
On Individual and Aggregate TCP Performance

Lili Qiu, Yin Zhang, and Srinivasan Keshav�
lqiu, yzhang, skeshav � @cs.cornell.edu

Department of Computer Science
Cornell University, Ithaca, NY 14853

Abstract

As the most widely used reliable transport in today’s In-
ternet, TCP has been extensively studied in the past. How-
ever, previous research usually only considers a small or
medium number of concurrent TCP flows. The TCP behav-
ior under many competing TCP flows has not been suffi-
ciently explored.

In this paper we use extensive simulations to investigate
the individual and aggregate TCP performance for a large
number of concurrent TCP flows. First, we develop a simple
yet realistic network model to abstract an Internet connec-
tion. Based on the model, we study the performance of a
single TCP flow with many competing TCP flows by evalu-
ating the best-known analytical model proposed in the lit-
erature. Finally, we examine the aggregate TCP behavior
and derive general conclusions about overall throughput,
goodput, and loss probability.

1. Introduction

TCP is the most widely used reliable transport in today’s
Internet. It is used to carry a significant amount of Inter-
net traffic, including WWW (HTTP), file transfer (FTP),
email (SMTP) and remote access (Telnet) traffic. Due to its
importance, TCP has been extensively studied in the past.
However, previous research usually only considers a small
or medium number of concurrent TCP flows. The behav-
ior of many competing TCP flows has not been sufficiently
explored.

In this paper, we use extensive simulations to explore the
performance of TCP-Reno, one of the most common TCP
flavors in today’s Internet. We first develop a generic model
for Internet connections by exploring the Internet hierar-
chical routing structure. Based on the abstract model, we
study the behavior of a single TCP flow under many com-
peting TCP flows by evaluating the TCP analytical model
proposed in [12]. We also investigate the aggregate behav-
ior of many concurrent TCP flows, and derive general con-

clusions about overall throughput, goodput, and loss proba-
bility.

The rest of the paper 1 is organized as follows: Section 2
presents our abstract network model for wide-area Internet
connections. Section 3 studies the individual TCP perfor-
mance under many competing TCP flows. Section 4 further
simplifies our network model so that we can better explore
the aggregate TCP behavior. Section 5 presents our sim-
ulation results and analysis for the aggregate TCP perfor-
mance. Section 6 summarizes related work. We end with
concluding remarks and future work in Section 7.

2. Network Abstraction

In this section, we develop a simple yet realistic model
for wide-area Internet connections based on the Internet hi-
erarchical routing structure.

2.1. Connections from a single domain

There are three levels of routing in today’s Internet. The
top level is at the Internet backbone, which interconnects
multiple autonomous systems (AS’s). The middle level is
within a single AS, which is from the routers in an enter-
prise domain to the gateway. At the bottom level, we have
routing within a single broadcast LAN, such as Ethernet or
FDDI [6]. The upper portion of Figure 1 shows an abstract
view of a cross-domain network connection.

The link between an enterprise domain and the transient
backbone is typically dedicated to the enterprise, and usu-
ally has enough bandwidth to carry its own traffic. Inter-
net backbones generally also have large enough bandwidth,
though sometimes can get congested. In contrast, the ac-
cess link usually has very limited bandwidth, and is shared
among multiple domains. Therefore, in many cases, it is
reasonable to assume that the access link is the bottleneck
(Assumption 1) for wide-area Internet connections. Under

1This paper has been abbreviated to conform to the ICNP page count
limit. The complete version is available as technical report [13].

dest

Trans. Internet

Domain

Trans.

Domain

Possible Sufficient
BufferBottleneck

 R1

Router Router

 R2

Router

 R3

Sufficient
Buffer

Router
 R4

Possible
Bottleneck

T3
ISDN

T1 T1
T3

ISDN
infinite

bandwidth

Source Domain

Source Domain

Dest. Domain

Dest. Domain

Backbone

src

src

src

src

src

src

dest

dest

dest

dest

dest

Figure 1. Abstract network topology for connections from a
single domain

such an assumption, the topology can be further abstracted
as shown in the lower portion of Figure 1, where the inter-
connection between transient backbones and internet back-
bones is abstracted as routers connected by access links and
one high capacity link. The router at either access link can
become the bottleneck depending on the traffic condition.

2.2. Connections from multiple domains

When access links are shared by multiple domains, the
scenario looks much more complicated, as illustrated in
Figure 2:

Source Domain Dest Domain
Internet

Backbone

Access
Link

Access
Link

Access
Link

Access
Link

Figure 2. Abstract network topology for connections from mul-
tiple domains

At the first glance, it seems that all connections are in-
termixed with one another. However, according to the as-
sumption that only access links can be bottlenecks, two con-
nections not sharing any access links are thus independent.

Based on such observation, we can partition all the connec-
tions into independent groups as follows:

1. Map the network connection into an undirected graph.
Represent each access link as a node in the graph. Con-
nect two nodes with an edge if and only if there is at
least one connection going through both access links
corresponding to the two nodes;

2. Find all connected components in the graph. The con-
nections in different connected components are clearly
independent of one another.

After decomposition, we only need to study a single
connected component. The single connected component
looks exactly the same as multiple cross-domain connec-
tions shown in Figure 2, except that now all the connections
compete with one other, whereas before decomposition two
connections can be independent of each other.

3. A Single TCP Flow Under Cross Traffic

The best-known analytical model for the steady state per-
formance of TCP-Reno is proposed in [12]. According to
their model, the steady state throughput ������� for an indi-
vidual TCP flow can be approximated as follows:

	�
� ���������������� ������ � !#"%$&(' �*) 	+
,� � � �.- �
& "%$/ �0�1� � ' -32 � ! �

�

where � is the loss probability, 4 is average number of pack-
ets acknowledged by an ACK, � ����� is the maximum con-
gestion window, RTT is the average roundtrip time experi-
enced by the connection, and

�)
is the average duration of

a timeout without back-off.
In [12] the model is validated empirically using real

traces. We believe that further investigating the model
through simulations has its unique value:5 Simulations can accurately determine the value of each

parameter used in the model, which is not always pos-
sible in real traces. For example, the dropping proba-
bility � can only be approximated in real traces by loss
indications.

�����
estimation can be inaccurate due to

coarse-grained timer.5 Simulations using a generic model can cover a wider
range of scenarios.5 Simulation offers a well-controlled environment,
whereas in real traces, a lot of unknown factors, such
as topologies, processing time, different TCP versions
etc., can make the results hard to interpret [11].

We use ns [10] to run a large number of simulations
on different variations of the abstract network topology in
Section 2. The topologies are labeled according to Table 1,
and are illustrated in Figure 3 and Figure 4.

Table 2 summarizes the accuracy of the model, where
the percentage is based on over 10000 data points. In other

Topology 67�98 2 � � � �98 2 � � :*;<; =?> �<�
1 50 ms 64 kbps 100 - 500 1 - 100
2 50 ms 64 kbps 100 - 500 110 - 600
3 50 ms 1.6 Mbps 100 - 500 1 - 100
4 50 ms 1.6 Mbps 100 - 500 110 - 600
5 as shown in Figure 4 100 - 500 1 - 600

Table 1. Simulation topologies. 67�@8A� and � � �@8A� denote the
propagation delay and bandwidth of link L respectively; � :*;<;
is the buffer size (in packets) at all routers; =?> �<� stands for
the number of connections.

Source
Domain

Dest
Domain

Router
R1

Router
R2

Source
Domain

Dest
Domain

L1

L1

L2

L1

L1

Figure 3. Settings for topology 1 - 4. Link L1 is a 10 Mbps Eth-
ernet link with 0.001 ms delay. Table 1 lists other parameters.

simulation settings not shown in this paper, similar results
have been observed.

As shown in Table 2, most of their estimations are accu-
rate within a factor of 2, which is reasonably good. We have
also evaluated their more accurate full model and observed
similar accuracy (See [13] for details).

A number of factors contribute to the divergence be-
tween their model and the simulation results:5 The simplistic assumption that once a packet in a given

round is lost, all remaining packets in the same round
are lost as well [12].5 Ignoring the packets sent in the slow start phase.5 Several simplifications that can introduce distortion:

25 ms
25 ms

25 ms25 ms

src
Domain

src
Domain Domain

Dest

Domain
Dest

Dest

Domain

Dest
Domain

src

Domain

src
Domain

Router

Router

Router

Router

Router
Router

ISDN

T1
ISDN

1000*T1

T1

Figure 4. Topology 5. All unlabeled links have 28.8 kbps band-
width and no propagation delay.

Topology BC� �ED F � BC� 2 � BC� - � BC�9G3�
1 21.04 78.48 98.83 99.31
2 31.65 58.70 87.23 94.29
3 69.02 78.92 88.66 91.77
4 77.01 91.51 97.58 98.61
5 58.60 78.60 90.90 95.42

Table 2. The accuracy of the model proposed in [12].BC�%H*� denotes the percentage of connections such that	+I HJ� KML �#NPO*Q�R.SUT�VWQ $ T�XY1Z X%[\���#X L^] O*Q�R.SUT�VWQ $ T�X �
YJZ X%[_�`��X L^] O�Q�R#SaT�VWQ $ T�XKML ��NbO�Q�R#SaT�VWQ $ TcX �edfH .

ignoring the effect of losing ACKs; ignoring timeout
could occur before triple duplicate ACKs; ignoring
packet reordering, that is, assuming loss is the only
cause of duplicate ACK. (See [13] for more details).

4. Aggregate Behavior of Many TCP Flows -
Model Simplification

From the perspective of network provisioning, it is very
important to understand the aggregate behavior of many
TCP flows, such as the overall throughput, goodput, loss
rate, and fairness. Due to the same reasons we mentioned
in Section 3, we again choose to study the aggregate TCP
behavior by simulations.

To make simulation an effective approach, it is neces-
sary to have a small parameter space so that we can identify
exactly how the performance varies with different parame-
ters. So we further simplify our network model using the
assumption that the bottleneck will eventually stabilize,
and different connections sharing the same access link
congest at the same place. (Assumption 2).

Under this assumption, our abstract network model
can be further simplified as the widely used single-
bottleneck model, as shown in Figure 5. The entire sys-
tem can now be characterized by only four parameters:�hgi>#� IEjkI3lm
 > �on3prq9I3s , the buffer size of the bottleneck router
S (�t:<;<; p giu
v3piw), the number of connections (=?> �<�), and� s � p " S^X0X0N LmxbL^ymz N�[xEz .

Bottleneck Link

Large bandwidth links
Dest n

Router D
Dest 2

Dest 1

Source n

Router S
Source 2

Source 1

Figure 5. Simplified abstract network model

5. Aggregate Behavior of Many TCP Flows -
Simulation and Analysis

In this section, we study the aggregate TCP performance
through extensive simulations using ns [10]. Our simu-
lation topology is based on our abstract model simplified
in Section 4. In Figure 5, the large bandwidth link has 10
Mbps Ethernet bandwidth and 0.001 ms delay. We vary
each of the four parameters in the model: �{gi>#� IEj|I3lm
 > �nEprq9I3s , � :*;<; p gPu
mvEpiw , =?> �<� , and

� s � p " SaX0X0N LmxEL^ymz N�[xbz to
see how each of them affects TCP performance. More
specifically, we consider both ISDN and T1 access links,
with delay of either 50 ms (typical for terrestrial WAN
links) or 200 ms (typical for geostationary satellite links).
We also vary the buffer size and the number of connections
in each scenario.

The bottleneck link router uses FIFO scheduling and
drop-tail buffer management, which are most commonly
used in the Internet. The TCP segment size is set to 500
bytes. As [9] points out, it is very common to have hun-
dreds of concurrent TCP flows competing for the bottle-
neck resource in today’s Internet, so we are particularly in-
terested in investigating the TCP behavior for such a large
number of flows.

We use the following notations throughout our discus-
sions:5 Let �}S $ XA~ propagation delay*bottleneck bandwidth,

which is the number of packets the link can hold.5 Let � y ~���S $ X ' � , where � is the buffer size at the
bottleneck link. � y is the total number of packets that
the link and the buffer together can hold.

For the interest of brevity, we omit the simulation results
for ISDN whenever they are similar to T1. Interested read-
ers can refer to [13] for more extensive results.

5.1. TCP behavior for flows with the same propa-
gation delay

Our study of TCP flows with the same propagation de-
lay shows TCP exhibits wide range of behaviors depending
on the value of ���� S xPx , where =?> �<� denotes the number of
connections. Based on the capacity of the pipe (measured
as � �� S xPx), we classify our results into the following three
cases: large pipe (� y�� -C� =?> �<�), small pipe (� y��=?> �<�), and medium pipe (=?> �<� � � y�� -�� =?> �<�).

5.1.1. � y � -�� =?> �<� (Large pipe case)

Previous studies have shown a small number of TCP con-
nections with the same RTT can get synchronized [14]. Our
simulation results demonstrate that synchronization persists
even for a large number of connections.

Figure 6 depicts the synchronization behavior. In all the
graphs we sort the connection ID’s by the total num-
ber of packets each connection has received, which re-
veals synchronization behavior more clearly. As shown
in the figure, the buffer occupancy periodically fluctuates
from half to full, which implies all connections halve their
congestion windows in synchrony. The global synchroniza-
tion behavior can be further illustrated by the periodic white
stripes in the scatter plot of ACK arrival time, which imply
all the connections start and end loss recovery in a synchro-
nized manner.

0

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95 100
Time (second)

ACK recv time: T1 link, Buffer=400, conn=100

C
on

ne
ct

io
n

ID

0

20

40

60

80

100

160 180 200 220 240 260 280 300 320 340
Total pkts received

Total pkts received: T1 link, Buffer=400, conn=100

Actual received
Fair share

C
on

ne
ct

io
n

ID

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100
Time (second)

Buffer occupancy: T1 link, Buffer=400, conn=100

B
uf

fe
r o

cc
up

an
cy

 (p
kt

s)

Figure 6. Global synchronization in large pipe case: 100 flows
share a T1 link with 50 ms n3prq9I3s and 400 packet 4#:*;<; p g .

The explanation for the synchronization behavior is sim-
ilar to the case for small number of connections. At the end
of each epoch, the bottleneck buffer becomes full. Each
flow will thus incur a loss in the same

�����
when it incre-

ments its congestion window. Since � y � -?��� > �<� , most
flows have more than 3 outstanding packets before the loss.
So they can recover from the loss by fast retransmission,
and reduce the window by half, leading to global synchro-
nization.

Due to global synchronization, all the flows share the
resource fairly: in the steady state they experience the same
number of losses and send the same number of packets. We
can aggregate all the connections as one big connection, and
accurately predict the aggregate loss probability as follows:

8�>P�r�`B?gi>P4 I 4
mq%
lms ~ �4 � �� ����`�.�`�|���� H�� ' 2�� � ' �
where 4 is the average number of packets acknowledged by
an ACK, and ��~ � �� S xPx . (See [13] for details.)

When 4 ~ � , 8�>P�r�eB?gi>P4 I 4
mq%
lms can be approximated as

8A>P�r�`B?gr>P4 I 4
q9
lms�� �-�� � ! ' 2 � � � ' � D
Figure 7 shows our prediction matches very well to the

actual loss probability.

0

0.01

0.02

0.03

0.04

0.05

0.06

1 10 100 1000

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: Buffer=4*Conn

actual loss
predicted loss

Figure 7. Loss prediction for large pipe case: Varying number
of connections share T1 link with 50 ms n3prq9I3s and 4�:*;<; p g ~G � =?> �<� .

5.1.2. � y � =?> �<� (Small pipe case)

When � y � =?> �<� , we find TCP flows share the path
very unfairly: only a subset of flows are active (i.e. with
goodput considerably greater than 0), while the other flows
are shut-off due to continuous timeout as shown in Figure 8.

The number of active flows is close to � y , and the ex-
act value depends on both � y and the number of competing
flows. When =?> �<� exceeds the number of active flows the
network resource can support, adding more flows only cre-
ates more shut-off flows. Almost all the packets sent by the
shut-off flows get dropped.

5.1.3. =?> �<� � � y � -�� =?> �<� (Medium pipe case)

As shown in Figure 9, TCP behavior in this case falls in
between the above two cases. More specifically, in contrast
to the large pipe case in Section 5.1.1, when different flows
experience loss in the same

�����
, since � � � �� S xPx � - , the

flows respond to loss differently: those flows with �W� �Mn �- before the loss can recover the loss through fast retrans-
mission, while the others have to resort to timeout. Since
the set of flows recovering loss using fast retransmission
and the set using timeout can change over time, no global
synchronization occurs, and the network resources are not
shared as fairly as when � y�� -�� =?> �<� . On the other
hand, there is still local synchronization, as shown in Fig-
ure 9, where some groups of flows are synchronized within
the groups. Furthermore, since � �� S xPx � � , all the flows can

50

100

150

200

250

300

150 155 160 165 170 175 180 185 190 195 200
Time (second)

ACK recv time: Wc=100, conn=300

C
on

ne
ct

io
n

ID

0

50

100

150

200

250

300

0 50 100 150 200 250
Total pkts received

Total pkts received: Wc=100, conn=300

Actual received
Fair share

C
on

ne
ct

io
n

ID

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200
Time (second)

Buffer occupancy: Wc=100, conn=300

B
uf

fe
r o

cc
up

an
cy

 (p
kt

s)

Figure 8. Small pipe case: 300 concurrent flows compete for T1
link with 50 ms n3prq9I3s and 60 packet 4#:<;<; p g (� y ~���S $ X '�t:<;<; p g ~ �c�E� � I �c� p�l �). Note that the buffer occupancy
fluctuates widely. Moreover part of flows receive little goodput
as shown in the bottom left graph.

get reasonable amount of throughput. Therefore, in contrast
to the small pipe case, almost no flow gets shut off.

5.1.4. Aggregate Throughput

We define normalized aggregate TCP throughput as the
number of bits sent by the bottleneck link in unit time nor-
malized by the link capacity. Our results are as follows:5 As shown in Figure 10(a), when the number of flows is

small and the buffer size is less than � S $ X (160 pack-
ets in this case), the normalized TCP throughput is less
than 1. The degree of under-utilization depends on
both the number of flows and the ratio of the buffer
size to �}S $ X . The smaller the number of flows and the
lower the ratio, the lower the network utilization is.5 As shown in Figure 10(b), when the buffer size ex-
ceeds �}S $ X (40 packets in this case), the normalized
TCP throughput is close to 1, regardless of the number
of flows.5 When the number of flows is large, even if the buffer
size is small (smaller than � S $ X), the normalized TCP
throughput is close to 1. This is evident from Fig-
ure 10(a), where the throughput is close to 1 with large
number of flows for all the buffer sizes considered.

5.1.5. Aggregate Goodput

We define normalized aggregate goodput � as the num-
ber of good bits received by all the receivers (excluding un-

0

10

20

30

40

50

60

70

80

90

100

150 155 160 165 170 175 180 185 190 195 200
Time (second)

ACK recv time: Wc=200, conn=100, no overhead
C

on
ne

ct
io

n
ID

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450
Total pkts received

Total pkts received: Wc=200, conn=100, no overhead

Actual received
Fair share

C
on

ne
ct

io
n

ID

0

20

40

60

80

100

120

140

160

0 50 100 150 200
Time (second)

Buffer occupancy: Wc=200, conn=100, no overhead

B
uf

fe
r o

cc
up

an
cy

 (p
kt

s)

Figure 9. Medium pipe case: 100 concurrent flows compete for
T1 link with 50 ms nEprq9I3s and 160 packet 4#:<;<; p g (� y ~2 �b� � I ��� p�l �). Buffer occupancy fluctuates widely. There is
local synchronization within some groups.

necessary retransmissions) in unit time normalized by the
link capacity. As shown in Figure 11, there is a linear de-
crease in goodput as the number of connections increases.
The slope of the decrease depends on the bottleneck link
bandwidth: the decrease is more rapid when the bottleneck
link is ISDN, and is slower when T1 is used as the bottle-
neck link.

The results can be explained as follows. The difference
between the throughput and goodput is the number of un-
necessary retransmissions. As the number of connections
increases, the loss probability increases, which in turn in-
creases the number of unnecessary retransmissions. There-
fore the more connections, the lower the goodput is. On the
other hand, since

q >P�r�
� � ~
l > l^I|q : �<�Mp � p ��� I g s g p�l g I3� � 	+
 �r�
 > � �q%
� �?� I � I �
,lms

the decrease in the goodput is more substantial with slower
bottleneck link (e.g. ISDN), and less significant with faster
bottleneck (e.g. T1).

5.1.6. Loss Probability

Our simulation results indicate when the � y is fixed
and the number of connections is small, the loss proba-
bility grows quadratically with the increasing number of
connections as shown in Figure 12. The quadratic growth
in the loss probability can be explained as follows. When� �� S xPx � - , TCP connections can recover loss without time-
outs. Every connection loses one packet during each loss

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 100 200 300 400 500 600
Total connections

Normalized throughput: T1 link with
oneway propagation delay of 200 ms, varying buffer size

Buffer=10
Buffer=20
Buffer=40
Buffer=60
Buffer=110
Buffer=160
Buffer=200
Buffer=300

(a)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

0 100 200 300 400 500 600
Total connections

Normalized throughput: T1 link with
oneway propagation delay of 50 ms, varying buffer size

Buffer=60
Buffer=160
Buffer=260
Buffer=360
Buffer=460

(b)

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Figure 10. Throughput: varying number of connections com-
pete for the bottleneck link T1 with 200 ms or 50 ms n3prq9I3s .

episode. So altogether there are =?> �<� losses every episode.
Meanwhile the frequency of loss episode is proportional
to =?> �<� . Therefore for small number of connections, the
loss probability is proportional to =?> �<� ! . Such quadratic
growth in loss probability is also reported in [9] for routers
with RED dropping policy.

When the number of connections is large (larger than� �&), as shown in Figure 13, the growth of loss probability
with respect to the number of connections matches impres-
sively well with the following family of hyperbolic curves
represented by s ~ "m� ��c ¡� . Table 3 gives the corresponding
parameters I and 4 for curves in Figure 13.

Wc 100 200 300 400 500
a 144.93 285.71 454.55 526.32 769.23
b 0.3237 0.3429 0.3682 0.3517 0.3948

Table 3. Parameters for the hyperbolic curves used for fitting
loss probability in Figure 13

5.2. TCP behavior with random overhead

Our discussions in Section 5.1 focus on the macroscopic
behavior of concurrent TCP connections with the same

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 100 200 300 400 500 600
Total connections

Normalized goodput: ISDN link with
oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

N
or

m
al

iz
ed

 g
oo

dp
ut

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

0 100 200 300 400 500 600

Total connections

Normalized goodput: T1 link with
oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

N
or

m
al

iz
ed

 g
oo

dp
ut

Figure 11. Goodput: varying number of flows compete for the
bottleneck link of either ISDN or T1, both with 50 ms nEprq9I3s .

propagation delay. In order to explore properties of net-
works with Drop Tail gateways unmasked by the specific
details of traffic phase effects or other deterministic behav-
ior, we add random packet-processing time in the source
nodes. This is likely to be more realistic. The technique of
adding random processing time was first introduced in [3],
though in different context.

5.2.1. � y � -�� =?> �<� (Large pipe case)

For the large pipe case, we find that a random process-
ing time ranging from zero to �c�3¢ � ����� is required to
break down the global synchronization. This is shown in
Figure 14, where the global synchronization is muted after
adding the random processing time up to �c�|¢ � ����� .

The performance results in the non-synchronization case
also differ from the global synchronization case. As shown
in Figure 15, when the number of connections is less than
100, the loss probability in both cases are almost the same;
as the number of connections increases further, the gap
between the two opens up: the non-synchronization case
has higher loss probability than the synchronization case.
Nevertheless, using the prediction based on global synchro-
nization gives a reasonable approximation (at least a lower
bound) of loss probability for non-synchronized case. How-
ever in the non-synchronizationcase, the connections do not
share the bandwidth fairly, and we can no longer predict the
bandwidth share for each connection.

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30 35 40 45 50

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: T1 link with oneway propagation delay of 50 ms, with buffer size=260 pkts

Wc=300

Figure 12. Loss probability for small number of flows: varying
number of flows compete for the bottleneck link of T1 with 50
ms nEprq9I3s . The loss probability grows quadratically when the
flow number is small.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400 500 600

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: T1 link with oneway propagation delay of 50 ms, varying buffer size

Wc=100
Wc=200
Wc=300
Wc=400
Wc=500

Figure 13. Loss probability for a large number of connections:
varying number of connections compete for the bottleneck link
of T1 with 50 ms n3prq9I3s . The loss probability curves match very
well with hyperbolic curves when the number of connections is
large, where the parameters of the hyperbolic curves are given
in Table 3.

5.2.2. � y � =?> �<� (Small pipe case)

For the small pipe case, adding random processing time
makes systematic discrimination much less severe than be-
fore. As shown in Figure 16, the number of shut-off connec-
tions is considerably smaller than before. Furthermore, the
buffer occupancy is mostly full and stable, whereas without
random processing time, the buffer occupancy is quite low,
and fluctuates a lot.

5.2.3. =?> �<� � � y�� -�� =?> �<� (Medium pipe case)

As shown in Figure 17, adding random processing time
does not have much impact on TCP behavior in the case of
medium size pipe: as before, most connections get reason-
able goodput, though not synchronized. On the other hand,
the buffer occupancy now becomes mostly full and stable

0

10

20

30

40

50

60

70

80

90

100

50 55 60 65 70 75 80 85 90 95 100
Time (second)

ACK recv time: T1 link, Buffer=400, conn=100
C

on
ne

ct
io

n
ID

0

20

40

60

80

100

50 100 150 200 250 300 350
Total pkts received

Total pkts received: T1 link, Buffer=400, conn=100

Actual received
Fair share

C
on

ne
ct

io
n

ID

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100
Time (second)

Buffer occupancy: T1 link, Buffer=400, conn=100

B
uf

fe
r o

cc
up

an
cy

 (p
kt

s)

Figure 14. Adding random process time in large pipe case
breaks down the global synchronization: 100 connections
share the bottleneck link of T1 with 50 ms nEprq9I3s and 400 packet4#:*;<; p g . Compared to the case of without random processing
time, the buffer occupancy is quite stable. Moreover global syn-
chronization disappears as shown in the scatter plot for ACK
arrival.

in contrast to without random processing time, where the
buffer occupancy is low, and fluctuates a lot. In addition,
even local synchronization disappears after adding random
processing time.

5.2.4. Aggregate Throughput & Goodput

Adding random processing time has little impact on the
overall throughput and goodput. The conclusions drawn in
Section 5.1.4 and 5.1.5 still applies. See [13] for more
details.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

1 10 100 1000
Total connections

Loss probability
no overhead
predicted loss
within 1%*RTT overhead
within 5%*RTT overhead
within 10%*RTT overhead
within 20%*RTT overhead
within 50%*RTT overhead

L
os

s
pr

ob
ab

ili
ty

Figure 15. Compare the loss probability by adding different
amount of random processing time: varying number of con-
nections compete for T1 link with 50 ms n3prq9I3s

0

50

100

150

200

250

300

150 155 160 165 170 175 180 185 190 195 200
Time (second)

ACK recv time: Wc=100, conn=300

C
on

ne
ct

io
n

ID

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160
Total pkts received

Total pkts received: Wc=100, conn=300

Actual received
Fair share

C
on

ne
ct

io
n

ID

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160 180 200
Time (second)

Buffer occupancy: Wc=100, conn=300

B
uf

fe
r o

cc
up

an
cy

 (p
kt

s)

Figure 16. Adding random processing time in small pipe case:
300 concurrent connections compete for T1 link with 50 msnEprq@IEs and 60 packet 4�:*;<; p g (� y ~ ���b� packets). The buffer
occupancy is quite stable, and the consistent discrimination is
less severe.

0

10

20

30

40

50

60

70

80

90

100

150 155 160 165 170 175 180 185 190 195 200
Time (second)

ACK recv time: Wc=200, conn=100
up to 10% random overhead

C
on

ne
ct

io
n

ID

0

20

40

60

80

100

50 100 150 200 250 300 350
Total pkts received

Total pkts received: Wc=200, conn=100
up to 10% random overhead

Actual received
Fair share

C
on

ne
ct

io
n

ID

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160 180 200
Time (second)

Buffer occupancy: Wc=200, conn=100
up to 10% random overhead

B
uf

fe
r o

cc
up

an
cy

 (p
kt

s)

Figure 17. Adding random processing time in
medium pipe case: 100 concurrent connections compete
for T1 link with 50 ms n3p�q@I3s and 160 packet 4#:<;<; p g
(� y ~ 2 �b� packets). The buffer occupancy is quite stable. In
contrast to without random processing time, there is no local
synchronization.

5.2.5. Loss Probability

For a small number of connections, adding random pro-
cessing time makes the loss probability grow almost lin-
early as the number of connections increases. This is evi-
dent from Figure 18, which compares the loss probability
curves before and after adding random processing time.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 2 4 6 8 10 12 14 16 18 20

L
os

s
pr

ob
ab

ili
ty

Total connections

Loss probability: T1 link with oneway propagation delay of 50 ms, buffer size=60

Wc=100, within10%*RTT
Wc=100, w/o overhead

Figure 18. Loss probability for small number of connections af-
ter adding random processing time of up to ���3¢ � ����� at TCP
source: varying number of connections compete for the bot-
tleneck link of T1 link with 50 ms nEprq9I3s . The loss probability
grows linearly when the number of connections is small.

For a large number of connections, adding random pro-
cessing time does not change the general shape of the loss
probability curves: as before these curves matches very well
with hyperbolic curves, though with different parameters
(See [13] for details).

5.3. TCP behavior with different RTT

It is well-known that TCP has bias against long roundtrip
time connections. We are interested in quantifying this dis-
crimination through simulations. Our simulation topology
is similar to Figure 5 (in Section 4), except that we change
the propagation delay of the links. More specifically, we di-
vide all the connections into two equal-size groups, where
one group of connections has fixed propagation delay on the
large bandwidth links, and the other group of connections
has varying propagation delay on the large bandwidth links.
As suggested in [3], we add a random packet-processing
time in the source nodes that ranges from zero to the bot-
tleneck service time to remove systematic discrimination.
Our goal is to study how the throughput ratio of two groups
changes with respect to their

�����
’s.

Our simulation results are summarized in Figure 19,
which plots the throughput ratio vs. their RTT ratio both
in log2 scale. As shown in Figure 19, the throughput ra-
tio is bounded by two curves. More specifically, when�����M£ d ����� ! ,

� ����� !�����¡£k� ! d ��¤ gi>r: j ¤ �{: l £��¤ gi>r: j ¤ �{: l ! d 2�� �
����� !�����¡£k� ! ¥ � � �

where
����� £

and
����� ! are the average RTT the connec-

tions in group 1 and group 2 experience respectively. Since
we can swap the labels for groups 1 and 2, so the throughput
ratio is symmetric as shown in Figure 19.

0.0625

0.125

0.25

0.5

1

2

4

8

16

0.5 1 2
RTT1/RTT2

Throughput ratio under different RTT with 40 conns
(each group with 20 conns)

Actual ratio
2*(RTT1/RTT2)^2
(RTT1/RTT2)^2/2
(RTT1/RTT2)^2

T
hr

ou
gh

pu
t2

/T
hr

ou
gh

pu
t1

Figure 19. Two groups of TCP connections compete for T1 link

Now let’s try to explain the relationship (A1). For ease
of discussion, we aggregate all the connections in one group
as a big connection. So in the following we just consider
two connections compete with each other. Moreover, due to
symmetry, we only need to consider the case when

����� £ d����� ! .
Figure 20 depicts roughly how the congestion windows

evolve during congestion for two connections with different
RTT. As shown in the figure, during every epoch the ��� �Mn
of connection
 grows from �}[to ��[��2 . So the average
length of epoch, denoted as ¦ [, is roughly equal to

����� �
� [. Therefore

��¤ gi>r: j ¤ �h: l [M~
-�� � ![2 � �¦
 ~

-�� � [2�� ����� [� ¥ 2 �
.

Now let H denote
Y
�Y � . Using (A2), we have

��¤ gi>r: j ¤ �h: l £��¤ gi>r: j ¤ �h: l ! ~ �
����� !�����¡£ � ! � H D

Applying the equality of
¥ � � � , we obtain � d§H�d 2 . This

means the average epoch length of connection 1 is usually
no larger than twice the epoch length of connection 2. That
is, for every two losses in connection 2, on average there is
usually at least one loss in connection 1. This implies there
is no consistent discrimination against any particular con-
nection, which is likely to be the case after adding random
processing time [3].

The roundtrip time bias in TCP/IP networks has received
lots of attention. [7] gives an analytical explanation for this,

Time

cwnd

W2

W1

Figure 20. Window evolution graph for two connections with
different RTT’s

and concludes the ratio of the throughput of two flows using
TCP-Tahoe (i.e. O�Q�R#SaT�VWQ $ TcX%¨O*Q�R.SUT�VWQ $ T�X0©) is proportional to � K O�O ©K O{O ¨ �

!
.

Their analysis is based on the assumption that both flows
get synchronized, which is not always valid in reality. For
TCP-Reno, they also show the throughput ratio of two flows
is unpredictable: the connection with smaller propagation
delay can sometimes get lower throughput due to systemat-
ical discrimination. Our simulation study shows that though
the throughput ratio of two connections may fluctuate a lot,
the aggregate throughput ratio of two groups of connections
is relatively stable and is clustered within a band close to� K O�O �K O�O � �

!
(the width of the band is usually one unit in log2

scale).

6. Related Work

Large scale performance analysis has been an active re-
search area recently. Many researches are currently focused
on building scalable simulators, such as [1, 5, 15].

Analyzing simulation results to estimate TCP perfor-
mance, as done in this project, is a very different approach
from building a scalable simulator. The strategy taken by
[9] is the closest to ours. It studies how TCP throughput,
loss rates, and fairness are affected by changing the number
of flows. Their work differs from ours in that they only
study the impact of varying one parameter - the number
of flows. Moreover, they study TCP-Tahoe assuming RED
dropping policy at the routers, which is not widely used in
today’s Internet. RED dropping policy is not sensitive to in-
stantaneous queue occupancy, so it is relatively easy to ob-
tain the steady state performance. Several analytical mod-
els have been proposed for studying the steady state TCP
throughput when routers use RED dropping policy [8, 16].

7. Conclusion and Future Work

In this paper, we have investigated the individual and
aggregate TCP performance when there are many compet-
ing TCP flows. We first develop a simple yet realistic net-
work model to abstract an Internet connection. Based on
the model, we study the behavior of a single TCP flow by
evaluating the best-known TCP analytical model. We also

examine the aggregate behavior. Through extensive simula-
tions, we have identified how TCP performance varies with
changing parameters in the network model. These results
give us valuable insights into how TCP behaves in the di-
verse Internet.

There are a number of directions for future work. For
example, we plan to further explore TCP performance un-
der different RTT’s. In particular, we want to consider the
following two extensions: (i) when the two different RTT
groups are not equal size; and (ii) with different number of
RTT groups. We also plan to use Internet experiments to
verify some of the results in the paper.

References

[1] J. Ahn and P. B. Danzig. Speedup vs. Simulation Granularity.
[unpublished]

[2] S. Floyd. Connections with Multiple Congested Gateways in
Packet-Switched Networks Part 1: One-way Traffic. Computer
Communication Review, Vol.21, No.5, October 1991, p. 30-47.

[3] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-
Switched Gateways. Internetworking: Research and Experi-
ence, V.3 N.3, September 1992, p.115-156.

[4] S. Floyd and V. Jacobson. Random Early Detection Gateways
for Congestion Avoidance. IEEE/ACM Transactions on Net-
working, V.1 N.4, August 1993, p. 397-413.

[5] P. Huang, D. Estrin, and J. Heidemann. Enabling Large-scale
Simulations: Selective Abstraction Approach to the Study of
Multicast Protocols. USC-CS Technical Report 98-667, Jan-
uary 1998.

[6] S. Keshav. An Engineering Approach to Computer Network-
ing, Addison-Wesley, 1997.

[7] T. V. Lakshman and U. Madhow. Performance Analysis of
Window-based Flow Control using TCP/IP: Effect of High
Bandwidth-Delay Products and Random Loss. In Proc. IFIP
TC6/WG6.4 Fifth International Conference on High Perfor-
mance Networking, June 1994.

[8] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. Macroscopic Be-
havior of the TCP Congestion Avoidance Algorithm. Computer
Communication Review, July 1997.

[9] R. Morris. TCP Behavior with Many Flows. In Proc. IEEE
International Conference on Network Protocols ’97, October
1997.

[10] UCB/LBNL/VINT Network Simulator - ns (version 2).
http://www-mash.cs.berkeley.edu/ns, 1997.

[11] V. Paxson. Automated Packet Trace Analysis of TCP Imple-
mentations. In ACM SIGCOMM’97, 1997.

[12] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling
TCP Throughput: A Simple Model and Its Empirical Valida-
tion. In Proc. ACM SIGCOMM ’98, 1998.

[13] L. Qiu, Y. Zhang, and S. Keshav. On Individual and Aggre-
gate TCP Performance. Cornell CS Technical Report, TR99-
1744, May 1999.

[14] S. Shenker, L. Zhang, and D. D. Clark. Some Observations
on the Dynamics of a Congestion Control Algorithm. ACM
Computer Communication Review pp.30-39, 1990.

[15] VINT. http://netweb.usc.edu/vint.
[16] X. Yang. A Model for Window Based Flow Control in

Packet-Switched Networks. In IEEE INFOCOM ’99, 1999.
[17] E. W. Zegura, K. L. Calvert, and M. J. Donahoo. A Quantita-

tive Comparison of Graph-Based Models for Internet Topology.
IEEE/ACM Transactions on Networking, December 1997.

