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Abstract— Many Internet protocols and operational pro-
cedures use measurements to guide future actions. This is
an effective strategy if the quantities being measured ex-
hibit a degree of constancy: that is, in some fundamental
sense, they are not changing. In this paper we explore three
different notions of constancy: mathematical, operational,
and predictive. Using a large measurement dataset gathered
from the NIMI infrastructure, we then apply these notions
to three Internet path properties: loss, delay, and through-
put. Our aim is to provide guidance as to when assumptions
of various forms of constancy are sound, versus when they
might prove misleading.

I. I NTRODUCTION

There has been a recent surge of interest in network
measurements. These measurements have deepened our
understanding of network behavior and led to more ac-
curate and qualitatively different mathematical models of
network traffic. Network measurements are also used in
an operational sense by various protocols to monitor their
current level of performance and take action when major
changes are detected. For instance, RLM [MJV96] mon-
itors the packet loss rate and, if it crosses some thresh-
old, decreases its transmission rate. In addition, several
network protocols and algorithms use network measure-
ments to predict future behavior; TCP uses delay measure-
ments to estimate when it should time-out missing packets,
and measurement-based admission control algorithms use
measures of past load to predict future loads.

Measurements are inherently bound to the present—
they can merely report the state of the network at the time
of the measurement. However, measurements are most
valuable when they are a useful guide to the future; this
occurs when the relevant network properties exhibit what
we will term constancy. We use a new term for this no-
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tion, rather than an existing term like “stationarity,” in an
attempt to convey our goal of examining a broad, general
view of the property “holds steady and does not change,”
rather than a specific mathematical or modeling view. We
will also use the termsteadyfor the same notion, when use
of “constancy” would prove grammatically awkward.

In this paper we investigate three notions of constancy:
mathematical, operational, and predictive. We do so in
the context of measurements of three quantities describing
Internet paths: packet loss, packet delays, and throughput.

We say that a dataset of network measurements ismath-
ematically steadyif it can be described with a single time-
invariant mathematical model. The simplest such example
is describing the dataset using a single independent and
identically distributed (IID) random variable. More com-
plicated forms of constancy would involve correlations be-
tween the data points. More generally, if one posits that
the dataset is well-described by some model with a cer-
tain set of parameters, then mathematical constancy is the
statement that the dataset is consistent with that set of pa-
rameters throughout the dataset.

One example of mathematical constancy is the finding
by Floyd and Paxson [PF95] that session arrivals are well
described by a fixed-rate Poisson process over time scales
of tens of minutes to an hour. However, they also found
that session arrivals on longer time scales can only be
well-modeled using Poisson processes if the rate param-
eter is adjusted to reflect diurnal load patterns, an example
of mathematicalnon-constancy.

When analyzing mathematical constancy, the key is to
find the appropriate model. Inappropriate models can lead
to misleading claims of non-constancy because the model
doesn’t truly capture the process at hand. For instance, if
one tried to fit a highly correlated but stationary arrival pro-
cess to a Poisson model, it would appear that the Poisson
arrival rate varied over time.

Testing for constancy of the underlying mathematical
model is relevant for modeling purposes, but is often
too severe a test for operational purposes because many
mathematical non-constancies are in reality irrelevant to
protocols. For instance, if the loss rate on a path was
completely constant at 10% for thirty minutes, but then
changed abruptly to 10.1% for the next thirty minutes,
one would have to conclude that the loss dataset was not
mathematically steady, since its fundamental parameter



has changed; yet one would be hard-pressed to find an ap-
plication that would care about such a change. Thus, one
must adopt a different notion of constancy when address-
ing operational issues. The key criterion in operational,
rather than mathematical, constancy is whether an appli-
cation (or other operational entity) would care about the
changes in the dataset. We will call a datasetoperationally
steadyif the quantities of interest remain within bounds
considered operationally equivalent. Note that while it is
obvious that operational constancy does not imply math-
ematical constancy, it is also true that mathematical con-
stancy does not imply operational constancy. For instance,
if the loss process is a highly bimodal process with a high
degree of correlation, but the loss rate in each mode does
not change, nor does the transition probability from one
mode to the other, then the process would be mathemati-
cally steady; but an application will see sharp transitions
from low-loss to high-loss regimes and back which, from
the application’s perspective, is highly non-steady behav-
ior.

Operational constancy involves changes (or the lack
thereof) in perceived application performance. However,
protocols and other network algorithms often make use of
measurements on a finer level of granularity to predict fu-
ture behavior. We will call a datasetpredictively steady
if past measurements allow one to reasonably predict fu-
ture characteristics. As mentioned above, one can consider
TCP’s time-out calculation as using past delays to predict
future delays, and measurement-based admission control
algorithms do the same with loss and utilization. So unlike
operational constancy, which concerns the degree to which
the network remains in a particular operating regime, pre-
dictive constancy reflects the degree to whichchangesin
path properties can be tracked.

Just as we can have operational constancy but not math-
ematical, or vice versa, we also can have predictive con-
stancy and none or only one of the others, and vice versa.
Indeed, as we will illustrate, processes exhibiting the sim-
plest form of mathematical constancy, namely IID pro-
cesses, are generally impossible to predict well, since there
are no correlations in the process to leverage.

Another important point to consider is that for network
behavior, we anticipate that constancy is a more useful
concept for coarser time scales than for fine time scales.
This is because the effects of numerous deterministic net-
work mechanisms (media access, FIFO buffer drops, timer
granularities, propagation delays) manifest themselves on
fine time scales, often leading to abrupt shifts in behavior,
rather than stochastic variations.

An important issue to then consider concerns different
ways of how to look at our fine-grained measurements on

scales more coarse than individual packets. One approach
is to aggregate individual measurements into larger quan-
tities, such as packets lost per second. This approach is
quite useful, and we use it repeatedly in our study, but it
is not ideal, since by aggregating we can lose insight into
the underlying phenomena. An alternative approach is to
attempt tomodelthe fine-grained processes using a model
that provides a form of aggregation. With this approach, if
the model is sound, we can preserve the insight into the un-
derlying phenomena because it is captured by the model.

For example, instead of analyzing packet loss per sec-
ond, we show that individual loss events come inepisodes
of back-to-back losses (§ III-B). We can then separately
analyze the characteristics of individual loss episodes ver-
sus the constancy of the process of loss episode arrivals,
retaining the insight that loss events often come back-to-
back, which would be diminished or lost if we instead went
directly to analyzing packets lost per second.

Our basic model for various time series is of piece-
wise steady regions delineated bychange-points. With a
parameterized family of models (e.g. Poisson processes
with some rate), the time series in each change-free re-
gion (CFR) is modeled through a particular value of the
parameter (e.g., the Poisson arrival rate). In fitting the
time series to this model, we first identify the change-
points. Within each CFR we determine whether the pro-
cess can be modeled by IID processes. When occurring,
independence can be viewed as a vindication of the ap-
proach to refocus to coarser time scales, showing the sim-
plicity in modeling that can be achieved after removing
small time scale correlations. Furthermore, we can test
conformance of inter-event times with a Poisson model
within each CFR. Given independence, this entails testing
whether inter-event times follow an exponential distribu-
tion.

To focus on the network issues, we defer discussion of
the statistical methodology for these tests—the presence of
change-points, IID processes, and exponential inter-event
times—to Appendix A. However, one important point to
note is that the two tests we found in the literature for
detecting change-points are not perfect. The first test—
CP/RankOrder—is biased towards sometimes finding
extraneous change-points. The effect of the bias is to un-
derestimate the duration of steady regions in our datasets.
The second test—CP/Bootstrap—does not have the bias.
However, it is less sensitiveand therefore misses actual
change-points more often. The effect of the insensitivity
is to overestimate the duration of steady regions and to un-
derestimate the number of CFRs within which the underly-
ing process can be modeled by IID processes. (See [Zh01]
for a detailed assessment of the accuracy of both tests.) To



accommodate the imperfection, we apply both tests when-
ever appropriate and then compare the results. Our hope is
to give some bound on the duration of steady regions.

This paper is organized as follows. We first describe
the sources of data in Section II. We discuss the loss
data and its constancy analysis in Section III, and the de-
lay and throughput data in Sections IV and V. Of these
three sections, the first one is much more detailed, as we
develop a number of our analysis and presentation tech-
niques therein. We then conclude in Section VI with a
brief summary of our results.

II. M EASUREMENT METHODOLOGY

We gathered two basic types of measurements: Poisson
packet streams, used to assess loss and delay characteris-
tics, and TCP transfers to assess throughput.1 Our mea-
surements were all made using the NIMI measurement in-
frastructure [PMAM98]. NIMI is a follow-on to Paxson’s
NPD measurement framework, in which a number of mea-
surement platforms are deployed across the Internet and
used to perform end-to-end measurements, and it attempts
to address the limitations and resulting measurement bi-
ases present in NPD [Pa99].

We took two main sets of data, one during Winter 1999–
2000 (W1), and one during Winter 2000–2001 (W2). For
the first, the infrastructure consisted of 31 hosts, 80% of
which were located in the United States, and for the sec-
ond, 49 hosts, 73% in the USA. About half are univer-
sity sites, and most of the remainder research institutes of
different kinds. Thus, the connectivity between the sites
is strongly biased towards conditions in the USA, and is
likely not representative of the commercial Internet in the
large. That said, the paths between the sites do traverse
the commercial Internet fairly often, and we might plausi-
bly argue that our observations could apply fairly well to
the better connected commercial Internet of the not-too-
distant future, if not today.

For Poisson packet streams we used the “zing” util-
ity, provided with the NIMI infrastructure, to source UDP
packets at a mean rate of 10 Hz (W1) or 20 Hz (W2).
For the first of these, we used 256 byte payloads, and
for the second, 64 byte payloads.zing sends packets
in selectable patterns (payload size, number of packets in
back-to-back “flights,” distribution of flight interarrivals),
recording time of transmission and reception. Whilezing
is capable of using a packet filter to gather kernel-level
timestamps, for a variety of logistical problems this option
does not work well on the current NIMI infrastructure, so

1See [ZPS00] for related analysis of end-to-end routing based on
traceroute measurements.

Dataset # pkt traces # pairs # pkts # thruput # xfers

W1 2,375 244 160M 58 16,900
W2 1,602 670 113M 111 31,700

TABLE I
SUMMARY OF DATASETS USED IN THE STUDY.

we used user-level timestamps.
By using Poisson intervals for sending the packets, time

averages computed from the measurements are unbiased
[Wo82]. Packets were sent for an hour between random
pairs of NIMI hosts, and were recorded at both sender and
receiver, with some streams being unidirectional and some
bidirectional. We used the former to assess patterns of
one-way packet loss based on the unique sequence number
present in eachzing packet, and the latter to assess both
one-way loss and round-trip delay. We did not undertake
any one-way delay analysis since the NIMI infrastructure
does not provide synchronized clocks.

For throughput measurements we used TCP transfers
between random pairs of NIMI hosts, making a 1 MB
transfer between the same pair of hosts every minute for
a 5-hour period. We took as the total elapsed time of the
transfer the interval observed at the receiver between ac-
cepting the TCP connection and completing the close of
the connection. Transfers were made specifying 200 KB
TCP windows, though some of the systems clamped the
buffers at 64 KB because the systems were configured to
not activate the TCP window scaling option [JBB92]. The
NIMI hosts all ran versions of either FreeBSD or NetBSD.

Table I summarizes the datasets. The second column
gives the number of hour-longzing packet traces, the
third the number of distinct pairs of NIMI hosts we mea-
sured (lower inW1 because we paired some of the hosts
in W1 for an entire day, while all of theW2 measure-
ments were made between hosts paired for one hour), and
the total number of measured packets. The fifth column
gives the number of throughput pairs we measured, each
for 5 hours, and the corresponding number of 1 MB trans-
fers we recorded.

In our preliminary analysis ofW1, we discovered a de-
ficiency ofzing that biases our results somewhat: if the
zing utility received a “No route to host” error condi-
tion, then it terminated. This means that if there was a
significant connectivity outage that resulted in thezing
host receiving an ICMP unreachable message, thenzing
stopped running at that point, and we missed a chance
to further measure the problematic conditions. 47 of the
W1 measurement hours (4%) suffered from this problem.
We were able to salvage 6 as containing enough data



to still warrant analysis; the others we rejected, though
some would have been rejected anyway due to NIMI co-
ordination problems. This omission means that theW1

data is, regrettably, biased towards underestimating signif-
icant network problems, and how they correlate with non-
constancies. This problem was fixed prior to theW2 data
collection.

One other anomaly in the measurements is that inW2

some of the senders and receivers were missynchronized,
such that they were not running together for the entire hour.
This mismatch could lead to series of packets at the begin-
ning or ending of traces being reported as lost when in fact
the problem was that the receiver was not running. We re-
moved the anomaly by trimming the traces to begin with
the first successfully received packet and end with the last
such. This trimming potentially could bias our data to-
wards underestimating loss outages; however, inspection
of the traces and the loss statistics with and without the
trimming convinced us that the bias is quite minor.

Finally, our focus in this paper is on constancy, but to
soundly assess constancy first requires substantial work to
detect pathologies and modal behavior in the data and, de-
pending on their impact, factor these out. We then can
identify quantities that are most appropriate to test for con-
stancy. Due to space restrictions and in the interest of
brevity, we refer the reader to [ZPS00] for many of the
particulars of this assessment of the data.

III. L OSS CONSTANCY

We begin our analysis of types of constancy with a look
at packet loss. We devote significantly more discussion
to this section than to the subsequent sections analyzing
delay and throughput because herein we develop a number
of our analysis and presentation techniques.

Correlation in packet loss was previously studied in
[Bo93], [Pa99], [YMKT99]. The first two of these fo-
cus on conditional loss probabilities of UDP packets and
TCP data/ACK packets. [Bo93] found that for packets
sent with a spacing of≤ 200ms, a packet was much more
likely to be lost if the previous packet was lost, too. [Pa99]
found that for consecutive TCP packets, the second packet
was likewise much more likely to be lost if the first one
was. The studies did not investigate correlations on larger
time scales than consecutive packets, however. [YMKT99]
looked at the autocorrelation of a binary time series repre-
sentation of the loss process observed in 128 hours of uni-
cast and multicast packet traces. They found correlation
time scales of 1000 ms or less. However, they also note
that their approach tends to underestimate the correlation
time scale.

While the focus of these studies was different from

ours—in particular, [YMKT99] explicitly discarded non-
steady samples—some of our results bear directly upon
this previous work. In particular, in this section we ver-
ify the finding of correlations in the loss process, but also
find that much of the correlation comes only from back-
to-back loss episodes, and not from “nearby” losses. This
in turn suggests that congestion epochs (times when router
buffers are running nearly completely full) are quite short-
lived, at least for paths that are not heavily congested.

As discussed in the previous section, we measured a
large volume (270M) of Poisson packets sent between
several hundred pairs of NIMI hosts, yielding binary-
valued time series indexed by sending time and indicating
whether each packet arrived at the receiver or failed to do
so. For this analysis, we considered packets that arrived
but with bad checksums as lost.

There were two artifacts in the data that we had to ex-
plicitly adjust for. First, as detailed in [ZPS00], one of the
sites exhibited strong 60-second periodicities in its losses.
As we did not find such periodicities for any of the other
sites, we removed these traces from our analysis as anoma-
lous. Second, if a packet wasreplicatedby the network
such that multiple copies arrived at the receiver, we treated
this as a single arrival, discarding the late arrivals. In gen-
eral, we found packet replication very rare, but in one trace
16% of the packets arrived twice.

Packet loss in the datasets was in general low. Over all
of W1, 0.87% of the packets were lost, and forW2, 0.60%.
However, as is common with Internet behavior, we find a
wide range: 11–15% of the traces experienced no loss; 47–
52% had some loss, but at a rate of 0.1% or less; 21–24%
had loss rates of 0.1–1.0%; 12–15% had loss rates of 1.0–
10%; and 0.5–1% had loss rates exceeding 10%.

Because we sourced traffic in both directions during our
measurement runs, the data affords us with an opportunity
to assess symmetries in loss rates. We find forW1 that,
similar to as reported in [Pa99], loss rates in a path’s two
directions are only weakly correlated, with a coefficient of
correlation of 0.10 for the 70% of traces that suffered some
loss in both directions. However, the logarithms of the loss
rates are strongly correlated (0.53), indicating that the or-
der of magnitude of the loss rate is indeed fairly symmet-
ric. While time-of-day and geographic (trans-continental
versus intra-USA) effects contribute to the correlation, it
remains present to a degree even with those effects re-
moved. ForW2, the effect is weaker: the coefficient of cor-
relation is -0.01, and for the logarithm of the loss rate, 0.23.

A. Individual loss vs. loss episodes

Previously we discussed how an investigation of math-
ematical constancy should incorporate looking for a good
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Fig. 1. Example log-complementary distribution function plot
of duration of loss-free runs.

model. In this section, we apply this principle to under-
standing the constancy of packet loss processes.

The traditional approach for studying packet loss is
to examine the behavior of individual losses [Bo93],
[Mu94], [Pa99], [YMKT99]. These studies found corre-
lation at time scales below 200–1000 ms, and left open
the question of independence at larger time scales. We in-
troduce a simple refinement to such characterizations that
allows us to identify these correlations as due to back-
to-back loss rather than “nearby” loss, and we relate the
result to the extended Gilbert loss model family [Gi60],
[SCK00], [JS00]. We do so by considering not the loss
process itself, but the lossepisodeprocess, i.e., the time
series indicating when a series of consecutive packets (pos-
sibly only of length one) were lost.

For loss processes, we expect congestion-induced
events to be clustered in time, so to assess independence
among events, we use the autocorrelation-based Box-
Ljung test developed in§ A-B, as it is sensitive to near-
term correlations. We chose the maximum lagk to be 10,
sufficient for us to study the correlation at fine time scales.
Moreover, to simplify the analysis, we use lag in packets
instead of time when computing autocorrelations.

We first revisit the question of loss correlations as al-
ready addressed in the literature. InW1, for example, we
examined a total of 2,168 traces, 265 of which has no loss
at all. In the remaining 1,903 traces, only 27% are consid-
ered IID at 5% significance using the Box-LjungQ statis-
tic. The remaining traces show significant correlations at
lags under 10, corresponding to time scales of 500–1000
ms, consistent with the findings in the literature.

These correlations imply that the loss process is not IID.
We now consider an alternative possibility, that the loss
episodeprocess is IID, and, furthermore, is well modeled
as a Poisson process. We again use Box-Ljung to test the
hypothesis. Among the 1,903 traces with at least one loss
episode, 64% are considered IID, significantly larger than
the 27% for the loss process. Moreover, of the 1,380 traces
classified as non-IID for the loss process, half have IID
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Fig. 2. Distribution of loss run durations.

loss episode processes. In contrast, only 1% of the traces
classified as IID for the loss process are classified as non-
IID for the loss episode process.

Figure 1 illustrates the Poisson nature of the loss episode
process for eight different datasets measured for the same
host pair. The X-axis gives the length of the loss-free pe-
riods in each trace, which is essentially the loss episode
interarrival time, since nearly all loss episodes consist of
only one lost packet. The Y-axis gives the probability of
observing a loss-free period of a given length or more, i.e.,
the complementary distribution function. Since the Y-axis
is log-scaled, a straight line on this plot corresponds to
an exponential distribution. Clearly, the loss episode in-
terarrivals for each trace are consistent with exponential
distributions, even though the mean loss episode rate in
the traces varies from 0.8%–2.7%, and this in turn argues
strongly for Poisson loss episode arrivals.

If we increase the maximum lag in the Box-Ljung test
to 100, the proportion of traces with IID loss processes
drops slightly to 25%, while those with IID loss episodes
falls to 55%. The decline illustrates that there is some non-
negligible correlation over times scales of a few seconds,
but even in its presence, the data becomes significantly bet-
ter modeled as independent if we consider loss episodes
rather than losses themselves.

If we continue out to still larger time scales, above
roughly 10 sec, then we find exponential distributions be-
come a considerably poorer fit for loss episode interar-
rivals; this effect is widespread across the traces. It does
not, however, indicate correlations on time scales of 10’s
of seconds (which in fact we generally find are absent),
but rather mixtures of exponentials arising from differing
loss rates present at different parts of a trace, as discussed
below. Note that, were we not open to considering a loss
of constancy on these time scales, we might instead wind
up misattributing the failure to fit to an exponential dis-
tribution as evidence of the need for a more complex, but
steady, process.

All in all, these findings argue that in many cases the
fine time scale correlation reported in the previous studies



is caused by trains of consecutive losses, rather than inter-
vals over which loss rates become elevated and “nearby”
but not consecutive packets are lost. Therefore, loss pro-
cesses are better thought of as spikes during which there’s
a short-term outage, rather than epochs over which a con-
gested router’s buffer remains perilously full. A spike-
like loss process accords with the Gilbert model [Gi60],
which postulates that loss occurs according to a two-state
process, where the states are either “packets not lost” or
“packets lost,” though see below for necessary refinements
to this model.

A related finding concerns the size of loss runs. Fig-
ure 2 shows the distribution of the duration of loss runs as
measured in seconds. We see that virtually all of the runs
are very short-lived (95% are 220 ms or shorter), and in
fact near the limit of what our 20 Hz measurements can
resolve. Similarly, we find that loss run sizes are uncorre-
lated according to Box-Ljung. We also confirm the find-
ing in [YMKT99] that loss run lengths in packets often
are well approximated by geometric distributions, in ac-
cordance with the Gilbert model, though the larger loss
runs do not fit this description, nor do traces with higher
loss rates (> 1%); see below.

B. Mathematical constancy of the loss episode process

While in the previous section we homed in on un-
derstanding loss from the perspective of looking at loss
episodes rather than individual loss, we also had the find-
ing that on longer time scales, the loss episode rates appear
to changing, i.e.,non-constancy.

To assess the constancy of the loss episode process,
we apply change-point analysis to the binary time series
〈Ti, Ei〉, whereTi is the time of theith observation andEi

is an indicator variable taking the value 1 if a loss episode
began at that time, 0 otherwise. In constructing this time
series, note that we collapse loss episodesand the non-
lost packet that follows them into a single point in the time
series. (For example, if the original binary loss series is:
0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, then the corresponding loss
episode series is:0, 0, 1, 1, 0, 1, 0, 0.) I.e., 〈Ti+1, Ei+1〉
reflects the observation of the second packet after theith
loss episode ended. We do this collapsing because if the
series included the observation of thefirst packet after the
loss episode, thenEi+1 would always be 0, since episodes
are always ended by a non-lost packet, and we would thus
introduce a negative correlational bias into the time series.

Using the methodology developed in§ A-A, we then
divide each trace up into 1 or more change-free regions
(CFRs), during which the loss episode rate appears well-
modeled as steady. Figure 3 shows the cumulative dis-
tribution function (CDF) for the size of the largest CFR
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Fig. 3. CDF of largest change-free region (CFR) for loss
episodes inW1 and W2 datasets, and number of CFRs
present. “Lossy traces” is the same analysis restricted to
traces for which the overall loss rate exceeded 1%.

found for each trace inW1 (solid) andW2 (dashed). We
also plot CDFs restricted to just those traces for which the
overall loss rate exceeded 1% (“Lossy traces”). We see
that more than half the traces are steady over the full hour.
Of the remainder, the largest period of constancy runs the
whole gamut from just a few minutes long to nearly the
full hour. However, the situation changes significantly for
lossy traces, with half of the traces having no CFR longer
than 20 minutes forCP/RankOrder (or 30 minutes for
CP/Bootstrap). The behavior is clearly the same for
both datasets. Meanwhile, the difference between the re-
sults forCP/RankOrder and those forCP/Bootstrap
is also relatively small—about 10-20% more traces are
change-free over the entire hour withCP/Bootstrap than
with CP/RankOrder. This suggests the effect of the
bias/insensitivity is not major.

We also analyzed the CDFs of the CFR sizes weighted
to reflect the proportion of the trace they occupied. For ex-
ample, a trace with one 10-minute CFR and one 50-minute
CFR would be weighted as1

6
10 + 5

6
50 = 43.3 minutes,

meaning that if we pick a random point in a trace, we will
on average land in a CFR of 43.3 minutes total duration.
The CDFs for the weighted CFRs have shapes quite similar
to those shown above, but shifted to the left about 7 min-
utes, except for the 60-minute spike on the righthand side,
which of course does not change because its weight is 1.

The bottom half of the figure shows the distribution of
the number of CFRs per trace. Again, the two datasets
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agree closely. Over all the traces there are usually just a
handful of CFRs, but for lossy traces the figure is much
larger, with the average rising from around 5 over all traces
to around 20 over the lossy traces. Clearly, once we are
in a high-loss regime, we also are in a regime of chang-
ing conditions. In addition, sometimes we observe a huge
number of CFRs. Figure 4 shows an example of the latter,
a trace whose loss episode process divides into more than
400 CFRs.

Once we have divided traces into one or more CFRs,
we can then analyze each region separate from the others,
having confidence that within the region the overall loss
episode rate does not change. Upon applying the Box-
Ljung test, we find that 88-92% of the regions are con-
sistent with an absence of lag 1 correlation, and 77-86%
are consistent with no correlation up to lag 100. Clearly,
within a CFR the loss episode process is well modeled as
IID better than over the entire trace (previous section). In
addition, applying the Anderson-Darling test (§ A-C) to
the interarrivals between loss episodes in a region, we find
that 77-85% of the regions are consistent with exponential
interarrivals.

Together, these findings solidly support modeling
loss episodes as homogeneous Poisson processes within
change-free regions. In particular, correlations in loss pro-
cesses are due to the presence of consecutive losses, rather
than nearby losses.

It remains to describe the structure of loss episodes. We
do so in the context of the aforementioned Gilbert and ex-
tended Gilbert models. For the two-state Gilbert model to
hold, we should find that within a loss episode the proba-
bility of observing each additional loss remains the same.
In particular, the probability that we observe a 2nd loss
in an episode, given that we’ve seen the initial loss of an
episode, should be the same as the probability of observing
a 3rd loss given that we’ve seen the 2nd loss. Similarly, the
extended Gilbert model allows fork different loss rates for
the firstk losses after the initial loss, each corresponding
to a different state in the model.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Minutes of Constancy

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

1 min episodes
1 min pkts
10 sec episodes
10 sec pkts

Fig. 5. Operational constancy for packet loss and loss episodes,
conditioned on the constancy lasting 50 minutes or less.

Accordingly, we can assess whetherk states suffice to
describe a given loss process by seeing whether thek + 1
loss after the initial loss occurs (conditioned on thekth
loss) with the same probability as thekth loss does (con-
ditioned on thek − 1 loss). We made these tests using
Fisher’s Exact Test [Ri95], and found that, for bothW1

andW2, 40% of the traces are consistent with Bernoulli
loss; 89% with the Gilbert two-state model; 98% with
3 states (extended Gilbert); and 99% with 4 states. How-
ever, the models work less well for lossy traces: only 6%
are well-modeled as Bernoulli, 68% with 2 states, 85%
with 3 states, and 96% with 4 states.

C. Operational constancy of loss rate

We now turn to analyzing a different notion of loss rate
constancy, namely from anoperationalviewpoint. To do
so, we partition loss rates into the following categories:
0–0.5%, 0.5–2%, 2–5%, 5–10%, 10–20%, and 20+%. The
role of these categories is to capture qualitative notions
such as “no loss,” “minor loss,” “tolerable loss,” “serious
loss,” “very serious loss,” and “unacceptable loss.”

For each trace we then analyze how long the loss rate re-
mained in the same category. Figure 5 plots the weighted
CDF for four different loss series associated with each
trace inW1: the loss episode rate computed over 1-minute
intervals, the raw packet loss rate over 1-minute intervals,
and the same but computed over 10-second intervals. (Re-
sults forW2 are virtually identical.) The CDF is weighted
by the size of the constancy interval, as mentioned above;
thus, we interpret the plot as showing the unconditional
probability that at any given moment we would find our-
selves in a constancy interval of durationT or less. For
example, about 50% of the time we will find ourselves in a
constancy interval of 10 min or less, if what we care about
is the constancy of loss episodes computed over minute-
long intervals (solid line).

An important point is that we truncated the plot to only
show the distribution of intervals 50 minutes or less. We
characterize longer intervals separately, as these reflect



entire datasets that were operationally steady. Since our
datasets spanned at most one hour, constancy over the
whole dataset provides a lower bound on the duration of
constancy, rather than an exact value, and hence differs
from the distributions in Figure 5.

For the four loss series, the corresponding probabili-
ties of observing a constancy interval of 50 or more min-
utes are 71%, 57%, 25%, and 22%. Thus, if we only
care about constancy of loss viewed over 1-minute peri-
ods, then about two-thirds (57–71%) of the time, we will
find we are in a constancy period of at least an hour in
duration—it could be quite a bit longer, as our measure-
ments limited us to observing at most an hour of constancy.

We also see that the key difference between the 10 sec
and 1 min results is the likelihood of being in a period of
long constancy: it takes only a single 10-second change
in loss rate to interrupt the hour-long interval, much more
likely than a single 1-minute change. If we condition on
being in a shorter period of constancy, then we find very
similar curves. In particular, if we are not in a period of
long-lived constancy, then, per the plot, we find that about
half the time we are in a 10-minute interval or shorter, and
there is not a great deal of difference in the duration of
constancy, regardless of whether we consider one-minute
or 10-second constancy, or loss runs or loss episodes.

Finally, we repeated this assessment using a set of cut-
points for the loss categories that fell in the middle of the
above cutpoints (e.g., 3.5–7.5%), to test for possible bin-
ning effects in which some traces straddle a particular loss
boundary. The results are highly similar.

D. Comparing mathematical and operational constancy

We now briefly assess the degree to which we find
that the notion of mathematical constancy of loss coin-
cides with the notion of operational constancy of loss.
While there are many dimensions in which we could un-
dertake such an assessment, we aim here to only explore
the coarse-grained relationship.

We begin by categorizing each trace as either “steady”
or “not steady,” where the distinction between the two con-
cerns whether the trace has a 20-minute region of con-
stancy; i.e., for mathematical constancy, a 20-minute CFR
for the rate of the loss episode process, and for operational
constancy, a 20-minute period during which the loss rate
did not stray outside one of the particular regions. We then
assess what proportion of the traces were neither mathe-
matically nor operationally steady (MO), mathematically
but not operationally (MO), vice versa (MO), and both
(MO).

For operational constancy evaluated using loss com-
puted over 1 min, we findMO = 6–9%,MO = 6–15%,

MO = 2–5%, andMO = 74–83%. (The minor varia-
tion in the figures depends on whether for operational con-
stancy we look at loss rate or loss episode rate, and whether
we use the first or the second set of loss categories as dis-
cussed at the end of§ III-C.) Clearly, the notions of math-
ematical and operational constancy mostly coincide.

However, if we instead evaluate operational constancy
using loss rates computed over 10 sec intervals, the figures
are significantly different:MO = 11%,MO = 37–45%,
MO = 0.1%, andMO = 44–52%. We can summarize
the difference as:Operational constancy of packet loss co-
incides with mathematical constancy on large time scales
such as viewing how loss changes from one minute to the
next; but not nearly so well on medium time scales such as
looking at 10-second intervals.

E. Predictive constancy of loss rate

The last notion of packet loss constancy we explore is
that of predictiveconstancy, i.e., to what degree can an
estimator predict future loss events?

There are a number of different loss-related events we
could be interested in predicting. Here, we confine our-
selves to predicting the length of the next loss-free run. We
chose this event for two reasons: first, we do not have to
bin the time series (which predicting loss rate over the next
T seconds would require); and second, there are known ap-
plications for such prediction, such as TFRC [FHPW00].

The next question is what type of estimator to use. We
assess three different types popular in the literature: mov-
ing average (MA), exponentially-weighted moving aver-
age (EWMA) such as used by TCP [Ja88], and theS-
shaped moving average estimator (SMA) used by TFRC.
This last is a class of weighted moving average estimators
that give higher weights to more recent samples; we use a
subclass that gives equal weight to the most recent half of
the window, and linearly decayed weights for the earlier
half; see [FHPW00] for discussion.

For each of these estimators there is a parameter that
governs the amount of memory of past events used by the
estimator. For MA and SMA, we used window sizes of
2, 4, 8, 16, 32; and for EWMA,α = 0.5, 0.25, 0.125, and
0.01, whereα = 0.5 corresponds to weighting each new
sample equally to the cumulative memory of previous sam-
ples, andα = 0.01 weights the previous samples 99 times
as much as each new sample.

Once we’ve defined what estimator to use, we next have
to decide how to assess how well it performed. To do so,
we compute:

prediction error= E
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Fig. 6. CDFs of the mean error for a large number of loss pre-
dictors, computed over entire traces (top) or change-free re-
gions (bottom).

where the expectation, which is computed over each of the
events (loss-free runs) in a trace, reflects the ratio by which
the estimator typically misses the target. We then compute
CDFs that show the range of how well a given estimator
performs over all of the traces.

Figure 6 shows the resulting CDFs, computed for all
traces (top plot) and for all CFRs within the traces (bottom
plot). The vertical line in each plot reflects a prediction
error of 1, corresponding to overestimating or underesti-
mating by a factor ofe. (It turns out that the best one
can achieve, on average, for predicting IID exponential
random variables is a prediction error of 1.02.) We have
plotted CDFs for all of the different estimators and sets
of parameters, and the plot does not distinguish between
them because the main point to consider is that virtually
all of the estimators perform about the same—the param-
eters don’t matter, nor does the averaging scheme.

We interpret this as reflecting that the process does not
have significant structure to its short-range correlations
that can be exploited better by particular types of predic-
tors or window sizes; all that the estimators are doing is
tracking the mean of the process, which varies more slowly
than do the windows. There are two exceptions, however.
First, in the top plot, the CDF markedly below all the oth-
ers corresponds to EWMA withα = 0.01. That estimator
has a lengthy memory (on the order of 100 packets), and
accordingly cannot adapt to rapid fluctuations in the loss
process. In addition, that estimator will do particularly
poorly during a transition between two CFRs, because it
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Fig. 7. CDFs of the mean error for EWMA (α = 0.25) estima-
tor computed over sets of lossy traces with different types of
constancy.

will remember the behavior in the older CFR for much
longer than the other estimators. We see that in the lower
plot, it fares better, because that plot does not include tran-
sitions between CFRs.

Also, in the second plot we have added an “oracular” es-
timator (dotted). This estimator knows the mean loss-free
length during the CFR, and always predicts that value. We
can see that it does noticeably better than the other estima-
tors about half the time, and comparable the other half. A
significant element of its improved performance is that the
lower plot is heavily skewed to favoring estimators that do
well over traces that are highly non-steady (many CFRs),
because each of the CFRs will contribute a point to the
CDF. The success of the oracle also suggests that it might
be a good general strategy to construct estimators that in-
clude an explicit decision whether to restart the estimator,
so they can adapt to level shifts in a nimble fashion.

Finally, we repeated the analysis after applying a ran-
dom shuffle to the traces to remove their correlational
structure. Doing so makes only a slight difference in
the estimators’ performance, reducing the discrepancy be-
tween theα = 0.01 estimator and the others, and we find
that the various estimators do only slightly worse than an
oracular estimator applied to the now-IID time series.

We finish with a look at the relationship between how
well we can predict loss versus the presence or absence of
mathematical and/or operational constancy. As in§ III-D,
we aim only to understand the coarse-grained relationship,
and again we consider a trace mathematically steady if it
has a maximum CFR of at least 20 minutes, and opera-
tionally steady if it stays within a particular loss region for
at least 20 minutes.

Partitioning the lossy (≥ 1% loss) traces on that criteria,
using EWMA withα = 0.25 we attain the predictor error
CDFs shown in Figure 7. We see that the quality of the
predictor is virtually unchanged if we have neither math-
ematical nor operational constancy, or just one of them.
But if we have both, then the predictor’s performance is
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worse. This is because in this regime the loss episode pro-
cess resembles an IID process without significant short-
term variations, and the recent samples seen by the esti-
mator provide no help in predicting the next event. In ad-
dition, note that if we look at all traces rather than just the
lossy traces, the estimators again do worse, because for the
type of event we are predicting (interval until the next loss
episode), traces with low loss levels provide very few sam-
ples to the estimator. However, low loss is also a condition
under which we generally won’t care about the precise-
ness of the estimator, since loss events will be quite rare.
In summary,predictors do equally well whether or not we
have other forms of constancy, unless we have constancy
resembling an IID process with little short-term variation.

IV. D ELAY CONSTANCY

We next turn to exploring the types of constancy asso-
ciated with packet delays. Mukherjee found that packet
delay along several Internet paths was well-modeled us-
ing a shifted gamma distribution, but the parameters of the
distribution varied from path to path and on time scales of
hours [Mu94]. Similarly, Claffy and colleagues found that
one-way delays measured along four Internet paths exhib-
ited clear level shifts and non-constancies over the course
of a day [CPB93].

For our analysis, we again use thezing Poisson packet
streams measured on the NIMI hosts. Because the NIMI
hosts lack synchronized clocks, we confine our analysis to
those datasets with bidirectional packet streams. These are
generated byzing on hostA sending “request” packets
hostB, and thezing on hostB immediately responding
to each of these by sending back matching “reply” packets,
facilitating round-trip measurement at hostA. The delay
in zing’s response is short, usually taking 100–200µsec,
occasionally rising to a few ms.

A. Delay “spikes”

The data totaled 130M RTT measurements made be-
tween 613 distinct pairs of hosts. In analyzing it, the first

phenomenon we had to deal with is the presence of de-
lay spikes. These are intervals (often quite short) of highly
elevated RTTs. They are rare, but if unaddressed can seri-
ously skew our analysis due to their magnitude. Figure 8
conveys the size and prevalence of spikes. For each trace,
we computed the median of all of the RTT measurements,
and then normalized each RTT measurement by dividing it
by the median. This allows us to then plot all of the mea-
surements together to assess, in high level terms, the mag-
nitude of RTT variation present in the data. The plot shows
the complementary distribution of the RTT-to-median ra-
tio; this style of plot emphasizes the upper tail. For refer-
ence we have drawn lines reflecting a ratio of 10:1 (verti-
cal) and a probability of10−3 (horizontal). Clearly, there
are a significant number of very large RTTs, though not so
many that we would consider them anything other than an
extreme upper-tail phenomenon.

To proceed with separating spikes from regular RTT be-
havior, we need to devise a definition for categorizing an
RTT measurement as one or the other. We were unable
to find a crisp modality to exploit—the only one present
in the plot is for ratios above or below 100:1, but that cut-
off point omits many spikes that we found visually—so we
settled on the following imperfect procedure: for each new
RTT measurementR′, we compared it to the previous non-
spike measurement,R. If R′ ≥ max(k · R, 250ms), then
we consider the new measurement a spike; otherwise, we
setR ← R′ and continue to the next measurement.2 We
then applied this classification fork = 2 andk = 4. Doing
so revealed two anomalies: a high latency path plagued by
rapid RTT fluctuations ranging from 200 ms to 1 sec, and
a pair of hosts that periodically jumped their clocks. With
the anomalies removed, we find thatk = 2 categorized
1.1 · 10−3 of theW1 RTTs as spikes, andk = 4 catego-
rized3.4 · 10−4.

Once we had the definition in place, we could check
it in terms of “yes, these are really outliers,” as follows:
for each trace we computedx andσ, the mean and stan-
dard deviation of the RTT measurementswith the spikes
removed. We then for each spike assessed how manyσ
it was abovex. For W1, the k = 2 definition leads to
spikes that are typically (median) 16.9σ above the mean,
with 80% being more than 5.6σ. Fork = 4, these figures
rise to 28σ and 6.6σ.

B. Constancy of body of RTT distribution

The degree to which RTT spikes are indeed outliers
points up a need to assess the constancy of the body of

2We found the 250 ms lower bound necessary for applying the clas-
sifier to traces with quite low RTTs.
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Fig. 9. CDF of largest CFR for median and IQR of packet RTT
delays. “Lossy” is the same analysis restricted to traces for
which the overall loss rate exceeded 1%.

the RTT distribution separate from that of the RTT spikes.
We do so by applying change-point analysis to the median
and inter-quartile range (IQR) of the distribution.3

Figure 9 shows CDFs of the size of the largest corre-
sponding CFRs. We see that, overall, the median is less
steady than the IQR (indeed, we find that IQR change-
points appear to often be a subset of median change-
points), and both distributions shift about 5 minutes to the
left for lossy traces. The striking difference with Figure 3,
though, is the absence of entire hours with no change-
points. Thus we find thatoverall, delay is less steady
than loss, and that, while there’s a wide range in the length
of steady delay regions, in general delay appears well de-
scribed as steady on time scales of 10–30 minutes. We can
also test the median and IQR (computed over 10-second
intervals) for independence within each CFR. Using the
Box-Ljung test for up to 6 lags, we find very good agree-
ment (90–92%) with independence.

C. Constancy of RTT spikes

Having characterized the constancy of the packet delay
distribution’s body, we now turn to the constancy of the
RTT spike process. Analogous to our approach for packet
loss, we group consecutive spikes into spike episodes, not-
ing that in general the episodes are quite short lived: for
example, the median duration of a spike episode (using
k = 2) in W1 was 150 ms, and the mean 275 ms.

3The IQR of a distribution is the distance between the 25th and 75th
percentiles. It serves as a robust counterpart to standard deviation.For
IQR change-points, we compute the IQR over ten-second intervals and
look for a change in the median of that time series.
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predictors.

Upon applying change-point detection to the spike
episode process, we find spike episodes even more steady
than loss episodes: the process is steady across the entire
hour 75% of the time fork = 2 spikes, and 90% of the
time fork = 4 spikes. In addition, we find the interarrivals
between spikes are well-modeled as IID exponential, i.e.,
Poisson.

D. Operational constancy of RTT

Similar to our analysis for loss (§ III-C), we assess the
operational constancy of RTTs by partitioning the delays
into a set of categories and then assessing the duration of
regions over which the measured RTT stays within a single
category.

Different applications can have quite different views as
to what constitutes good, fair, poor, etc., delay. To have
concrete categories, we used ITU Recommendation G.114
[ITU96], which defines three regions: 0–150 ms (“Accept-
able for most user applications”), 150–400 ms (“Accept-
able provided that Administrations are aware of the trans-
mission time impact on the transmission quality of user ap-
plications”), 400+ ms (“Unacceptable for general network
planning purposes”). Because these recommendations are
for one-way delays and we are analyzing RTTs, we dou-
bled them to form RTT categories, and then sub-divided
0–300 ms into 0–100 ms, 100–200 ms, and 200–300 ms,
to allow a somewhat finer-grained assessment.

We find that more than half of the traces have maxi-
mum CFRs under 10 min, and 80% are under 20 min. We
found virtually no difference whether or not we left RTT
spikes in the traces (since they are rare), or when we tested
a “shifted” version of the categories similar to the shifted
version of loss rates discussed in§ III-C. Thus, not only
are packet delays not mathematically steady, they also are
not operationally steady.

E. Predictive constancy of delay

We finish our assessment of different types of delay con-
stancy with a brief look at the efficacy of predicting future
RTT values. We again use the families of estimators dis-



cussed in§ III-E. The events they process are RTT mea-
surements, and our assessment concerns how well they
predict the next measurement. Figure 10 shows that the
estimators again all perform virtually identically, and that
their performance is very good: the vertical line on the plot
marks a mean prediction error of 0.2, which corresponds
to estimating the next value within a factor ofe0.2 ≈ 22%,
and the horizontal line marks 95% of the distribution. We
attain virtually identical results whether or not we include
RTT spikes in the measurements. Thus, we find that, in
contrast with loss (Figure 6),in general, delay is highly
predictable. Of course, for some applications, the conse-
quence of mispredicting delay can be significant (e.g., a
bad TCP retransmission timeout); we are not blithely as-
serting that applications will find highly predictable those
facets of delay that they particularly care about, only that
delay in general is highly predictable.

V. THROUGHPUT CONSTANCY

The last facet of Internet path constancy we study is end-
to-end throughput. Compared to loss and delay, through-
put is a higher-level path property, a product of the first
two plus the dynamics of the transport protocol used. In
addition, applications have a wide range of throughput re-
quirements. To keep our analysis tractable, we confine our-
selves to a simple notion of throughput constancy, namely
the minute-to-minute variations observed in 1 MB TCP
transfers. The data we analyzed consisted of 169 runs
of 5 hours each, comprising a total of 49,000 connections
measured along 145 distinct Internet paths.

Based on a very large packet-level trace collected at
a single busy Web server, [BPSSK98] found that the
throughput of Web transfers exhibited significant temporal
(several minutes) and spatial stability despite wide varia-
tions in terms of end-host location and time of day. Their
study differs from ours in that the server was a single site,
there were many more clients, and the analysis focused on
the throughput of Web transfers, which are usually much
shorter than our transfers. In other previous work, Paxson
found that for a measure of available bandwidth derived
from timing patterns in TCP connections, the predictive
power of the estimator was fairly good for time periods up
to several hours [Pa99].

A. Mathematical constancy of throughput

We applied change-point analysis to the mean of the se-
ries of per-minute throughput measurements in each trace.
Figure 11 shows the cumulative distribution of the maxi-
mum CFR and the weighted average of the duration of the
CFRs (per the discussion of Figure 3 previously). We see
that few traces are steady over the entire 5-hour period,
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Fig. 12. Distribution of maximum operational constancy re-
gions forρ = 1.2 (leftmost),. . . , ρ = 10 (rightmost).

and for 60-70%, the largest CFR is 2.5 hours long or less.
The weighted averages are shifted over about 45 minutes;
half of the time we find ourselves in a change-free region
of under 1.5 hours duration.

On the other hand, throughput does not wildly fluctuate
minute-by-minute: only 10% of the time do we find our-
selves in a CFR of under 20 minutes duration. Similarly,
the median number of change-points in a trace is 8. Fi-
nally, within CFRs, we find that the individual throughput
measurements are well modeled as IID, 92% passing the
Box-Ljung test for autocorrelation up to 6 lags; over entire
traces, however, this figure falls to 24%.

B. Operational constancy of throughput

We adopt a simple notion of operational throughput con-
stancy, namely whether the observed bandwidth stays in a
region for which the ratio between the maximum and min-
imum observed values is less than a factor ofρ. Figure 12
shows the distribution of the size of the maximum steady
regions, forρ = 1.2 throughρ = 10. We see that if our op-
erational requirement is for bandwidth not to vary by more
than 20% peak-to-peak, then we will only have a few min-
utes of constancy, but asρ increases, so too does the max-
imal constancy, fairly steadily; for peak-to-peak variation
of a factor of 3, it is often several hours.

We also find that, due to the wide range in operational
constancy as we varyρ, there is no simple relationship
between the mathematical and operational constancy of
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throughput. For example, if we classify a trace as opera-
tionally steady if it has a maximum CFR of at least 2 hours,
then for ρ = 1.2, we find MO = 53%, MO = 39%,
MO = 2.4%, andMO = 5.9%. But forρ = 10, we have
MO = 3.6%,MO = 1.2%,MO = 51.5%, andMO =
43.8%, completely different.

C. Predictive constancy of throughput

We finish our look at different types of throughput con-
stancy with a look at how well an estimator can predict the
next observed throughput measurement. Figure 13 shows
how the families of estimators discussed in§ III-E per-
formed in estimating the next throughput value over each
5-hour trace in its entirety. Almost all of the estimators
perform equally well, with 95% of their estimates (hori-
zontal line) yielding an error of 0.4 (vertical line) or lower,
corresponding to estimating the next value within a fac-
tor of e0.4 ≈ 50%. However, three estimators do poorly:
EWMA with α = 0.01, and MA and SMA with windows
of 128. These reflect estimators with long memory, as indi-
cated on the plot (the other estimators had windows of 16
or less, orα ≥ 0.125), indicating that when predicting
throughput, remembering observations from a number of
minutes in the past is fine, but remembering for more than
an hour can mislead the estimator. Finally, we note that
for traces that are mathematically steady (maximum CFR
≥ 1 hour), the short-memory estimators do nearly twice
as well (half the mean error) as they do on all the traces.
(We do not attempt a comparison between prediction and
operational constancy, since for throughput there is such
a wide range of operational constancy depending on the
parameterρ.)

VI. CONCLUSIONS

Applications and protocols are becoming moreadaptive
andnetwork-conscious. Network operators and algorithms
are increasingly relying on measurements to assess cur-
rent conditions. Mathematical models are playing a larger
role in the discussions of Internet traffic characteristics.

For each of these developments, one of the key issues is
the degree to which the relevant Internet properties hold
steady; yet each also involves a quite different notion of
constancy. We have discussed how mathematical, oper-
ational, and predictive constancy sometimes overlap, and
sometimes differ substantially. That they can differ signifi-
cantly highlights how it remains essential to be clear which
notion of constancy is relevant to the task at hand.

This paper can be read on two levels. On one level, we
have attempted to shed light on the current degree of con-
stancy found in three key Internet path properties: loss,
delay, and throughput. One surprise in our findings is
that many of the processes are well-modeled as IID, once
we identify change-points in the process’s median (loss,
throughput) and aggregate fine-grained phenomena into
episodes (loss runs, delay spikes). However, IID models
are a mixed blessing; they are very tractable, but IID pro-
cesses are very hard to predict.

The need to refine the analysis by looking for change-
points and identifying episodes illustrates how important it
is to find the right model. For example, while the loss pro-
cess itself is both correlated and non-steady, when reduced
to the loss episode process, the IID nature of the data be-
comes evident. This illustrates the importance of consider-
ing the constancy of a path property not as a fundamental
property in its own right, but only as having meaning in
the context of a model, or an operational or protocol need.

Another general finding is that almost all of the different
classes of predictors frequently used in networking (mov-
ing average, EWMA,S-shaped moving average) produce
very similar error levels. Sometimes the predictors per-
form well, such as when predicting RTTs, and sometimes
poorly, because of the IID nature of the data (loss, through-
put).

Finally, the answer to the question “how steady is the
Internet?” depends greatly on the particular aspect of con-
stancy and the dataset under consideration. However, it
appears that for all three aspects of constancy, and all three
quantities we investigated, one can generally count on con-
stancy on at least the time scale of minutes.

On another level, our paper tries to carefully distinguish
between the three different notions of constancy: mathe-
matical, operational, and predictive. One of the goals of
our study was to gather the appropriate set of concepts and
tools needed to understand each of these different aspects
of constancy. While the detailed results from our measure-
ments may soon prove ephemeral (due to changing traf-
fic conditions), or rendered obsolete (by subsequent and
better measurement efforts), we hope that the fundamen-
tal concepts and tools developed here might prove longer-
lived.
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APPENDIX

I. STATISTICAL METHODOLOGY

In this appendix we discuss the three main statistical tech-
niques we use in our analysis, tests for: change-points, indepen-
dence, and exponential interarrivals.

A. Testing for change-points

We apply two different tests, CP/RankOrder and
CP/Bootstrap, to detect changes in the median. Both tests de-
tect change-points in a two step approach: first identifyinga
candidate change-point, then applying a statistical test to deter-
mine whether it is significant. The combined approach [La96],
[Ta00] uses an analysis of ranks in order to detect changes in
the median [SC88]. Being based on ranks, the method is re-
sistant, i.e., tolerant to the presence of outliers. Furthermore,
the hypotheses underlying these test are quite weak; equality of
variances is not required.

Consider first a set ofn values(xi)i=1,...,n comprising a seg-
ment of a given time series. Construct the rankri of eachxi

within the set, i.e.,1 for the smallest andn for the largest. Com-
pute the cumulative rank sumssi =

∑i
j=1

ri. The basis of
the test is that if no change point is present, the cumulativerank
sumssi should increase roughly linearly withi. Indeed, suppose
we form the adjusted sum:

s′i = |si − si|

as the difference betweensi, and its presumed meansi = i(n +
1)/2 assuming no change-point to be present. Thens′i should
stay close to zero. If, however, a change-point is present, higher
ranks should predominate in either the earlier or later partof the
set, and hences′i will climb to a maximum before decreasing to
zero ati = n. We identify the maximizing indexi0 for s′i andi
running over{1, . . . , n} as a candidate change-point.

In the second stage, to test equality of two setsX− =
{x1, . . . , xi0−1} andX+ = {xi0+1, . . . , xn}, CP/Bootstrap
uses the bootstrap analysis procedure outlined in [Ta00], while
CP/RankOrder uses the Fligner-Policello Robust Rank-Order
Test [SC88].
• Bootstrap analysis(used inCP/Bootstrap). The bootstrap
analysis procedure outlined in [Ta00] usesSdiff , defined as
(max si − min si), to estimate the magnitude of the change at
the candidate change-point. It determines the confidence level
of change by testing how often the bootstrap differenceS0

diff
of a bootstrap sample{x0

i }—a random permutation of{xi}—is
less than the original differenceSdiff .

• Fligner-Policello Robust Rank-Order Test(used inCP/Rank−
Order). The test statistic is constructed as follows. Forx ∈ X+

definer+
x as the rank ofx in X+ ∪ X− minus the rank ofx in

X+, with rank ties handled by assigning the average rank to all
members of a tie set. Define rank meanr+ =

∑

x∈X+ r+
x /n+

wheren+ = #X+, and sums of squared differencesv+ =
∑

x∈X+(r+
x − r+)2. Definen−, r−, andv− symmetrically.

Then the test statistic:

z =
n+r+ − n−r−

2
√

r+r− + v+ + v−

has, asymptotically asn → ∞, a standard normal distribution.
Thus we can associate a significance level with the candidate
change pointi0 in the usual manner. By choosing a significance
level ℓ (we use5% throughout this thesis) we specify our ac-
ceptable probabilityℓ of incorrectly rejecting the null hypothe-
sis. The test accepts the null hypothesis (in a two-sided test) if
F (|z|) < 1 − ℓ/2 whereF is the cumulative distribution func-
tion of the standard normal distribution. (However, note that
the largen asymptotic is not sufficiently accurate wheni0 and
n−i0 ≤ 12; in this case Table K in Appendix I of [SC88] should
be used.) In some cases we shall use this test on binary data, in
which case it reduces to a test of the equality of the expectations
corresponding to binary states on either side of the candidate
change-point.

The above can be extended to the identification of multiple
change points, as follows [La96], [Ta00]. First, choose a sig-
nificance level. Second, apply the above method recursively
to the two segments{1, . . . , i0} and{i0 + 1, . . . , n} until no
more change points are found at the chosen significance level.
Third, apply backward elimination to reinspect the set of candi-
date change points in order to eliminate false detections, as fol-
lows. Let there bem change-point candidatesj1 < · · · < jm.
Let j0 andjm+1 be 0 andn respectively. Starting with the first
identified candidate, call itjk0

(1 ≤ k0 ≤ m), reinspect for
change-points on the set{jk0−1 + 1, . . . , jk0+1}, and adjust or
delete non-significant change-points. Repeat for all candidates
in order of identification. Repeat backward elimination until
the number of change-points is stable. By reestimating each
change-point using only the data between the two surrounding
change-points, backward elimination avoids the contamination
caused by the presence of multiple change-points at the timeof
recursion and consequently helps to reduce the rate of falsede-
tections.

B. Testing for independence

We assess independence using the Box-Ljung test [LB78].
For a time series withn elements, the Box-Ljung statisticQk is
a weighted sum of squares of measured autocorrelationsri from
lags1 up tok:

Qk = n(n + 2)

k
∑

i=1

r2
i

n − i
.

Under the null hypothesis that the process comprises indepen-
dent Gaussian random variables, the distribution ofQk con-
verges, for largen, to aχ2 distribution withk degrees of free-
dom. Thus by comparing the test statisticQk with the 1 − ℓ



quantile of the appropriateχ2 distribution, we can test whether
the autocorrelations of the time series differ at significance level
ℓ from those of independent Gaussian random variables. In fact,
as remarked in [LB78], the test is relatively insensitive todepar-
tures from the Gaussian hypothesis in the underlying process.
This is because the measured autocorrelationsri are asymptoti-
cally Gaussian provided the marginal distribution of the under-
lying process has finite variance. (While infinite variance (heavy
tails) abound in networking behavior, the time series we con-
sider here are generally well bounded, and certainly have finite
variance.)

C. Testing for exponential distributions

An exploratory test for an exponential distribution of inter-
event times is to plot the log-complementary distribution func-
tion; for an exponential distribution this is linear with slope
equal to the negative of the reciprocal of the mean. A statistical
test is that of Anderson-Darling. This test has been found tobe
more powerful than either the Kolmogorov-Smirnov or theχ2

tests, i.e., its probability of correctly rejecting the null hypoth-
esis (that the distribution is exponential) is greater; see[DS86].
This is, in part, due to the fact that the Anderson-Darling test
employs the full empirical distribution (rather than binning, as
in a χ2 test), allowing it to give more weight to larger sample
values whose presence can lead to a violation of the null hy-
pothesis.

For a set ofn rank-ordered inter-event timest1 < · · · < tn,
the appropriate Anderson-Darling statistic is:

A2 = −n − 1

n

n
∑

i=1

(2i − 1)
{

log(1 − e−ti/t) − tn+1−i/t
}

wheret = n−1
∑n

i=1
ti is the empirical mean inter-event time.

We reject the null hypothesis at significance levelℓ if the test
statistic exceeds the tabulated values appropriate for that level;
see, e.g., Table 4.11 in [DS86]. We note the importance of using
the table appropriate to the present case in which the mean ises-
timated from the sample, rather than being specified in advance.
Moreover, the table explicitly takes into account the effect of a
finite sample sizen.

REFERENCES

[BPSSK98] H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm
and R. Katz, “TCP Behavior of a Busy Web Server: Analysis
and Improvements,”Proc. IEEE INFOCOM ’98, Mar. 1998.

[Bo93] J-C. Bolot, “End-to-End Packet Delay and Loss Behav-
ior in the Internet,” Proc. SIGCOMM ’93, pp. 289–298,
Sept. 1993.

[CPB93] K. Claffy, G. Polyzos and H-W. Braun, “Measurement Con-
siderations for Assessing Unidirectional Latencies,”Inter-
networking: Research and Experience, 4 (3), pp. 121–132,
Sept. 1993.

[DS86] R.B. D’Agostino and M.A. Stephens, Eds.,Goodness-of-Fit
Techniques, Marcel Dekker, New York, 1986.

[FHPW00] S. Floyd, M. Handley, J. Padhye and J. Widmer,
“Equation-Based Congestion Control for Unicast Applica-
tions,” Proc. SIGCOMM ’00, pp. 43–56, Aug. 2000.

[Gi60] E. Gilbert, “Capacity of a Burst-Noise Channel,”Bell Sys-
tems Technical Journal, 39(5), pp. 1253–1265, Septem-
ber 1960.

[ITU96] International Telecommunication Union, “One-way Trans-
mission Time,”ITU Recommendation G.114, Feb. 1996.

[Ja88] V. Jacobson, “Congestion Avoidance and Control,”Proc.
SIGCOMM ’88, pp. 314-329, Aug. 1988.

[JBB92] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions
for High Performance,” RFC-1323, May 1992.

[JS00] W. Jiang and H. Schulzrinne, “Modeling of Packet Loss and
Delay and Their Effect on Real-Time Multimedia Service
Quality,” Proc. NOSSDAV 2000, June 2000.

[La96] J. Lanzante, “Resistant, robust and non-parametric tech-
niques for the analysis of climate data: theory and examples,
including applications to historical radiosonde station data,”
Int. J. Climatol., 16 (11), 1197-1226, 1996.

[LB78] G. Ljung, and G. Box “On a Measure of Lack of Fit in Time
Series Models,”Biometrika ’65, pp. 297–303, 1978.

[MJV96] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven
Layered Multicast,” Proc. SIGCOMM ’96, pp. 117–130,
Aug. 1996.

[Mu94] A. Mukherjee, “On the Dynamics and Significance of Low
Frequency Components of Internet Load,”Internetworking:
Research and Experience, Vol. 5, pp. 163–205, Decem-
ber 1994.

[PF95] V. Paxson, and S. Floyd, “Wide-Area Traffic: The Failure
of Poisson Modeling,”IEEE/ACM Transactions on Network-
ing, 3(3), pp. 226-244, June 1995.

[PMAM98] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis, “An
Architecture for Large-Scale Internet Measurement,”IEEE
Communications, 36(8), pp 48–54, Aug. 1998.

[Pa99] V. Paxson, “End-to-End Internet Packet Dynamics,”
IEEE/ACM Transactions on Networking, 7(3), pp. 277–292,
June 1999.

[Ri95] J. Rice, “Mathematical Statistics and Data Analysis,” 2nd
edition, Duxbury Press, 1995.

[SCK00] H. Sanneck, G. Carle, and R. Koodli, “A framework model
for packet loss metrics based on loss run length,”Proc.
SPIE/ACM SIGMM Multimedia Computing and Networking
Conference, January 2000.

[SC88] S. Siegel and N. Castellan,Non-parametric statistics for the
behavioral sciences, McGraw–Hill, New York, 1988.

[Ta00] W.A. Taylor, “Change-Point Analysis: A Powerful New
Tool For Detecting Changes”, preprint, available as http:
//www.variation.com/cpa/tech/changepoint.html

[Wo82] R. Wolff, “Poisson Arrivals See Time Averages,”Operations
Research, 30(2), pp. 223–231, 1982.

[YMKT99] M. Yajnik, S. Moon, J. Kurose and D. Towsley, “Measure-
ment and Modeling of the Temporal Dependence in Packet
Loss,”Proc. IEEE INFOCOM ’99, Mar. 1999.

[ZPS00] Y. Zhang, V. Paxson and S. Shenker, “The Stationarity of
Internet Path Properties: Routing, Loss, and Throughput,”
ACIRI Technical Report, May 2000. http://www.aciri.org/
vern/papers/stationarity-May00.ps.gz

[Zh01] Y. Zhang, “Characterizing End-to-End Internet Perfor-
mance,” Ph.D. Thesis, Cornell University, Aug. 2001. http:
//www.cs.cornell.edu/yzhang/papers/thesis.ps.gz


