIS/OSPF routing informatioash
sampled IP flow statistics are then aggregated into a réfi¢ tnaa-
trix [13], where each element is an OD flow with the origin and
destination being the ingress and egress point of the fldinoto/
the network. Consistent with [23], we aggregate these nmeasu
ments into bins of 10 minutes to avoid any synchronizatienés
that could have arisen in the data collection.

Ideally, to evaluate the methods, one would like complete flo
level data, SNMP link load measurements, and continuoa&-tra
ing of routing information, providing a consistent, contpeasive
view of the network in operation. Unfortunately, we do novéa
the complete set of flow level data across the edge of the mletwo
(due to problems in vendor implementations or in data ctdeg,
and our routing information is only “quasi-" real time (wdy®n
snapshots available from table dumps carried out every 8hou
As a result, inconsistencies sometimes arise between theae
surements. To overcome these problems and provide a camtsist
means for evaluating the algorithms, we adopt the metho89h [
and reconstruct the link traffic data by simulating the nekwout-
ing on the OD flow traffic matrix generated from the availatdé s
of flow level data. Note that we use derived link load measure-
ments for validation purposes only. In practice, our meshace
applicable to direct measurement of traffic data as obtairad
SNMP.

5.2 Performance Metrics

We conduct our evaluation in two steps. First, we compare the
different solution techniques for the inverse problbm= Ax; (as
described in Section 3.4). The inverse problem is commorilto a
the late-inverse anomography methods discussed in Sektisn
for simplicity we choose to use the simplest temporal foséng

2The Abilene network studied in [23] was prior to some majdr ne
work updates in 2003. For comparison purpose, we have iadlud
the same dataset, which has 11 core routers in the topoleggeh
121 OD flows in the traffic matrix. We will refer to this datasest
Abilene*.

model, ARIMA(0, 1, 0), for evaluation. This model predicts the
next observation to have the same value as the current ones, Th
the inverse problem on the prediction error can be congtduby
simply taking the difference between consecutive link loader-
vations: Ax; = b; = b: — b;_1. The performance of the in-
version technique is measured by comparing the inferradisal
X, to the direct difference of the OD flow,; — x;_1; the closer
the values are, the better the result. In the context of alyodea
tection, it is often the case that the large elements (laajenve
changes) are of chief interest to network management. Hevee
defined a metric — detection rate — to compare the top raked
elements (sorted by size) in solutién to the topN prediction er-
rorsx; — x¢—1 for ¢ spanning a period of one week. As we will
see in Section 6, the top anomalies in our data are easiljvegko
by magnitude (close ties are rare). Tdetection ratés the ratio of
the overlap between the two sets. Note that the detectieravaids
some problems with comparing false-alarm versus detegtiob-
abilities, as it combines both into one measure. A high dietec
rate indicates good performance. Detection rate is usedn®o c
pare inference techniques in Section 6.1, to assess séydibi \,
and robustness to noise in Section 6.2, and the effectisesfabe
methods for time-varying routing in Section 6.3.

In Section 6.4.2 we step away from the simple anomaly detecti
algorithm applied to test the inference component, and eoenghe
complete set of anomography methods described in Sectids 3.
before we use detection rate to measure whether the anorealy d
tection method produces similar results when applied toQbe
pairs directly, or applied to the link load data, along with ia-
version method — we use the Sparsity-L1 method (the best per-
forming of the methods tested using the methodology abole).
other words, we benchmark the anomography method agamst th
anomalies seen in direct analysis of the OD flows.

Since different methods may find different sets of benchmark
anomalies, we need an objective measure for assessingrfoe pe
mance of the methods. Ideally, we would like to compare tle se
of anomalies identified by each of the methods to the set oé"tr
network anomalies. However, isolating and verifying alhgiee
anomalies in an operational network is, although importawnery
difficult task. It involves correlating traffic changes witther data
sources (e.g., BGP/OSPF routing events, network alarmdsyper-
ator logs), an activity that often involves case-by-casayeis. In-
stead, we perform pair-wise comparisons, based on the tieda
anomalies identified by each of the anomography methodsp-an a
proach also taken in Lakhiret al. [23].

Specifically, for each of the anomography methods, we apply
the underlying anomaly detection method directly to the Giwfl
data. We think of the top ranket anomalies, denoted by the set
Bgd',) for anomaly detection methogl as a benchmark. For each
of the anomography methodswe examine the set ¥ largest
anomaliesASf,) inferred from link load data. To help understand
the fidelity of the anomography methods we consider the agerl
between the benchmark and the anomography memﬁbm 85@),
across the benchmarks and the anomography methods. We allow
a small amount of slack (within one ten-minute time shift}tie
comparison between events, in order that phase differelbees
tween methods not unduly impact the results.

We are interested in understanding both false positivesaisel
negatives:

(i) False Positives. Takinﬁﬁjf as the benchmark, the false pos-
itives produced by anomography metkmdreAﬁf,) — 85@).
The magnitudes of the anomaliesﬂﬁ@) andBEVJI) may vary.
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Yet, intuitively if one of theN = 30 top anomalies img\?

is not among the top/ = 50 from the benchmark, then this
anomaly inAﬁf,) is likely a false positive. This leads to the
following heuristic for detecting false positives. We ckeo
(reasonable) paramete’sand M, with N < M, and count
the false positives as the sizeAﬁ) - BE&).

(ii) False Negatives. Our reasoning is similar. Takﬁ‘@) as the
benchmark, the false negatives produced by anomography
methodi arengf - AS\?. Intuitively if one of theA = 30
top anomalies in the benchmark is not among theXop-=
50 anomalies inAﬁf,) then this anomaly irB}?} is missed
by the anomography methadand is a false negative. This
leads to the following heuristic for detecting false negezgi
We choose (reasonable) paramef€rand M, with N > M,

and count the false negatives as the sizlsﬁgﬁ - Ag\?.

For our reports in the next section, we choose the small@r of
and N to be 30, since this roughly represents the number of traffic
anomalies that network engineers might have the resouncasat
lyze deeply on a weekly basis. We would like to show compeagati
results where the larger parameter varies, but cannotwéthiea-
sonable amount of space, and so show results for one fixed valu
50. It is important to note that the results we obtained for pthe
values ofM and N change none of our qualitative conclusions.

6. RESULTS
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We obtained six months (03/01/04-09/04/04) of measuresnent
for the Abilene network and one month (10/06/04-11/02/G3) f
the Tier-1 ISP network. We partitioned the data into setsisivey
one week each, and evaluated the methods on each data se¢b. Due
space limits, we present only a small set of representatiselts.

6.1 Comparison of Inference Techniques

We first compare different solution techniques for the iefee
problemb = Ax. More specifically, we consider three late inverse
algorithms:Pseudoinver se (Section 3.4.1)Spar sity-Greedy (Sec-
tion 3.4.2.2), andSparsity-L 1 (Section 3.4.2.1), and one early in-
verse techniqueEarly Inverse-Tomogravity. We choose to use
the tomogravity method [40] as the early inverse technidueest
has demonstrated high accuracy and robustness for estgef-
fic matrix for real operational networks [16, 40].

Figure 1 (a) plots the sizes of the top 50 anomalies (the fore-
cast errors) of the OD flows (the solid lines) and the corredpm
values diagnosed by the different inference techniquespaints)
for 10/6/04 to 10/12/04, for the Tier-1 ISP network. The ysax
provides the size of the anomalies normalized by the averzgke
traffic volume on the network. The x-axis is the rank by thesiz
of anomalies directly computed from the OD flows. We observe
that there are very few large changes — among more than ®@milli
elements £ 6000 OD flows at 1007 data points), there is one in-
stance where the size of anomaly is more than 1% of totaldraffi
and there are 18 cases where the disturbances constitusetinaor



0.5% of total traffic. This agrees with our intuition on theasgty ically, Figure 3 plots the detection rate of Sparsity-L1 fo& 0.1,

of network anomalies. 0.01, 0.001, 0.0001 and0.00001. All X in this range achieve good
We see that Pseudoinverse significantly underestimatesizbe performance for both the Tier-1 ISP and the Abilene netwdtiks

of the anomalies. Intuitively, Pseudoinverse finds thetlegaare is reassuring, since it suggests that little training oapsater tun-

solution which distributes the “energy” of the anomaly dyeio ing is needed to match the method to a different network dfidra

all candidate flows that may have contributed to the anonualy, pattern.

der the link load constraint. This is directly opposed togparsity .

maximization philosophy. Among the sparsity maximizatiech- 6.2.2 Measurement Noise

niques, Sparsity-L1 performs the best. Sparsity-L1 alwfayds Thus far, we have assumed perfect link load information for

solutions close to the real anomalies. Sparsity-Greedyeireral, anomaly detection. However, in real networks, SNMP bytent®u

is more effective than Pseudoinverse, although it sometiover- are collected from all routers across the network. Ineljtabea-

estimates the size of anomalies. As a representative ofatle €  surement issues such as lack of time synchronization mandinte

inverse technique, Tomogravity also performs well. Wit fex- noise. In this subsection, we evaluate the impact of measmne

ceptions, tomogravity finds solutions that track the real Qv noise by multiplying white noise terni§ (1, o) with each element

anomalies. Intuitively, when a proportionality conditibalds, i.e., of the link load, and then using the result as input to ourrariee

when the size of the anomalies are proportional to the sizéseo algorithms.

OD flows, then early inverse methods work well. However, wher Figure 4 compares how well the methods perform with no noise,

the proportionality condition does not hold, the error carsiynif- to how well they do with noise levels = 0.5% ando = 1%.

icant. Note that measurement errors near 1% throughout the netaverk

Figure 1 (b) presents the result of another week: 10/20/04 to quite significant, since the size of the largest anomaliestzem-
10/26/04. Comparing to Figure 1 (a), this data set contdimsst selves near 1% of the total traffic (Figure 1). It is a challagg

no significant anomalies. It is desirable here to avoid téret- task to accurately diagnose anomalies given the compalalse
ing the size of anomalies, creating false alarms. We obshatén of noise. Nevertheless, we find that both Sparsity-L1 anddFom
this case, Sparsity-L1 and Early Inverse-Tomogravity ¢girpso- gravity are quite robust to measurement noise. For the ITi&pP
vide good solutions that are close to real anomalies, winteSty- network, the detection rate remains above 0.8 for big ariesal
Greedy often overestimates the size of anomalies, and Biseud  (small N') and above 0.7 for the top 50 anomalies. For the Abilene
verse again performs poorly in comparison to the other fecies. network, there is hardly any degradation on the detectitewith
Figure 1 (c) and (d) depict two data sets of the Abilene networ  this level of noise (small in comparison with the anomali@$)ese
We first notice that the relative size of anomalies (changesaf- results demonstrate the strength of our algorithms in dgadiith

fic volume) are much larger than that of the Tier-1 ISP network imperfect measurements.

As noted earlier, the traffic on the Abilene network is refelly . . ) .
light and dominated by irregular traffic resembling bulkadtians- 6.3 TimeVarying Routing Matrices
fers. This should make anomaly detection easier — it woulddoe

to miss any anomalous traffic behavior of the scale seen Bethe 6.3.1 Missing Data

data sets (with individual anomalies constituting as music&s

) - e Missing measurement data, arising from problems such &gpac
of total traffic). Regarding the performance of the diffaranfier-

. . R loss during data collection, is common in real networks. ebu]
ence techniques here, both sparsity maximization methadipe this can be tricky to be deal with, since the loss of link loatad

very good results, with (in large part) overlapping solo§oThis a5 the effect of producing time varying routing matricesha
makes sense since the small size of the network leads t0 #Simp o0 m6graphy formulation. Fortunately, as discussed itiGes,
inversion problem with few competing solutions. The eanlyerse our extended Sparsity-L1 algorithm is able to handle thisasion.
technique, Tomogravity, does not perform well since theppro In Figure 5, we report on the performance of the inference-alg
tlongllty condition noted above is unlikely to hold for suctegular fithms with up to 5% of the data missing — missing values are se
traffic patterns. . lected uniformly at random. We observe that both Sparsityahd

In the rest of the paper, we will only present the results f&r t = 1404ravity suffer only minor (almost negligible) perfoante im-
data sets in Figure 1 (a) and (c), since they contain moresistieg pact, in terms of detection rate. The low sensitivity to ringsiata

traffjc anomalies. . ) . is an important feature of these methods, since it is ctifarareal
Figure 2 presents the detection rate for the different arfee implementation.

techniques on the two data sets. We observe that for the Tier-
1 ISP network, Sparsity-L1 and Tomogravity, which have @abou §.3.2 Routing Changes
0.8 detection rate, significantly outperform other methdets the
Abilene network, all methods except Pseudoinverse, aelaéugh
(close to 1) detection rate. Again, this is due to Abileneisl
network size and large anomalies in traffic volumes.

Due to space limits, we will consider only Sparsity-L1 and To
mogravity in the rest of the evaluation, as these method detrate
the greatest performance and flexibility in dealing withlhpeons
such as missing data and routing changes.

In an operational network, the routing matrix is unlikelyre
main unchanged over a few days. Hardware failures, engiger
operations, maintenance and upgrades all may cause traffie t
rerouted on alternative paths. In this subsection, we atalthe
impact of routing changes on the performance of our algmsth
We introduce routing changes by simulating faults on irgaglinks.
Figure 6 presents results where we have randomly faileaifegh
up to 3 links at each time instance. We observe that Sparsity-

L1 is very robust to such a disturbance in the routing stmectu
6.2 Robustness while Tomogravity suffers significant performance impalttap-
pears that Tomogravity suffers here because errors in &uly)én-

6.2.1 Xin Sparsity-L1 ference step, being computed from different routing mesjadd
Sparsity-L1 involves a parametgarin its formulation (Eq. 11). to become comparable to the anomalies themselves. Thisrdemo
Figure 3 investigates the sensitivity to the parameteraghdspecif- strates another advantage of the late-inverse over thg-ieadrse

11
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approach.

6.4 Comparison of Anomography Methods

6.4.1 Impacts on Inference Accuracy

Thus far, we have compared the performance of Sparsity-t1 an
Early Inverse-Tomogravity, under the simple temporal nh¢dee-
casting the next data point using the current value). We doun
that Sparsity-L1 in general outperforms the Early Invepgaraach.
The difference in performance is more pronounced for the Abi
lene network, where Tomogravity’s underlying gravity mioag
approach is challenged and the traffic pattern is highlyabdei
We also observed that Sparsity-L1 is robust to measurenoise,n
is insensitive to parameter choice, and is able to handlsingjslata
and route changes. We now evaluate overall performance afen
plying Sparsity-L1 with other temporal and spatial anonagdry
methods. In particular, we compaf€&T (Section 3.3.2)Wavelet
(Section 3.3.3)PCA (Section 3.2.1)TPCA (Section 3.3.4), and
four ARIMA based methodsDiff (the simple forecasting model
of the last section)Holt-Winters, EWMA, and generaRRIMA,
which determines the appropriate model using the metho@d S
tion 4.5.

As noted in Section 5, for each model considered, we compute
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directly from the OD flow traffic data and use it as the benctmar
Next, we computéd with the same anomography model, and con-
struct theAx = b inference problem. We compare the solution
derived through Sparsity-L1 with the benchmark. Figureespnts
the detection rate for these approaches. To avoid overéngvikde
graph, we divide the anomography methods into two groups- Fi
ure 7 (a), (b) plot the results for the ARIMA family of anomaghy
approaches and Figure 7 (c), (d) plot the results for the Yéstob-
serve that for all the ARIMA based approaches, Sparsity-hdsfi
very good solutions. With the traffic data aggregated at the 1
minute level, simple Diff and EWMA can sufficiently extrattet
anomalous traffic and warrant a solution that maximizes pag-s
sity of the anomalies. Holt-Winters produces better penfonce
than Diff and EWMA. This is because the model is more sophis-
ticated, and thus is able to capture more complex tempaats
exhibited in the traffic data. Further sophistication, a®iporated
in ARIMA, however, cannot significantly improve performandn
the family of ARIMA models, Holt-Winters appears to provitfe
best complexity-performance trade-off.

From Figure 7 (c) and (d), we observe that Sparsity-L1 cam als
achieve high detection rate under FFT, Wavelet and TPCA.-How
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ever, it doesn’'t work well with PCA This can be explained as
follows. When we apply spatial PCA on the real traffic matkix
and the link load matrix3, we obtain two linear transformation
X =T.X,andB = T,B = T, AX, respectively. However, the
two transformation matrices, andT, may differ significantly be-
cause the spatial correlation among link loads and that grain
flows are rather different. Even if we ugg = T}, we cannot en-

sure thatdT, X = TyAX (i.e., AX =

B (Note that this last com-

ment applies to spatial anomography methods in generalyis,Th
the spatial PCA anomography solution is not expected to com- error (SPE) based scheme to determine the set of time itgerva

pletely overlap with thex identified

by directly applying spatial

to the OD flows. For each benchmark, we report on the success of
all of the anomography methods. The hope is that methodsgemer
that achieve both low false positives and low false negstioe
nearly all of the benchmarks.

In Table 1 (a) we present the false positives for the TierPList-
work with M = 50 and N = 30 (see Section 5). We found results
for different values of\/ and N to be qualitatively quite similar. To
align our results with the methodology reported in [23], weliide
the bottom row, labeled PCA*, where we use a squared predicti

at which big anomalies occur, and the greedy approach (Becti

PCA on the OD traffic flows. In contrast, the temporal anomog- 3.4.2.2) to solve the inference problem. Note that the nurobe
raphy methods areelf-consistenin that givenB = BT, if we
apply the same transformatidnon X and obtainX = XT', we

guarantee thaB = AX (= AXT).

6.4.2 Cross Validation for Different Methods

We now turn to comparing the various anomography methods . false positives among detected anomalies. Thus, the topr3@d
To do so, we use a set of benchmarks, as described in Section 5anomalies derived through these approaches indeed ampbar t

each derived from applying anomaly detection algorithneatiy

anomalies reported by PCA* may be less thdn We therefore
report the actual number of anomalies in the table next tdethel
PCA*.

From the table, we observe from the upper teft6 quadrant that
the ARIMA, FFT and Wavelet approaches tend to have relative |

anomalous traffic events that are worth investigating.
The PCA based approaches, however, exhibit a higher fakse po

3We have verified that Pseudoinverse and Sparsity-Greedig wor itives when benchmarked against other approaches. Theagpp
even worse than Sparsity-L1 for PCA.
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to be partially due to PCA identifying anomalies of a diffiergype
than those identified by the methods. Consider, for exaramead-
den increase of traffic for an OD flow that persists for a coufle
hours. PCA methods may identify every instance within the-tw
hour period as anomalous. ARIMA based approaches detagttabr
traffic changes. Hence ARIMA based methods likely extraty on
the “edges” — the first and last instance — of the two-hourggleri
Another factor contributing to PCA's false positives mayitsdack
of self-consistency: anomalies present in the OD pairs btitle-
tected by the method in the link loads. In addition, unlikel MR,
FFT, or wavelet based tomography, both spatial PCA and tempo
ral PCA cannot fully utilize temporal ordering informatiam the
measured time series data. For example, any reordering tihtle
seriesb1, bs, ..., b, does not affect the outcome of the algorithm.

Similar observations can be made from Table 1(b) and Table
1(c), where we present the same analysis, but for the Abitetie
work. In Table 1(b), we observe that PCA finds very few anoma-
lies identified by other methods. Note that Table 1(c) uses#me
dataset as that in [23], and the result is also consisteht it in
[23].

Table 2 presents the number of false negatives\for= 30 and
N = 50, where we are interested in the number of large anoma-
lies that are not identified by each approach. We observetibat
ARIMA methods, FFT and Wavelet anomography approaches have
superb performance — the number of false negatives are wery |
for both the Tier-1 ISP network and the Abilene network. This
indicates that very few important traffic anomalies can paste-
tected by these approaches. The PCA based approaches ehowev
identify about half of the anomalies in the Tier-1 ISP netvand
almost none in Abilene. The high rate of false negatives foAP
in the Abilene network (Table 2 (b)) may be due to the highgtre
ularity of the traffic pattern in this dataset — with anomalaffic
dominating the diurnal traffic variations. In such case,rtbemal
subspace in PCA can be contaminated by the anomalous traffic
impacting the effectiveness of the method.

7. CONCLUSIONS

In this paper, we introduceaetwork anomographyhe problem
of inferring network-level anomalies from widely availeltlata ag-
gregates. Our major advances are:

1. We introduced a powerful framework for anomography that
cleanly separates the anomaly detection component from the
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inference component. The framework opens up a wide field
for innovation and for the development of families of new
algorithms. The novel method of Lakhire al. based on
PCA falls within the framework.

. Within the framework, we put forward a number of novel al-
gorithms, taking advantage of the range of choices for ahoma
detection and inference components and choosing between
temporal versus spatial approaches.

. We developed a nedynamic anomographgigorithm, which
tracks both routing and traffic measurements, and so enables
alerting with high fidelity on traffic matrix anomalies, with
out alerting on internal routing changes that leave the traf
fic matrix relatively stable. As routing changes are often
due to normal internal self-healing behavior separatiegeh
changes from intrinsic traffic anomalies is advantageous. A
additional benefit of dynamic anomography is that is robust
to missing data, an important operational reality.

. Using extensive data from Internet2’s Abilene networtt an
Tier-1 ISP, we evaluated these anomography methods. The
findings are encouraging. Specifically, the results indicat
that the new set ofemporalanomography methods intro-
duced here have better fidelity, particularly when usihg
minimization for the inference step. Dynamic anomogra-
phy using ARIMA based methods afldnorm minimization
shows uniformly high fidelity (low false positive and false
negatives) and high robustness (to routing changes and miss
ing or corrupted data).

While we believe our work represents a significant advance in
the state of the art, we recognize that the the ultimate fqstrfor-
mance is significant operational experience: utility isiging to
light in the field new anomalies that were "flying under theandd

'of other techniques, while producing very few false alarr@sir

larger goal in future work is to explore the feasibility anerfor-
mance of automated traffic management systems, which iacorp
rate anomaly detection, root cause diagnosis and traffioeute
control for operational networks.
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