Vol.13 No.4 J. of Comput. Sci. & Technol. Jul. 1998

Concurrent Manipulation of
Expanded AVL Trees

Zhang Yin (£ %) and Xu Zhuoqun (¥F&8)

Department of Computer Science and Technology, Peking University, Beijing 100871, P.R. China
Received October 3, 1996; revised June 16, 1997.

Abstract

The concurrent manipulation of an expanded AVL tree (EAVL tree) is considered
in this paper. The presented system can support any number of concurrent processes
which perform searching, insertion and deletion on the tree. Simulation results indicate
the high performance of the system. Elaborate techniques are used to achieve such a
system unavailable based on any known algorithms. }ethods developed i this parver
may provide new insights into other problems in the area of cuncinrent search structure:
manipulation.
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1 Introduction

Expanded AVL tree (EAVL tree) is an implementation of the famous AVL tree!!l, which,
as an efficient search structurel23], finds applications to databases, operating systems, sym-
bol tables in compilers, etc. The topic of this paper is the design of a system which can
support any number of concurrent processes performing searching, insertion and deletion on
an EAVL tree. Detailed algorithms are developed. Simulation results on the performance
of the system are also summarized.

Substantial work has been done on developing concurrent algorithms for manipulation of
search structures such as binary search treesl4=¢), 2-3 trees!”], k-HB trees[8], AVL trees(®10],
B-tree and its variations!!1~16l, etc. However, none of these algorithms can be applied
to achieve full concurrency of all three kinds of operations on an AVL tree, say searching,
insertion and deletion. In this paper, we solve this problem completely on an implementation
of AVL tree, namely, EAVL tree.

2 Terminology and Background
2.1 Definitions

We assume that the reader is familiar with the terminology associated with binary search
trees. An AVL tree is a binary search tree in which the heights of the left and right subtrees
of any node may differ by at most one. The balance factor of any node n in the tree is defined
as height(Tj(n))— height(T,.(n)), where Ti(n) and T,.(n) denote the left and right subtrees
of n respectively. An expanded AVL tree (EAVL tree) is constructed from an initial AVL
tree with k nodes by adding a dummy node and (k + 1) leaves into the tree. The root of
the initial AVL tree becomes the right child of the dummy node in the resulting EAVL tree.
The newly added leaves are called the L-nodes. The nodes in the initial AVL tree together
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with the dummy node are called the I-nodes. The LNR-sequence of a binary search tree is
a node sequence generated by an LNR (in order) traversal. It is evident that for an EAVL
tree, (1) the LNR-sequence is headed by the dummy node; (2) the L-node and the I-node
alternatively take position in the LNR-sequence. Fig.1 illustrates an initial AVL tree, the
EAVL tree constructed from it, and the LNR-sequence of the resulting EAVL tree. L-nodes
and I-nodes are denoted by rectangles and circles respectively in Fig.1. In an EAVL tree,
each I-node has a key field according to which the I-nodes are ordered. The key is taken
from a totally ordered set. The key of the dummy node has the value of (—o0). The L-nodes
have no such fields. For any node n in an EAVL tree, the predecessor of n is defined as the
I-node with the greatest key among all the I-nodes preceding n in the LNR-sequence (i.e.
being nearer to the dummy node than n is in the LNR-sequence). If no such I-node exists,
the predecessor of n is defined as NULL. Similarly, the successor of n is the I-node with the
smallest key among all the I-nodes succeeding n in the LNR-sequence (i.e. being farther to
the dummy node than n is in the LNR-sequence). If no such I-node exists, the successor of
n is defined as NULL.
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(a) An AVL tree. (b) The EAVL tree constructed from (a). (¢) The LNR-sequence of {(b).

Fig.1

2.2 Sequential Operations on EAVL Trees

The sequential algorithms for EAVL trees are quite similar to those for AVL trees. So we
only give a brief introduction to them here. Interested readers can refer to [3] for detailed
algorithms for AVL trees.

2.2.1 Searching

The search process traverses the tree downward (i.e. in the direction from the dummy
node to the leaves) searching for a given key. If it finds an I-node with the given key, it
succeeds; otherwise, it fails.

2.2.2 Deletion

The algorithm for a delete process consists of the following four steps:

1. Descending. In this step, the delete process behaves exactly the same as a search process. If
it finds an I-node (denoted by cur) with the given key, it goes to Step 2; otherwise, it fails.

2. Find the appropriate I-node for physical deletion. cur is marked for physical deletion if and
only if at least one of its children is an L-node. If this condition is not satisfied, it must be true
that 1) the right child of cur’s predecessor is an L-node; 2) cur’s predecessor is below cur in the
tree. The delete process makes a key substitution, i.e. substitutes the key of cur with the key of
cur’s predecessor, and then makes cur’s predecessor the I-node for physical deletion.

3. Physical deletion. The I-node marked for physical deletion and one of its children (an
L-node) are physically deleted from the tree.

4. Ascending. The delete process traverses the tree upward (i.e. in the direction from the
leaves to the dummy node) and rebalances the tree by rotations if necessary. There are two kinds
of rotations: the single rotation and the double rotation. Fig.2 illustrates the modification made



No4 Concurrent Manipulation of Expanded AVL Trees 327

on the tree during rotations. The delete process may need to perform rotations more than once.
(Note: Only part of the triggering conditions of rotations are illustrated in Fig.2. Interested readers
can refer to {3] for detailed information about the triggering conditions.)

@ T Notation indicates
| height of subtree is h

Single Rotation

€
(b) Double rotation.

(a) Single rotation.
Fig.2. Rotations.

2.2.3 Insertion

The algorithm for an insert process consists of the following three steps.

1. Descending. The insert process traverses the tree downwzia searching for o given key. 1f it
finds an I-node with the given key, it fails; othsvwice, it can fied an L-node {denoted by cur) on
which physical insertion is tn be zwade. '

2. Physical inecition. The given key is addad into cur, thus cur is changed from an L-node into
an I-node. Moreover, two l-nodes are ggenerzted and added into the tree as the two children of cur.

3. Ascending. The inseit process traverses the tree upward and rebalances the tree by rotations
if necessary. An insert process may perform rotation at most once. The triggering conditions of
rotations performed by an insert process are slightly different from those of rotations performed by
a delete process. Interested readers can refer to [3] for more information.

Comment: From the above sequential algorithms, we can see:

1) When a delete process makes the key substitution, temporary redundancy is intro-
duced into the tree, i.e. two nodes with the same key value may coexist in the tree.

2) Before a delete process or an insert process finishes rebalancing the tree, the tree may
be temporarily unbalanced, i.e. the heights of the left and right subtrees of some node may
differ by more than one.

When processes are allowed to manipulate the tree concurrently, they may introduce
temporary redundancy and/or unbalance into the tree simultaneously. However, as shown
in Section 5, such degradation in the tree structure is not significant for a randomly chosen
set of keys.

3 Data Structure

3.1 The Model of Computation

All the data of an EAVL tree are stored in a single shared global memory to which an
unbounded number of concurrent processes have access. Each process can perform one of
the three operations (i.e. searching, insertion and deletion) on the tree. No centralized
control governs the action of processes—they operate asynchronously and independently.
Simultaneous read and write on a common data field in the shared memory are allowed, but
the hardware must ensure the correctness of the result of a read operation, i.e. ensure that
no values changed halfway can be read out.
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3.2 Representation of the EAVL Tree

TYPE STATETYPE=(EMPTY, TRYING, WAITING); LNODE: ( );
RESERVETYPE=(FREE, RIGHT, LEFT, SUCC); INODE:(
NODETYPE=(INODE, LNODE); left, right, succ: NPTR;
NPTR=tNODE; key: KEYTYPE;
NODE=RECORD y-marked, a-marked, deleted: BOOL;
father, pred, target: NPTR; bf: INTEGER;
v-state, a-state: STATETYPE; reservation: RESERVETYPE; )
invalid: BOOL; END;
CASE ntype: NODETYPE OF VAR dummy: NPTR;

An EAVL tree is denoted by a dummy, the pointer to the dummy node. We do not
differentiate between a node and the pointer to it hereafter. For any node n in the tree,
n.father denotes the father node of n and is used by the processes to traverse the tree
upward; n.pred is the predecessor of n and is introduced to improve the efficiency of key
substitution; n.ntype indicates whether n is an I-node (if n.ntype is INODE) or an L-node
(if n.ntype is LNODE); n.left, n.right and n.succ stand for n’s left child, right child and
successor respectively; n.bf is the balance factor of n; n.key stores the key of n. The other
fields will be explained later.

3.3 Locks

We use the same basic approach of placing locks on nodes of {ne tree as in [9].
Altegether five Xinds of locks are used in cur system: «, 3, v, £ and p. Fig.3 shows the
incompatibility relations these locks must satisfy. Two kinds of locks (unnecessary to be
different) are specified to be incompatible with each other (i.e. they cannot be placed on a
node simultaneously) if and only if an edge exists between the two nodes in Fig.3. For any
lock L, L € {a,f,7,€,p}, the procedures to
place and to release a lock L on node n are L-

lock(n) and L-unlock(n) respectively. Placing
a lock on a node does not prevent other pro-
cesses from accessing any data field of the node.
However, those processes who want to place a e o

lock incompatible with a lock existing on the

node will get blocked. The locking procedures Fig.3. Incompatibility graph for locks.
can be implemented with semaphores and PV

operations!!7).

4 Concurrent Operations on EAVL Trees

Based on the sequential algorithms described in Section 2, we develop the concurrent
algorithms for operations on an EAVL tree in this section.

4.1 Search Process

All the descenders in our system including the search process use the same algorithm.
Here, by descender, we refer to any process (either a search process, a delete process, or
an insert process) traversing the tree downward. Each descender starts by p-locking the
dummy node and making it the current node. It keeps descending from the current node
to one of its children depending on the value of the key being searched. To move from the
current node to the next one, the descender p-locks the destination node, makes it the new
current node and then p-unlocks the previous current node. In this manner, the presence
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of the descender is always indicated by the lock p on at least one node. Since the lock p is
compatible with itself, multiple descenders can coexist on a common node.

If the search process finds an I-node with the given key, it p-unlocks the current node
(with the given key) and succeeds; otherwise, it p-unlocks the current node and fails.

4.2 Delete Process

The algorithm for the delete process consists of five steps: 1) descending, 2) exclusion
among multiple deletions, 3) some preparations, 4) selecting the appropriate I-node for
physical deletion and 5) ascending. We give discussions to the concurrency issues involved
in them step by step.

4.2.1 Descending

In this step, the delete process behaves exactly the same as a descender. It traverses the
tree downward searching for an I-node with the given key. Its presence is indicated by the
lock p on at least one node. If at the end of this step, an I-node (denoted by cur) with the
given key is located, the delete process just proceeds to the next step; otherwise, it p-unlocks
the current node and fails.

4.2.2 Exclusion among Multiple Deletions

Multiple delete processes mayv Lave the same key to deleie. However, each node can be
physically deleted at mosl; cnce. Thus exclusion is necessary amoug multiple deletions on a
common gode. The lock 3, which 1s incowpatibie with itself, is introduced for this purpose.
Moreover, a ficld n.deleted is incorporated for each node n.

The delete process f-locks cur (the I-node found at the end of Step 1) and examines
the value of cur.deleted. If the value is TRUE (i.e. someone else also intends to delete
cur.key and comes earlier), the delete process releases all locks it holds and fails; otherwise,
it sets cur.deleted to TRUE (thus preventing other delete processes from deleting cur.key),
releases all locks it holds and proceeds to the next step. Here the lock 3 is used to enforce
mutual exclusion on the critical region cur.deleted.

4.2.3 Some Preparations

In this step, two problems are to be solved:

1) As shown in Section 2, if neither child of cur is an L-node, the delete process needs
to make a key substitution and thus making cur.pred the I-node for physical deletion.
Therefore, it is possible that a delete process D; wants to delete cury.key but needs to
physically delete the node cur;.pred, while another delete process, say D3, wants to delete
cury.key and needs to physically delete the node curs, where cur; equals cur;.pred. In
this case, mutual exclusion is necessary between D; and D,. However, since cur;.key #
curs.key, such exclusion cannot be achieved by Step 2.

2) In order to keep the consistency of the pred and succ fields, we must prevent different
processes (delete processes and insert processes) from modifying a common pred or succ
field simultaneously.

Both problems are solved by the incorporation of the field y-marked into each node.
The value of y-marked indicates whether a node has been y-marked by any process. Any
delete process (or insert process) is required to vy-mark some I-nodes before it can make a
physical deletion (or insertion). Specifically, for a delete process, supposing that cur is the
I-node with the key it wants to delete, the process must y-mark cur, cur.pred, cur.pred.pred
before making a physical deletion. (Note: Among the three nodes, only cur.pred.pred may
be nonexistent. This can be handled by simply eliminating any operation associated with
cur.pred.pred from our concurrent algorithm. From now on, we assume that cur.pred.pred
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does exist.) For an insert process, supposing that cur is the L-node on which the physical
insertion is to be made, the process must y-mark cur.pred before making the physical
insertion. Fig.4 illustrates the nodes in the LNR-sequence which need to be y-marked by a
(n) delete (insert) process.

cur. pred. pred cur. pred cur cur. pred cur
(a) a delete process. (b} an insert process.

Fig.4. I-nodes to be y-marked by (a) and (b).

~v-marking procedures are devised to implement the above strategy. An insert process
calls ins-y'-mark-pred(cur) to y-mark cur.pred. A delete process calls v-mark-node{cur) to
v-mark cur and then calls y-mark-pred(cur) and y-mark-pred(cur.pred) to y-mark cur.pred
and cur.pred.pred. Here we only describe the procedures involved in the delete process. The
procedure ins-y-mark-pred(cur) will be introduced later when we work on the insert process
in Subsection 4.3.3.

e v-mark-node(cur)

When a delete process D calls y-mark-node(cur), another delete procese, say D°, may
want to delete cur physically, where cur equals cur* pred and cur*.key is the key that 7*
wants to delete. In this case, D* must have y-marked cur and have subsiicuted cur*.key
with the value of cur.key. Thus, there are two rodes with ihe key value of cur.key in the
tree, sav cur and cur*. Cur will be physically deleted by D*, thus D should try to delete
cur*. In order to provide a way of communication between D and D*, two new fields, say
n.invalid and n.target, are incorporated for each node n.

When D* decides to physically delete cur (i.e.cur*.pred), it sets cur.invalid to be TRUE
and let cur.target point to cur*. Then D* waits until cur.deleted (already been set to TRUE
by D) is reset to FALSE.

When D calls y-mark-node(cur), it keeps testing the value of cur.y-marked. If cur.y-
marked is FALSE, D sets its value to TRUE and thus takes control of cur. Otherwise, D
keeps testing the value of cur.invalid. Whenever cur.invalid is TRUE, D p-locks cur.target,
informs D* that it has known the new target cur.target (i.e. cur*) by resetting cur.deleted
to FALSE, and then makes cur.target as its new current node. After that, D just goes back
to Step 2. The lock v, which is incompatible with itself, is used here to enforce mutual
exclusion on the critical region cur.y-marked.

e v-mark-pred(n)

When a delete process D tries to call y-mark-pred(n), n.pred may get changed. If D
can not always be informed of the latest value of n.pred, problems may occur. For example,
the old value of n.pred may point to a physically deleted node, and if D tries to vy-mark
a nonexistent node, the system will collapse. There must be some safety measurements
against this. The field n.y-state is introduced for this purpose. n.y-state may have one of
the following three values: EMPTY, TRYING and TESTING.

While D tries to y-mark-pred(n), it keeps reading the value of the field n.pred and setting
n.y-state to TRYING until it is lucky enough to find that n.pred.y-marked is FALSE. It
then sets n.pred.y-marked to TRUE and thus succeeds in y-marking n.pred. Again the
lock v is used here to enforce mutual exclusion on the critical region n.pred.y-marked.

After another process P (either a delete process or an insert process) changes the value
of the field n.pred, if it finds that the value of n.y-state is TRYING (i.e. someone else
is TRYING to v-mark n.pred), it calls a procedure ~y-safety(n) to ensure the safety of
the system. When calling y-safety(n), P starts by setting n.y-state to TESTING, then
repeatedly tests n.y-state until n.v-state becomes TRYING again. Since D sets n.y-state
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to TRYING each time after it reads the latest value of the field n.pred, the transition of
n.y-state from TESTING to TRYING ensures that D has known the latest value of the field
n.pred. Now P can do its own work safely.

4.2.4 Selecting the Appropriate I-Node for Physical Delection

The field a-marked is used to enforce mutual exclusion among ascenders (i.e. any pro-
cesses traversing the tree upwards). The value of a-marked indicates whether a node has
been a-marked by any process. The lock o is used to enforce mutual exclusion on the
critical region a-marked. The related a-marking procedures are a-mark-node(n), a-mark-
father(n). These procedures are quite similar to the y-marking procedures in that the caller
of the procedure just keeps testing the value of the a-marked field until it can a-mark the
node. The lock « is used for mutual exclusion on the critical region a-marked. However,
the procedure a-mark-father(n) needs some elaborate revisions as we will see later. Another
procedure a-safety(n) is used to ensure the safety of the system. a-safety(n) is the same
as y-safety(n) except that any fields associated with v now become the corresponding fields
associated with a.

In the beginning of this step, the delete process has already y-marked cur, cur.pred and
cur.pred.pred (abbreviated as ¢, p and pp respectively). The otject of the deletz process is
to a-mark the I-node for physical deletion and be ready to ascend the tres at the end of
this step.

The delete process starts by a-mark-node(e). U either child of ¢ is an L-node (i.e. ¢
is the aprropriate I-node to be physically deleted), the delete process proceeds to Step 5
directiy.

Otherwise, the delete process needs to make a key substitution, i.e. to substitute c.key
with the value of p.key and then make p the I-node for physical deletion.

When updating c.key, no descenders should have access to c.key. The lock ¢ is introduced
for this purpose. The delete process is required to £-lock ¢ before updating the value of c.key.
Since the lock £ is incompatible with the lock p, no descenders can p-lock ¢ and have access
to c.key if ¢ has been &-locked.

After updating c.key, the delete process cannot immediately physically delete p from
the tree. The reason is that there may be some descenders on the path from ¢ down to p
searching for the key with the value p.key or trying to insert a key with the value belonging
to the interval (p.key, key; ), where key; denotes the original value of c.key. These processes
need to be driven off the path. To achieve this, the delete process just traverses the path
from ¢ down to p like a descender but applies the lock £ instead of the lock p to drive other
descenders off the path. It is not difficult to prove that when this has finished, all these
processes either have found the key it searches for or have reached an appropriate child of
p.

Having finished traversing the path from ¢ to p, the delete process makes reservation
for itself on p. For each node n, the field n.reservation is used for the reservation.
n.reservation may have one of the four possible values: FREE, LEFT, RIGHT and SUCC.
Here, FREE means that n has not been reserved by any process; RIGHT, LEFT and SUCC
indicate that n has been reserved by a process present on n.le ft, n.right and n.succ respec-
tively. Here the delete process just sets p.reservation to SUCC. Then it a-unmarks ¢ and
tries to a-mark-node(p).

As we can see later, ascenders usually a-mark nodes upward the tree. Here, p is below
¢ in the tree. Therefore, in order to avoid deadlocks, the delete process is required to a-
unmark ¢ before it can a-mark p. However, this may lead to a problem: during the period
between the moments that the delete process a-unmarks ¢ and that it manages to a-mark
P, the node p may get involved in some rotations and become the ancestor of c. Moreover,
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both children of p may become I-nodes. In this case, c, instead of p, should be the node for
physical deletion. This problem is solved by a combination of the mechanism of reservation,
the algorithm for rotations and the procedure a-mark-father(n). Firstly, if a node is reserved
as SUCC, it cannot be a-marked through a-mark-father(n) (ensured by the procedure a-
mark-father(n)) and thus can only be a-marked by its reserver. This ensures that p may
get involved in at most one rotation. Thus, if p becomes the ancestor of ¢ during the (only)
rotation it is involved in, it can only become the father of c. (This is evident according to the
modification to the tree in a rotation.) The algorithm for rotations is devised to ensure that
if p, a node reserved as SUCC, gets involved in a rotation, and after the rotation, neither
child of p is an L-node, then ¢, which is the right child of p after the rotation, is a-marked
after the rotation. Thus, when the delete process finally a-marks p, if p is no longer fit
for physical deletion, the delete process only needs to a-unmark p and then make ¢ as its
current node for physical deletion. Since ¢ has already been a-marked during the rotation,
the delete process can now safely proceed to Step 5.

Note: We only describe part of the mechanism of reservation here. More will appear in
Subsection 4.2.5.

4.2.5 Ascending

In this step, the delete process keeps ascending from the
current node to its father node and makes rotations when nec-
essary. The physical deletion is mace after the first step up- 9
ward the tree. Supjpose that a delete process 1 wanis 4o ciove
one step upward from. the current node {denoted by c). Let
f denote the tather node of ¢, g denote the grandfather of ¢
(i.e. the father of f), b denote the brother of ¢ (i.e. the other
child of f) and n denote the nephew of ¢ (i.e. an appropriate
child of b that together with ¢, f and b, may get involved in a
double rotation). The possible positions of c, g, f, b and n are
illustrated in Fig.5. D takes the following steps:

1) a-mark f.

2) If no rotation is necessary, then a-release(c). Here, by a- .
release(c) we mean that, if no node has ever been physically deleted Fl.g's' NOdt_as that mz,iy get
. . . . . involved in a rotation.
by this process, c is physically deleted; otherwise, ¢ is merely a-
unmarked.

3) If a single rotation is needed, D a-marks b, a-release(c), a-marks g, and then makes the
rotation.

4) If a double rotation is needed, D a-marks b, o-marks n, a-release(c), a-marks g in sequence
and then makes the rotation.

From the above steps, we can see that D may need to a-mark a child, say son, of a node
already a-marked by it, say nd. However, there may be another process P (either a delete
process or an insert process) which has a-marked son but wants to a-mark nd. If both
D and P persist in trying to a-mark their target nodes, a deadlock occurs. To break the
deadlock, we require that D gives its control of nd to P. This is achieved by the mechanism
of reservation. D first tests the value of son.a-state. If the value is TRYING, D knows
that the process which has a-marked son is trying to a-mark nd. In this case, D reserves
nd for P by setting nd.reservation to LEFT or RIGHT depending on whether son is the
left or the right child of nd and then a-unmarks nd. The procedure a-mark-father(n) is
also revised so that a process can a-mark-father(n) if and only if n.father has been neither
a-marked nor reserved for any other process. Moreover, we allow a process to reserve a node
as SUCC even if it has already been reserved as LEFT or RIGHT (i.e. RIGHT or LEFT
may be overridden by SUCC).
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Next we need to have some words on physical deletion. When a delete process D tries
to delete an I-node v and one of its children In (an L-node), it keeps descenders from v by
placing the lock £ on both v and its father node v.father. When modifying fields of the
nodes, D calls the procedures a-safety and £-safety when necessary. Moreover, before it can
safely free the space occupied by v and In, D must do the following two things. Firstly,
as mentioned in Subsection 4.2.3, D must drive those delete processes trying to -y-mark-
node(v) off by setting the value of v.invalid and v.target. Secondly, D should drive those
insert processes trying to ins-y-mark-pred(in) off In by setting In.invalid to be TRUE and
letting In.target point to some appropriate L-node. For details of ins-y-mark-pred(In), see
Subsection 4.3.3.

The last thing we need to discuss is the rotations. When making a rotation, the delete
process keeps descenders from nodes in modification by placing £ locks on nodes involved in
the rotation. Specifically, as shown in Fig.5, in case of a single rotation, the process £-locks
g, f and b in sequence; in case of a double rotation, the process {-locks g, f,b and n in
sequence. The procedures a-safety and £-safety are also called to ensure the safety of the
system when fields of the nodes are modified. Moreover, as mentioned before, the process
making the rotation needs to pay attention to nodes reserved as SUCC.

4.3 Insert Process

Now we come to the aigorithr for the insert process which is quite similar to the algo-
rithms presented i [4). Compared with the aigorithm for the delete process, this part is
much simpler. The aigorithm foi the insert process also consists of five steps: 1) descending,
2) exclusion among multiple insertions, 3) v-marking, 4) physical insertion and 5) ascending.
We discuss them one by one.

4.3.1 Descending

In this step, the insert process behaves like a search process. If it finds a node with the
given key, it fails; otherwise, it reaches an L-node and makes it the current node (denoted
by cur).

4.3.2 Exclusion among Multiple Insertions

Multiple insert processes may want to make physical insertion on cur. In this case,
only one process may make the physical insertion. The others must wait until the physical
insertion has completed and then should go on descending. Specifically, the insert process
starts by trying to B-lock cur. After it succeeds in S-locking cur, it examines cur to see
if it is still fit for physical insertion. If someone else has already made an insertion on cur
and thus making cur no longer fit for physical insertion, the insert process just goes on
descending from cur. Otherwise, it proceeds to Step 3.

4.3.3 ~y-marking

The insert process tries to y~-mark cur.pred in this step. Two problems are to be solved: 1)
cur.pred may get changed; 2) cur itself.znvalid becomes TRUE, the insert process just moves
to a new node pointed to by cur.target and tries to make an insertion there. Meanwhile, like
in the procedure y-mark-pred, it keeps testing the value of cur.pred and setting cur.y-state
to TRYING. Such actions help to ensure that the insert process can always be informed of
the latest value of cur.pred.

4.3.4 Physical Insertion
The insert process makes the physical insertion on cur. By é-locking cur.father, it

excludes descenders from accessing cur during the physical insertion. The procedures a-
safety and v-safety are called when necessary. At the end of the physical insertion, the
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insert process wakes up all the insert processes blocked on cur by the lock 8 and drives
them down to the children of cur. To make sure that no other insert process is present on
cur (indicated by the lock p on cur), the insert process first £-locks and then £-unlocks cur.

4.3.5 Ascending

The ascending step of the insert process is simpler than that of the delete process and
no reservation is necessary here. The insert process traverses the tree towards its dummy
node and a-marks each new node encountered in its path. It a-unmarks the nodes in such a
manner that it always a-marks the last three nodes. This ensures a strict serialization among
ascending processes. When rotation is necessary (at most once for each insert process), the
process just makes the rotation. The algorithm for rotations has been described in Subsection
4.2.5.

Now, we have completed the design of the whole system. The pseudo-code for the system
can be obtained from the authors.

5 System Evaluation

5.1 Correctness of the System

The correctness of the system consists of four aspects:

1) Conditional terminaiion. If the number of the corcurrent processes is finite, then all the
processes v:iii termiunate in 4 finite period of tinme. We do not ensure absolute termination because
the tree siructwre may be continucusly changing, forcing a slow search process to search forever.

2) Although temporary degradation (i.e. unbalance and/or redundancy) in the tree structure
is allowed, after all the processes have terminated, and the resulting tree should strictly satisfy the
definition of an EAVL tree.

3) Each search process returns the right node at the time of termination. Each insert or delete
process can correctly modify the tree structure as it intends to.

Due to the limitation of space, we are not allowed to give formal proof of the correctness
of our system here. Instead, we list the following two facts which are useful in the proof:

Fact 1. Rotations have no influence on the LNR-sequence of the tree.

Fact 2. Each descender p-locks the nodes downward the tree. Each ascender usually a-marks
the nodes upward the tree. Each insert/delete process y-marks the nodes in the direction from the
rear to the head of the LNR-sequence. Such locking orders help to deny the circular wait condition
of deadlocks!'®! and thus help to ensure a deadlock-free system.

5.2 Simulation Results on the Performance of the System

When evaluating the performance of the system, we mainly consider the degree of con-
currency and the degree of the degradation in the tree structure.

In our simulation experiment, all the keys are generated using a uniform random num-
ber generator function. The locking procedures are implemented by semaphores and PV
operations!!”). In a time unit, a process can only run a single step. The operation that
can be performed in a single step can be a request for PV operation, a read/write on a
shared data field or just some kind of local calculation. To simplify the simulation, multiple
read/write on a common data field is allowed in a time unit. The PV operations are atomic
and in a time unit, at most one request for PV operation can be granted on a common
semaphore. In any time unit, the order in which all the active processes run is randomly
generated with a uniform random number generator function.

In the experiment, an initial EAVL tree with k£ I-nodes is manipulated concurrently by
n search processes, n delete processes and n insert processes. Each process on termination
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starts a process performing an operation with the same type. The system status is sampled
at frequent intervals and the overall performance is evaluated over a long enough period of
time. Specifically, the system runs for £ = 25, 50, 100, 200, 400, 800 and n = 1, 2, 4, 8, 16,
32. For each (k,n), the system runs continually for 10,000 time units and the system status
is sampled every 10 time units. The items for statistics are as follows:

1) S, the speedup of the system. S is defined as SS/T, where SS is the sum of the steps that
all the processes run concurrently and T is the total time units the system runs. T equals 10,000
in our experiment.

2) AH, the average height of the tree and M H, the maximum height of the tree.

3) AB, the average balance factor of the tree and M B, the maximum balance factor of the tree.

4) AR, the average redundancy of the tree and M R, the maximum redundancy of the tree. The
redundancy of the tree at time ¢ is defined as (I(t) — D(t)), where I(t) is the number of the I-nodes
in the tree at time ¢ and D(t) denotes the number of the different keys in the tree at time t¢.

Among these items, S indicates the degree of concurrency and the others show the
degree of the degradation in the tree structure. Detailed simulation results can be found
in Appendix. From these results, we can see that our system enjoys a high degree of
concurrency at the expense of insignificant degradation in the tree structure.

6 Conclusion

In this paper, we have presenved a fully cencurrsni EAVL tree system. To the authors’
knowledge, the syster is not availabie based on any known algorithms. Elaborate techniques
used in this paper, such as the mechanism of reservation, the a-marking scheme etc., may
prove effective in solving other problems. Future efforts can be extended to other search
structures such as the k-HB trees!8 etc.
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Appendix. Simulation Results

Table 1. Results forjt_: 1

'.l‘ab_le_2._Resv.lt:— torn=2

~ 1 1 | T N
Item ™~ 25 | 50 | 100 200 | 400 | 800 Item 25 50 100 | 200 | 400 { 800
S .92 2.96 | 2985 | 2,988 { 2.986 | 2.993 S 5.70 | 5.81 | 5.88 | 593 | 5.95 | 5.95
MH 5 7 8 9 10 12 MH 6 7 8 9 10 12
AH 486[6.01| 7.08 | 8.10 | 9.09 | 11.02 AH 5.18 | 6.15 | 7.14 | 8.15 | 9.04 | 11.04
MR 1 1 1 1 1 1 MR 2 2 2 2 2 2
AR 0.18]0.11 | 0.11 | 0.06 | 0.12 | 0.16 AR 0.37 ( 0.35 | 0.24 | 0.30 { 0.22 { 0.28
MB 2 3 3 2 2 2 MB 3 2 3 3 2 2
AB 032033 032 | 031 | 0.29 | 0.33 AB 0.40 | 0.38 { 0.34 | 0.36 | 0.30 | 0.33
Table 3. Results for n = 4 Table 4. Results for n = 8
k ) k
Item 25 50 100 | 200 | 400 | 800 Item 25 50 100 | 200 | 400 | 800
S 10.80|10.95(11.40|11.65(11.71 | 11.79 S 15.15|21.08 | 21.63 | 22.13 | 22.64 | 22.83
MH 7 8 8 9 10 12 MH 5 7 8 9 11 12
AH 5.34 | 6.46 | 7.30 | 8.30 | 9.32 |11.07 AH 3.42 | 6.37 | 7.54 | 8.66 | 10.00 | 11.06
MR 3 3 3 3 3 3 MR 2 6 4 5 5 5
AR 0.70 | 0.67 | 0.60 | 0.46 | 0.59 | 0.61 AR 0.17 | 1.38 | 1.26 | 1.21 | 1.10 | 1.29
MB 4 3 3 2 2 2 MB 3 3 3 3 4 3
AB 0.45 | 041 [ 0.35 | 035} 0.32 | 0.34 AB 0.49 | 0.41 | 0.39 | 0.37 | 0.36 | 0.34
Table 5. Results for n = 16 Table 6. Results for n = 32
k ) k
Item 25 50 100 { 200 | 400 | 800 Item 25 50 100 | 200 | 400 | 800
S 32.88 (36.68 | 37.41 | 39.05 | 38.38 | 38.97 S 51.62(66.31 | 66.63 | 53.22 | 62.26 | 46.56
MH 6 8 9 10 10 12 MH 6 9 9 9 11 12
AH 4.74 | 6.62 | 7.76 | 8.92 | 9.68 | 11.06 AH 5.93 | 8.70 | 7.95 | 8.73 |10.24 |10.79
MR 3 6 5 6 6 6 MR 2 4 3 9 5 8
AR 0.54 | 1.26 | 1.36 | 1.86 | 2.15 | 2.27 AR 0.52 | 1.04 | 0.27 | 1.69 | 1.03 | 2.65
MB 3 4 3 3 3 3 MB 2 4 4 3 4 3
AB 0.42 | 0.51 | 0.40 | 0.40 | 0.35 | 0.34 AB 0.65 | 0.84 | 0.46 | 0.38 | 0.37 | 0.35




