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ABSTRACT

Networks continue to change to support new applications, improve
reliability and performance and reduce the operational cost. The
changes are made to the network in the form of upgrades such as
software or hardware upgrades, new network or service features
and network configuration changes. It is crucial to monitor the
network when upgrades are made because they can have a signif-
icant impact on network performance and if not monitored may
lead to unexpected consequences in operational networks. This can
be achieved manually for a small number of devices, but does not
scale to large networks with hundreds or thousands of routers and
extremely large number of different upgrades made on a regular
basis.

In this paper, we design and implement a novel infrastructure
MERCURY for detecting the impact of network upgrades (or trig-
gers) on performance. MERCURY extracts interesting triggers from
a large number of network maintenance activities. It then identifies
behavior changes in network performance caused by the triggers.
It uses statistical rule mining and network configuration to identify
commonality across the behavior changes. We systematically eval-
uate MERCURY using data collected at a large tier-1 ISP network.
By comparing to operational practice, we show that MERCURY
is able to capture the interesting triggers and behavior changes in-
duced by the triggers. In some cases, MERCURY also discovers
previously unknown network behaviors demonstrating the effec-
tiveness in identifying network conditions flying under the radar.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management

General Terms

Management, Performance, Reliability

Keywords

Network Upgrades, Performance Impact, Change Detection, Sta-
tistical Data Mining
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1. INTRODUCTION
IP networks have become the unified platform that support a rich

and extremely diverse set of network applications and services,
including traditional IP data service, Voice over IP (VoIP), smart
mobile devices (e.g., iPhone), Internet television (IPTV) and on-
line gaming. Network performance and reliability are critical is-
sues in today’s operational networks because many applications
place increasingly stringent reliability and performance require-
ments. Even the smallest network performance degradation could
cause significant customer distress. In addition, new network and
service features (e.g., MPLS fast re-route capabilities) are contin-
ually rolled out across the network to support new applications,
improve network performance, and reduce the operational cost.

Network operators are challenged with ensuring that network re-
liability and performance is improved over time even in the face
of constant changes, network and service upgrades. Network up-
grades themselves can result in significant changes in network or
service performance. Some of these changes may be as designed -
for example, a software upgrade could be introduced to a network
specifically to address performance issues, such as higher than de-
sired router CPU utilization. However, other performance changes
resulting from network upgrades may be completely unexpected,
and even highly undesirable with negative impacts on customers.
More importantly, such network behavior changes cannot be fully
reproduced or predicted in a lab testing environment. Therefore, it
is important to monitor network behavior and understand the im-
pact of network upgrades on service performance.

Network operators continuously monitor the network so that they
can rapidly detect and recover from outages and performance im-
pairments. Tremendous effort is devoted to the real-time detection
of major issues, such as fiber cuts or congestion, so that they can
be rapidly repaired. However, an operator that purely focuses on
each individual event in isolation may fail to identify critical pat-
terns which may be indicative of a larger issue. Carefully managing
network performance thus also requires examining network events
holistically - exploring series of events - large and small - instead
of purely focusing on each large event in isolation. The end goal
is to identify actions that can be taken to improve overall network
performance and reliability. Such actions can take many forms, in-
cluding software bug fixes, hardware re-designs, process changes
and/or technology changes.

Key Performance Indicators (KPIs) are used to track longer-term
service and network performance. KPIs cover customer-perceived
performance (e.g., network packet loss, service glitches) and net-
work performance (e.g., protocol flaps, line card crashes). KPIs
also track network element health (e.g., router CPU, memory).

In this paper, we focus on network upgrades and their impact on
a wide range of KPIs. We collectively refer to the set of different
network upgrades that could potentially cause network behavioral
or performance changes as triggers. We define network upgrades



to be significant network changes designed to enhance the network
or service performance. These network upgrades include router
software or hardware upgrades, new network or services features,
and other fundamental network configuration and policy changes
designed to impact how the network or service operates across cus-
tomers. It is important to distinguish network upgrades from indi-
vidual customer provisioning which is a continual and extremely
frequent activity in a large ISP network. These provisioning activ-
ities only impact individual customers and generally do not have a
network wide impact.

The current operational practice in determining the impact of a
network upgrade on a set of KPIs involves manual comparison and
tracking of each KPI before and after the upgrade at each network
location. This process is clearly cumbersome and tedious, and is
simply impossible to scale to large numbers of network nodes and
KPIs. The result is that critical issues fly under the radar, impacting
customers and causing unnecessary distress. Thus, innovative and
automated solutions are required to effectively analyze network be-
haviors across a broad class of KPIs and across all network nodes.

Challenges. In this paper, we take an important step towards build-
ing an automated infrastructure for understanding the impact of net-
work upgrades on network performance. However, achieving this
required addressing several challenges, including the following.

1. How should we identify network upgrades? Operational IP
networks are continuously undergoing network maintenance ac-
tivities, including network upgrades, provisioning of new cus-
tomers, replacement of failed network components and so on.
Such activities leave traces in network logs - for example, work-
flow logs capture all commands typed on routers. However,
identifying which activities are network upgrades versus other
activities is extremely challenging. Operations personnel man-
ually track many types of network upgrades, but this informa-
tion is distributed across large numbers of individuals and even
work groups. It is thus very challenging to capture. And given
that this information is manually collated, it is inherently error
prone and incomplete. We thus desire more automated ways of
capturing and identifying such fundamental network upgrades,
extracted from the wealth of network-related data.

2. How can we determine the impact of network upgrades?
We are focusing in this paper on persistent changes in net-
work performance that result from network upgrades. We must
thus devise a metric that detects such persistent performance
changes and distinguishes them from short-term or transient
performance fluctuations.

3. What are the commonalities among network elements with
similar detected behavior changes? When a set of routers all
demonstrate a similar change in network performance with a
given network upgrade, it becomes desirable to identify what
this particular set of routers have in common that distinguishes
them from other routers which did not experience the same
performance changes. This can be an important step in fur-
ther revealing insights that may help in explaining the behavior
changes. For example, do the routers that exhibited the change
all have a common operating system or are a common model?
Or does the change only happen to routers with certain num-
bers or types of customers? There are a tremendous number
of different potential characteristics that could be relevant here,
which makes such an analysis extremely challenging.

4. How can we detect network wide aggregated behavior changes?
It may be impossible to identify statistically significant changes
in time-series that are very sparse such as rare events on a single
router. However, if we aggregate events across larger numbers
of routers, then we may observe significant statistical changes.
Thus, it is critical to examine aggregated time-series across

multiple network elements to ensure that we capture all perfor-
mance changes. But at what aggregation level should such an
analysis be performed? Should we look across the whole net-
work or just across a given router type or router role? If a given
change in behavior impacts only a specific class of routers, and
if we look at a much larger aggregation (e.g., network wide),
then we may lose this effect in the larger set of events. Thus,
it is crucial to identify the appropriate aggregation level for de-
tecting behavior changes.

Our Approach and Contributions. We design and implement
MERCURY, an automated tool for monitoring and determining the
performance impact of network upgrades. MERCURY system-
atically extracts interesting triggers to identify network upgrades
activities. In the current implementation, we identify the triggers
from router configuration files and workflow logs, as these capture
configuration-related changes. MERCURY then monitors a wide
range of network key performance indicators (or KPIs) and detects
persistent behavior changes that temporally correlate with our net-
work upgrades (or triggers). In particular, MERCURY addresses
the above challenges as follows:

1. MERCURY identifies the interesting triggers from a large set of
maintenance activities by capturing two key metrics: (i) rareness
of the activity and (ii) coverage or skewness of the activity.
The rationale behind it is that upgrades are typically rare events
and they tend to cover multiple network elements. By contrast,
other types of maintenance activities such as provisioning and
network diagnosis are much more frequent and likely to be per-
formed on a single network element. By using the rareness and
skewness metrics, MERCURY successfully filters out the ma-
jority of non-upgrade related maintenance activities.

2. To detect persistent behavior changes and distinguish from tran-
sient changes, MERCURY applies a non-parametric rank-based
behavior change detector. For each KPI of interest, MERCURY
outputs multiple change-points, each of which has a score indi-
cating the significance of the change.

3. To effectively reduce the computational complexity involved
in identifying common attributes among the network elements
that have consistent behavior changes, MERCURY first asso-
ciates triggers and change points, and filters out triggers that
have no performance impact. Then, MERCURY applies sta-
tistical rule mining techniques to identify common attributes
among all network elements that experience consistent behav-
ior changes for a given trigger.

4. To detect aggregated behavior changes, MERCURY first time-
aligns KPI event series by the trigger timestamp and aggregates
them across multiple locations where no behavior change is de-
tected at individual location, and then applies change detection
on the aggregated event-series. The commonality rules serve as
a guideline for the appropriate aggregation levels.

We systematically evaluate MERCURY using data collected from
a large tier-1 ISP network. In our current prototype, we gather KPI
statistics from SNMP measurements (router CPU and memory uti-
lizations) and router syslogs. Network upgrades (triggers) are iden-
tified from configuration files and workflow logs. The first step of
our evaluation analyzes the effectiveness of our automatic detection
of triggers. We demonstrate that MERCURY is able to achieve low
false positives and false negatives when compared to hand-labeled
triggers that network operations deem important. We also identified
a few new, but important triggers that were previously unknown to
network operations. After identifying the triggers, we analyze the
network behavior changes detected by MERCURY. This analysis
confirmed some of the Operations team’s earlier findings as well as
revealed previously unknown network behaviors.



Paper Organization. The rest of the paper is organized as fol-
lows. We provide a taxonomy of network upgrades and behav-
ior changes in Section 2. We describe the design of MERCURY
in Section 3 including detailed algorithms for trigger identifica-
tion, behavior change detection, association of triggers and change-
points and aggregate change detection. We present the evaluation
results in Section 4. We share our deployment experiences with
interesting case study findings in Section 5. Finally, we review re-
lated work in Section 6 and conclude with discussions for future
work in Section 7.

2. NETWORK UPGRADES AND IMPACT
In this section, we give a detailed description of network up-

grades and key performance indicators (KPIs).

2.1 Network Upgrades
In today’s operational IP networks, the majority of network up-

grades are planned and proactively performed, although others may
be reactive and can be the result of external network conditions
such as Denial of Service (DoS) attacks and worm propagations.

We expect that the majority of network upgrades are implemented
via configuration changes or changes in the software deployed within
the network routers. We do not consider triggers external to the ser-
vice provider network such as a change in a peer network because
they may not be directly observable. Network operators perform
software upgrades and configuration changes via the command line
interface on routers. We thus focus on triggers observable via op-
erating system upgrades, firmware upgrades (RAM or ROM ver-
sions) and significant configuration changes.

Operating System and Firmware Upgrades. Operating system
and firmware upgrades are typically made to introduce new features
to the network (e.g., fast re-route to improve re-convergence times)
or to eliminate bugs in older versions. Such upgrades are made on
a time-scale of months.

Configuration Changes. Configuration changes are made by the
network operators using specific commands on the routers imple-
mented via the command line interface. The changes can either be
applied to each interface on the router, across multiple interfaces or
across the whole router.

Generally, the triggers are made one network element at a time
and then applied across multiple elements. For example, an oper-
ator upgrades the operating system on one router, and then applies
the changes to all routers of certain types. Extensive testing is per-
formed on router software and hardware before new software or
hardware is deployed, or before new types of configuration changes
are made in an operational network. The goal of this testing is to
attempt to prevent bugs and poorly performing hardware and soft-
ware from reaching the network. And such testing is extremely
successful in doing this. But despite all best efforts, lab testing
is simply unable to replicate the immense scale and complexity of
an operational network, and thus there is always the risk that is-
sues may creep into the network. Thus, as changes are rolled out
across a network, network operators carefully monitor their impact
on network performance. Should unexpected and undesired perfor-
mance changes or issues be observed, the operators are responsible
for driving them out of the network. In situations where the issues
are within the router software, repair necessarily involves the router
vendor. Extensive lab reproduction and careful software analysis is
used to support the diagnosis of the issue; permanent repair will
likely involve fixing the relevant software bugs and deploying the
resulting new software network-wide.

2.2 Key Performance Indicators (KPIs)
In today’s networks, operations teams carefully monitor a set of

pre-defined KPIs such as router CPU utilizations, packet loss, de-

lay and routing protocol flaps. The goal is to monitor the effect
of the network upgrades on these KPIs. Any behavior change in
the KPI induced by the network upgrades is a good indicator to
either confirm the desired impact or discover any new unexpected
impacts.

We define a behavior change to be a persistent change in perfor-
mance induced by a network trigger. It may be indicative of either
a new problem (e.g., an OSPF configuration change causing behav-
ior change in the number of LSAs) or a fix to an existing problem
(e.g., an operating system upgrade to fix router bugs).

In this paper, we focus on behavior changes observed in individ-
ual performance event-series. Some changes are instantaneous and
result immediately after the trigger (immediate level-shift), while
others change gradually over time (slow ramp-up). Behavior changes
can also correlate across multiple locations. These are typically in-
duced by the same triggers applied across different routers. For
example, layer-1 timer changes configured across routers should
result in improved network-wide convergence times.

Performance Metrics. In this paper, we focus MERCURY on two
key data sources - router SNMP measurements and router syslogs.
Through these two data sources, we are able to capture an immense
range of potential KPIs, providing a solid set of indicators of net-
work performance and health. In fact, by automatically mining all
of the potential types of time-series that can be captured from these
two data sources, we can capture a set of measurements which go
well beyond the traditional KPIs used via manual processes today.

SNMP MIBs capture measurements of various parameters on the
router, including counts of packets and bytes transmitted through
router interfaces, packet errors, and CPU load and memory utiliza-
tions. External pollers collect values from the SNMP MIBs at reg-
ular intervals (e.g., every 5 minutes), providing a regular stream of
average measurements that can be used in real-time or stored his-
torical for later analysis.

In contrast with SNMP measurements, which provide average
statistics collected from the router, router syslogs are logs written
by routers in response to specific events on the routers. Router sys-
logs capture a very diverse range of events, including protocol and
link state changes (up/down), error conditions, warning messages
(e.g., denoting when customers send more routes than the router is
configured to allow) and even information about environment con-
ditions (e.g., high temperatures). Syslog messages are basically
free-form text, with some structure (e.g., indicating date/time of
event, location and event priority). This makes them somewhat
challenging to automatically analyze, but the immense diversity in
the range of different conditions that they capture make these logs
extremely important.

There is a large number of network performance event-series one
needs to mine in order to detect behavior changes and correlate
them with network triggers. Identifying commonality in behavior
changes across multiple locations is important to effectively drill-
down into results and identifying the root-cause as well as location
where the change is prevalent.

3. MERCURY DESIGN
Recall that our mission is to systematically identify any network

behavior changes in response to upgrades performed in the net-
work. To achieve this, we decompose the mission into three com-
ponents as follows.

First, we need a data-driven approach that can reliably infer that
any interesting (i.e., potentially impact-bearing) upgrades have taken
place in the network – let it be a router OS upgrade, or a configu-
ration change activating a new feature. We choose not to rely on
unreliable human communications for MERCURY to learn of such
an operation activity – hard to automate the process being one con-
cern, and the information quality being another. In a large ISP net-
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Figure 1: MERCURY architecture.

work, it is simply unrealistic to assume that any one person or one
team has the knowledge of all planned upgrades. Moreover, when
and where the actual upgrade takes place in the network can often
deviate from the planned one. Thus, it is critical to automatically
discover the time and location of interesting upgrades, the triggers,
from the network data (e.g., network configuration snapshots and
workflow logs). Note that this does not exclude MERCURY to use
external information about triggers, had it been available and reli-
able.

Second, we need to detect network behavior change as demon-
strated by different performance metrics, and associate them with
the triggers. There are many statistical techniques that can be used
for change detection. We have explored several and included one
that is the most effective in MERCURY. However, the challenge
here is to construct the time-series of performance metrics so that
they produce meaningful result indicating network behavior changes.
For example, we need to properly handle rare but significant out-
liers so that they do not dominate the overall trend of the time-series
and bias our analysis.

Finally, we need to make sense of the identified triggers and their
induced behavior changes. Here, we want to minimize the im-
pact of false correlation by generalizing the observation of trigger-
change relations at individual routers to a set of meaningful high-
level rules, which will be reported to network operators for further
investigation. Domain knowledge about the type, role, and other
attributes or characteristics of routers are incorporated in the gen-
eralization process.

3.1 Overview
We now present the system architecture of MERCURY. As shown

in Fig. 1, MERCURY takes two types of inputs: (i) configuration
and workflow logs that contain information to identify triggers and
(ii) performance measurements and event logs to monitor network
health/behavior. They are fed into the trigger identification (Sec-
tion 3.2) and behavior change detection (Section 3.3) modules re-
spectively. The triggers detected are compared against the behavior
changes both in time proximity and in the network device affected
(e.g., router, line card) (Section 3.4). A list of potential trigger-
changes relationship at each individual device is further aggregated
and filtered through a commonality detection system (Section 3.5)
to become high-level rules for operators to investigate, with each
rule presenting “what trigger induced what change(s) on which
group of devices”. Furthermore, for cases in which the changes
in the time-series at individual device level are too subtle to be
detected, we also devise a new technique that first time-shifts the
time-series to be trigger-aligned and conduct behavior change de-
tection on the aggregate time-series (Section 3.6). Additional cases
are opened for network operators to investigate based on output of
this module. We next present our design of each module in MER-
CURY in details.

3.2 Trigger Identification
Our objective in this step is to automatically infer the upgrades

performed in the network. As discussed in Section 2, there are two
channels that network operators can exercise control over the net-
work – (i) through the router Operating System and device firmware
upgrade, and (ii) through changing the configuration of the routers.
It is sufficient to focus on identifying network upgrades from track-
ing operators’ activities in these channels.

3.2.1 Identifying Router OS and Device Firmware
Upgrades

It is very important to keep a close observation on the network
behavior after router OS upgrades, both to confirm the expected
behavior change (e.g., improvement in route convergence times),
and to uncover any unknown and undesirable network behavior or
performance problems induced. The unexpected change can be due
to software bugs in the new OS, incompatible configurations, or bad
protocol interactions, which did not meet the condition to manifest
themselves in the pre-deployment lab testings.

As discussed earlier, we hope to develop a systematic approach
in learning “what routers have OS or line card firmware upgraded
on what date”. To do so, we utilize two data feeds from the network
auditing organization – router configuration snapshot and router di-
agnostic information snapshot. The “snapshots” refer to the data
acquired through taking a dump of the running configuration and
diagnostic information at the routers. On Cisco routers, these are
achieved through issuing commands show running-config and show
diag to the router command line interface (CLI). Included in the
router configuration snapshot are the router OS version along with
detailed configurations (about routing protocols, CoS, QoS, ACL,
etc.), and included in the diagnostic information snapshot are the
firmware versions of each line cards along with information such
as hardware type, memory size, module status, etc., at the time of
the snapshot. In the ISP network, both snapshots are taken from all
operating routers in the network on a daily basis.

Our solution to automatic router OS and device firmware up-
grade detection is to extract the relevant information from the snap-
shots and detect any differences across days. In this way, we ac-
quire the upgrade information with the time precision of one day.

3.2.2 Identifying Upgrade-related Configuration
Changes

While the router OS and firmware changes always belong to the
upgrade activities that need to be closely monitored, router configu-
ration changes however are mainly unrelated to network upgrades.
Individual customer provisioning is a continual and extremely fre-
quent activity in a large ISP network and accounts for a majority
fraction of the router configuration changes. These configuration
changes are unrelated to the network upgrades. Thus, identifying
the fundamental configuration changes that are designed to impact
(improve) how network operates is a challenging problem.

The data feed that we utilize to track router configuration changes
is the workflow logs. This is collected from the router access au-
thentication and control system, such as TACACS [12] servers, in
which all control sessions to routers in the network are authenti-
cated and all commands issued to the routers are authorized and
logged. Each entry in the workflow logs contains the timestamp,
the command executed, and the network operators’ username and
the terminal information. All control activities on the routers in-
cluding upgrade related configuration change, individual customer
provisionings, and testing and diagnosing commands are recorded
in workflow logs. We need to automatically identify the network
upgrade activities from those.

To filter out the testing and diagnosing command, one natural ap-
proach is to acquire vendor product documentation and construct a
list of router commands (e.g., ping or show diag) versus config-



urations. However, this requires timely update of the list when
router OS upgrades. Thus, we take an alternative approach that
does not depend on domain knowledge updates. We compare the
workflow logs with the configuration snapshots: if a workflow line
or its negation (e.g., in Cisco IOS, preceding a configuration with
no removes the effect of an existing configuration) does not appear
in the configuration snapshots, then it does not have lasting impact
on the router and can be safely filtered.

Separating network upgrade associated configurations and indi-
vidual provisioning related ones is much more challenging. One
limitation is that the workflow logs have a flat structure – each
command line is a separate entry. Yet, the intention of a config-
uration change can be inferred only through examining the series
of configuration commands. Thus, we need to first reconstruct the
configuration session, the sequence of configuration change lines
toward a coherent high-level semantic. Fortunately, network oper-
ators and automated configuration management tools usually per-
form one task at a time, and typically leave sufficient gap between
tasks to allow proper verification of the effect of the changes just
made. Based on this observation, we group workflow entries from
the same user ID and close in time into one session, and apply a
threshold of 10 minutes to separate sessions. We find our choice of
threshold works sufficiently well in the ISP data.

In order to identify the upgrade related configuration sessions
automatically and with minimum dependency on domain expert
input, which is unreliable and easily outdated by new router OS
version or new features introduced, we develop heuristics that look
for configurations sessions that are “out of the ordinary” in some
fashion. They may occur very infrequently or they may have an
unusual structure in the command sequence. We capture these two
properties by looking for rare and skewed configuration sessions.

Rare configuration sessions. Intuitively, if a configuration com-
mand is rarely used over a long time (e.g., several months), it is
unlikely to be individual customer provisioning activities (as they
are frequent) and highly likely to be relating to a network upgrade
(e.g., activating a new feature in the network). Yet two challenges
remain to utilize this simple idea. Firstly, the same type of con-
figuration change may appear differently in workflow logs due to
the different parameters used. For example, the command to set
up BGP sessions at different routers includes different peer IP ad-
dresses, appearing as different command line in workflow logs. To
tackle this, we de-parameterize the commands by removing all IP
addresses, device names, network masks, and other numbers. Sec-
ondly, not all configuration commands are supported across router
types or versions – a command can be mistakenly considered as
rare simply because most routers in the network do not support this
command. To deal with this, we normalize the frequency count
of the different commands by the number of routers on which this
command has ever appeared during the time window.

Our test for rareness is then simply comparing the normalized
frequency count of de-parameterized configuration command to a
threshold (e.g., 4 per router in a six-month window). And the con-
figuration sessions that include any rare command are identified as
rare sessions. We will demonstrate the trade-off in the selection of
the rareness threshold in Section 4.3.

Skewed configuration sessions. The idea here is to look for the
structural difference between provisioning configurations and up-
grade related configurations. Individual customer provisioning typ-
ically does not repeat the configuration lines, while upgrades may
involve applying certain configuration lines to different line cards,
different customers, different protocol sessions, etc. For example,
network rolling out a new value for the carrier-delay trigger timer
need to apply the configuration changes to many networking in-
terfaces on each router. The corresponding configuration session
becomes skewed in terms of the frequency count of the different
commands in the session.

We use the following skewness test: we compute the frequency
count, ci, of different configuration commands in each session. Let
µ and σ be the mean and standard deviation of ci. If the highest
frequency count is greater than µ+6σ, then the session is identified
as a skewed configuration session. Our approach is consistent with
the heavy hitter detection [7, 34, 41] in the statistics literature.

3.3 Behavior Change Detection
Given the list of interesting triggers, the next step is to iden-

tify behavior changes in network performance event-series. One
approach is to compare event-series statistics (e.g., mean, median,
or the entire distribution) before and after the trigger over certain
time interval. A change score can then be used to help quantify the
magnitude of the changes. However, there are two problems with
this approach (which we have experienced in practice): (i) Due to
overlapping impact scope of network triggers, choosing the right
time interval is non-trivial and an incorrect choice often leads to
wrong conclusions. (ii) It does not scale with the large number of
performance event-series and the number of triggers. If T is the
number of triggers, P is the number of performance event-series
and L is the number of spatial locations, then the time complexity
is O(TPL), which is very high since T , P and L are each on the
order of hundreds to thousands.

To address the above shortcomings, we first identify significant
behavior changes in the performance event-series and associate them
with the network triggers to identify the trigger/change-point pairs
of interest. The trigger and change-points form a pair when they co-
occur in time and share the same location. In this way, the number
of change detection tests that need to be performed is on the order
of O(PL), which is two to three orders of magnitude reduction
over O(TPL). Also, by associating the change-points with trig-
gers, we eliminate the triggers that do not cause behavior changes.
Next, we describe the event-series normalization and creation fol-
lowed by the statistical test for detecting behavior changes in per-
formance event-series.

Event-series normalization and creation. For each key perfor-
mance indicator (KPI), we create an event-series by dividing the
original KPI time-series into n equal time-bins. For some KPIs
(e.g., certain syslog messages), it is desirable to first normalize
before creating the event-series. An example of normalization is
grouping an event-type such as BGP hold timer expiry across all in-
terfaces on the router. Our experience suggests that the event counts
for different interfaces often have a skewed distribution. To pre-
vent heavy-hitter interfaces (i.e., interfaces with significantly more
events than the others) from dominating the change detection anal-
ysis, we propose to distinguish heavy hitters from non-heavy hitters
(using the heavy hitter test described in Section 3.2). We then de-
tect behavior changes in event-series aggregated across non-heavy
hitter interfaces as well as those aggregated across all the interfaces.

Change-point detection using rank-based CUSUM. We have
implemented and experimented with a number of statistical meth-
ods for detecting changes in a given time-series, including changes
in means, medians or even entire distributions. Our experience sug-
gests that detecting changes using the raw time-series has the bene-
fit of capturing the changes in magnitude, however they are not ro-
bust to outliers and can have high false alarms because of just a sin-
gle spike in the time-series. Since our goal is to detect persistent be-
havior changes and eliminate transient spikes, we propose to detect
changes on the ranks of the time-series. We use a rank-based non-
parametric statistical test CUSUM [33], that detects change-points
(level-shifts as well as ramp-ups) in three steps: first identifying a
candidate change-point, then applying a statistical test to determine
its significance and recursively applying CUSUM to identify mul-
tiple change-points. Since the test is based on ranks, it is robust to
outliers and requires no special distributional assumptions.
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Figure 2: CUSUM example to detect multiple change-points.

1. Candidate change-point detection: Let x1, x2, ..., xn be the n
samples in an event-series. We rank the samples in increasing
order and construct the rank ri for each sample xi. In case of
ties, we assign average rank to each sample. The cumulative
sums are computed as:

Si = Si−1 + (ri − r) (1)

S0 = 0 and r is the mean across all ranks ri. If the ranks
are randomly distributed, then there is no change-point. How-
ever, if there is indeed a change-point in the event-series, then
higher ranks should dominate in either the earlier or later part
of the event-series. Thus, if the event-series contains a change-
point after which the values are greater than before (i.e.a pos-
itive level-shift or ramp-up), then Si will decrease to a mini-
mum before increasing to zero at i = n. The change-point (for
positive shift) is the minimizing index. Similarly, for negative
shifts, the change-point is the maximizing index. The change
score is Sdiff = max(Si) − min(Si).

2. Significance testing: Bootstrap analysis is performed to identify
if the change is statistically significant. The idea behind boot-
strapping is that the bootstrap samples represent random per-
mutations of the data that mimic the behavior of the CUSUM
with no change-points. For each bootstrap sample k, we com-
pute the change score Sk

diff . The confidence level is then com-
puted by identifying the fraction of bootstrap samples that have
change score less than Sdiff . We use 99% confidence level to
determine a significant change.

3. Recursive detection: In order to detect multiple change-points
in an event-series, we recursively apply steps 1 and 2 to the
two sub-series before and after the change-point until no more
significant change-points are observed.

Fig. 2 shows an example of applying CUSUM to recursively
detect multiple change-points in a time-series (level-shifts). The
top, middle and bottom figures are the original time-series, ranked
samples and the cumulative sums, respectively. The first and sec-
ond change-points correspond to a positive level-shift and the third
change-point corresponds to a negative level-shift. The transient
one-time anomalies are not detected, as desired.

Identifying operationally relevant changes: We apply the above
rank-based CUSUM test on each performance event-series and out-
put a list of change-points. If an event-series remains steady over
time, then it outputs no significant change-points. A significant
change-point indicates that there is a behavior change in the event-
series around the change-point. The diversity of event-series (e.g.,
router CPU and memory utilization are either bursty with high de-
viation or stable with minimal deviation and router syslogs have
small frequency counts) makes it challenging to interpret the changes.
While a statistical change (before and after the change-point) of a
small magnitude (e.g., CPU increasing by 1%) may be mathemat-
ically significant, the operations team may not care. To capture

operationally meaningful behavior changes, we incorporate post-
filtering on the change-points using the relative mean difference
between the mean before the change point and the mean after. The
before time interval is chosen from the current change point to the
nearest past change-point and similarly the after interval is chosen
from the current to the nearest future change-point. The filtering
threshold is chosen based on network domain knowledge. For ex-
ample, for CPU and memory utilization, we can set the relative
mean difference filtering threshold to be 0.6%, which captures the
change-points such that the mean after the change is 1.6 times the
mean before the change. We discuss the selection of the threshold
in Section 4.4.

3.4 Trigger Change-point Association
When associating triggers with the changes in performance, net-

work operators often focus on the performance event-series at the
same location or within some proximity of the trigger. This is based
on the experience or the domain knowledge related to the potential
impact of the triggers. We use a spatial proximity model (similar
to the one used in NICE [26]) to capture the causal impact scope
of the triggers. The proximity model is specified in terms of the
number of hops h between the location of trigger and the perfor-
mance event-series. In this paper, we mainly focus on the same
location for the trigger and performance event-series (i.e., h = 0).
In the future, we plan to explore the impact of triggers at locations
one or two-hops away. For example, with h = 1, MERCURY will
identify the impact of a trigger at one router on performance event-
series at neighboring one-hop away routers.

Having identified the spatial proximity, the next step is to en-
sure that the timestamp of performance change-points identified by
CUSUM are not too far from the given trigger. If all the change-
points are far from a trigger, then there is no evidence that the
trigger causes any behavior change. Thus, by analyzing the co-
occurrence of performance change-points and the triggers, we can
detect triggers that induce behavior changes and eliminate all trig-
gers that do not co-occur with the change-points. We specify a
(configurable) maximum timing lag to determine whether a change-
point and a trigger co-occur.

Some triggers might co-occur with change-points by chance. To
eliminate such false positives, we only consider those triggers that
co-occur with at least two behavior changes with consistent signs
(i.e., both positive, or both negative) at two different locations (e.g.,
routers). For example, given a trigger such as BGP policy change
and CPU increases on one router and CPU decreases on another,
then it is less likely that the BGP policy trigger is the root-cause
for CPU change and we can eliminate the trigger. Such spatial
association thus helps reduce the false alarms.

3.5 Commonality Detection
Given the list of trigger / change-point pairs, the next step is to

identify if there is commonality across different behavior changes.
For example, operating system upgrade trigger and the change-
points in router CPU utilization might be observable only on a spe-
cific group of routers that have same OS version, model numbers
and vendors. Extracting common attributes for different changes is
very helpful for the network operations team to further drill-down
into the changes and determine their root-causes.

There are multiple attributes that can be associated with a router:
location, operating system (OS) version, role, model, vendor, type
of line cards, number of BGP peers, uplink or downlink interfaces,
customers. The problem of identifying the common attributes for
trigger / change-point pair is that of a search in a multi-dimensional
space of attributes. Given n attributes and each attribute can take
up to maximum v values, then there are up to vn possible com-
binations. Enumerating all possible combinations in a brute-force
fashion does not scale when there are a large number of attributes.



A
1

A
2

1
A  = Trigger

n
A  =  change

A
n

A
n−1

Attributes

pos

neg

pos

no

.

.

.

A. . are

.  . 

configuration attributes
n−1

A
2

Figure 3: A matrix for specifying list of attributes.

Learning Commonality Rules. We propose to use a rule learner
to automatically identify the common attributes. For each perfor-
mance event-series, we first construct a matrix [C]m×n where the
n columns are the list of attributes and m rows provide the values
for each router or device. We use the first column as the trigger and
the last column to indicate the sign of the change (positive, negative
or no change). Fig.3 illustrates the construction of the matrix. In-
corporating the trigger in the matrix also helps in eliminating some
of the triggers that do not have statistical evidence across multiple
attributes to cause a behavior change.

The attributes can either be real-valued numbers or have nominal
values (strings). Nominal values are useful in capturing attributes
such as location, OS version, role, model, vendor and type of line
cards. Other attributes like number of routing sessions, customers
are real-valued. These real-valued attributes can take many values
and identifying commonality then becomes even more challenging.
We address this by first applying clustering on each real-valued
attribute and identifying a small number of clusters. For exam-
ple, some routers can have many BGP peers (e.g., peering routers),
whereas others have very few (e.g., core routers). We use k-means
clustering [13] to group the values and construct nominal values
such as “less than x”, “between x and y”, and “greater than y”.

We use RIPPER [6] as our rule learner for identifying the com-
mon attributes. RIPPER is a well-known fast machine learning al-
gorithm that outputs a concise list of rules which are easier to un-
derstand and can deal well with noisy data. Some example rules
learned by RIPPER are

1. if (trigger = OS upgrade) and (vendor = XYZ) then positive
change in Memory

2. if (router_role = Border) and (trigger = BGP policy change)
then positive change in CPU

The above rules provide an easy-to-interpret representation of
the triggers and behavior changes across the network.

3.6 Aggregate Change Detection
For some KPIs, it is desirable to aggregate the event-series across

multiple routers because they may be missed at individual routers
(e.g., due to too much background noise), and only manifest them-
selves at higher aggregation levels (such as network-wide aggrega-
tion or aggregated across certain types of routers). For example,
given a BGP policy change trigger, the number of BGP timer ex-
pirations may not change too much for each router, but the total
change might become significant across all the peering routers in
the network. The goal of aggregation is to increase the significance
of genuine changes, which are of interest to the network operations.

Spatial scope for aggregation: A key challenge is how to de-
termine the subset of routers over which aggregation is performed.
Instead of using arbitrary combinations of different attributes to de-
fine the aggregation level, we propose to use the rules learned by
commonality detection (Section 3.5) to filter out individual routers
that have already experienced either positive or negative changes.
All the remaining routers experience no change according to these
rules. We therefore aggregate event-series across all the remain-
ing routers so that we can capture those changes that only manifest
themselves at the higher aggregation level.

Time alignment of distributed triggers: The next step is to ag-
gregate the event-series. We need to be careful in performing the
aggregation because across different locations, the triggers can be
applied at different times. For example, to avoid abrupt service
disruption, an OS upgrade is typically applied to different routers
in the network gradually over the course of several days (or even
weeks). Such common practice can easily blur the precise loca-
tion of the trigger and the corresponding change-points, resulting in
missed detection (i.e., false negatives). To account for the different
times of distributed triggers across the network, we time align dif-
ferent instances of the same trigger for each KPI. Such time align-
ment ensures that after aggregation, any behavior change can be
attributed to the same type of trigger. We then aggregate the time-
aligned event-series by partitioning them into equal time-bins and
computing the average within each time-bin.

Change point detection: We apply the same rank-based CUSUM
test as described in Section 3.3 to detect changes in the aggregate
event-series. If the change-point identified does not co-occur with
the trigger (within a specified maximum timing lag), then we con-
clude that the trigger does not have an impact on the corresponding
event-series at the higher aggregate level. On the other hand, if
it does correlate, then the trigger might be the root-cause for the
behavior change in the aggregated event-series.

4. MERCURY EVALUATION
In this section, we present evaluation of MERCURY based on

data collected from a large tier-1 ISP network. First, we demon-
strate that MERCURY is able to identify upgrade-related triggers
of interest while eliminating the majority of configuration changes
related to customer provisioning. We validate the results with the
operators of the tier-1 ISP. Second, we show that MERCURY is
able to detect behavior changes in network performance that are
induced by the triggers. Finally, the commonality rules discovered
by looking across a set of attributes associated with the routers is
useful in better interpretation of the trigger and change point re-
lationships. We further confirm some of the rules with network
operations.

4.1 Data Set
As mentioned earlier, the tier-1 ISP collects a large set of data in-

cluding router and line-card configurations, workflow logs, SNMP
and router syslogs. We conducted our analysis using data col-
lected over a six-month period. We focused on five categories of
routers: core router (CR), aggregate router (AGG), access router
(AR), route reflector (RR) and hub router (HR). A core router (CR)
interconnects PoPs of the network. An aggregate router (AGG) ag-
gregates traffic from multiple customers or routers and forwards
them to the core routers. Access routers (AR) are the routers to
which the ISP customers connect. A route reflector (RR) is used
to peer with multiple BGP routers within an autonomous system
(AS). VPNs typically have hub and spoke topology, where several
spoke domains are connected to a hub router (HR).

We extract the configuration changes and operating system up-
grades from the router configurations. We further group the con-
figuration commands into sessions using the timestamp and the
network operator’s username as described in Section 3.2. Table 1
shows the performance data (collected via SNMP and syslog) from
different categories of routers within the tier-1 ISP network. We
construct the event-series for the router CPU and memory utiliza-
tion metrics from SNMP and the normalized event-series from the
router syslogs as described in Section 3.3.

4.2 Methodology
Evaluating MERCURY using real network data is challenging

due to the lack of complete knowledge about the behavior changes



Router role CR AGG AR RR HR

Perf. series 103,112 43,226 113,079 6,548 24,095

Table 1: Performance data collected over six months at a large
tier-1 ISP network.

Threshold Output False positives (FP) FP rate

Config. sessions 2 2199 101 0.05
4 6272 1095 0.17
6 9562 2297 0.24
8 12791 3873 0.30

10 13581 4168 0.31
Triggers 2 120 4 0.03

4 185 9 0.05
6 212 17 0.08
8 228 23 0.10

10 236 27 0.11

Table 2: Number of configuration sessions and triggers out-
put by MERCURY using the rareness metric and varying the
rareness threshold from 2 to 10. The false positives are com-
puted by comparing to customer provisioning sessions.

Output False positives (FP) FP rate

Config. sessions 647 116 0.18
Triggers 92 24 0.26

Table 3: Number of configuration sessions and triggers output
by MERCURY using the skewness metric. The false positives
are computed by comparing to customer provisioning sessions.

induced by the upgrades or triggers in the network. We address this
by interacting closely with the network operators, and confirming
the results obtained by MERCURY.

We use the configuration records and workflow logs to identify
the list of upgrades performed by the network operations. To test
the effectiveness of our heuristics, we compare interesting triggers
to the manually labeled upgrades by domain experts and to the ones
that we know correspond to customer provisioning activities.

For quantifying the efficacy of detecting performance behavior
changes induced by the interesting triggers, we share the rules learned
by MERCURY with the network operations to confirm the earlier
findings and detect any previously unknown behavior changes. We
extract and normalize the performance event-series in SQL and Perl
and implement our behavior change detection algorithms in Mat-
lab. We use Perl to extract the interesting triggers from the work-
flow logs and router configuration snapshots. We use the JRip rule
learner from the WEKA machine learning package [14] to discover
the rules.

4.3 Validation of Triggers
In this section, we present our validation results for the interest-

ing triggers identified by MERCURY from a very large set of net-
work configuration changes. The goal is to demonstrate that MER-
CURY is able to detect network upgrades that the operations team
consider important while filtering majority of unimportant config-
uration changes. After applying the rareness and skewness heuris-
tics, MERCURY achieves an order of magnitude reduction in the
number of sessions.

Comparison to labeled sessions related to customer provision-
ing (False positives). In the ISP network, there exist several au-
tomation tools for standard customer provisioning tasks (adding,
removing, moving, upgrading customer specific router configura-
tions). These tools share a common router login (or TACACS user-
name) in the system. While not all customer provisioning activities
are performed through these tools, almost all configuration changes
made through these tools are customer provisioning related. Based
on this knowledge, we evaluate the false positive rate of MER-
CURY by comparing its output against the configuration sessions
carried through this special “username”.
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Figure 4: Evaluating sample network triggers output by MER-
CURY using domain expertise.

Table 2 shows the number of rare configuration sessions and trig-
gers identified by MERCURY and the number of false positives for
varying thresholds from 2 to 10 in increments of 2. For higher
thresholds, we allow more configuration commands to be consid-
ered as rare and thus the number of sessions identified as rare is
larger. The false positives are also higher for higher thresholds. Ta-
ble 3 shows the number of skewed sessions and triggers identified
by MERCURY and the number of false positives. We manually
inspected the false positive triggers and observed that they make
sense mathematically, however operations did not consider them as
significant upgrades. We decided to keep the false positives in the
subsequent step of behavior change detection.

Comparison to customer provisioning tools only allows us to
quantify false positives. False negatives (important triggers missed
by MERCURY) are a challenge to evaluate in large networks. We
address this by asking the operators to manually label configuration
sessions as what they think to be interesting, or non-interesting.

Comparison to triggers labeled by the network operations (False
positives and false negatives). We provided a list of 32 triggers
across different router locations, roles and vendors to the network
operations team. The list captured different semantics in each type
of trigger. 13 out of 32 are labeled as interesting and remaining
19 are considered to be non-interesting. By comparing the MER-
CURY output to the list of interesting and non-interesting triggers,
we quantify the false positives as well as false negatives.

Fig. 4 shows the trade-off between false positives and false neg-
atives as the threshold r for determining rareness of configuration
sessions is varied from 2 to 10. For r = 2, false positive rate is
lower but false negative rate is higher. This is because few com-
mands are considered rare and hence there is a high chance that
we will miss the interesting triggers. With increasing r, the false
positives increase.

4.4 Validation of Behavior Changes in KPI
induced by triggers

In this section, we validate the behavior changes detected in the
key performance indicators (KPIs) caused by the network triggers.
In the absence of ground truth, we compare our results to that of
expectations from network operations.

Table 4 shows the sequence of steps applied in MERCURY change
detection and commonality rule learning. We select the rareness
threshold of 4 and the change-point operational significance thresh-
old of 0.1 for CPU and memory utilization and 1 for syslogs. The
change-point operational significance is determined using the rel-
ative mean difference around the change-point. We select these
thresholds based on network domain knowledge and experience.
For example, since the majority of event-series from syslogs have
lower absolute values, we use a higher significance threshold of 1.

The number of triggers identified is 185 which we use to drive
the behavior change detection on the performance event-series cap-
tured in SNMP (CPU, memory) and router syslogs. The number
of event-series for CPU and memory utilization is 988 each and
for syslogs is 288,084. The trigger KPI pairs to examine is very



Key Trigger KPI Operationally Trigger, CP Rules for Unique cases
Performance KPI Trigger Spatial KPI Change significant pairs after triggers, CP triggers,
Indicator (KPI) Count Count Granularity Pairs Points (CP) Change-points (CP) co-occurrence and attributes attributes

CPU 988 185 Individual 182,780 3,262 1,546 338 10 10
MEMORY 988 185 Individual 182,780 10,704 475 160 4 4
SYSLOG 288,084 185 Individual 53,295,540 94,849 48,083 8,640 520 188

Table 4: Behavior change detection and rule learner results using MERCURY with rareness threshold of 4 and change-point opera-
tional significance threshold of 0.1 for CPU and memory and 1 for syslogs.
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Figure 5: (a) Number of change-points in CPU,memory utiliza-
tion and syslogs output by the recursive detector. (b) Number
of change-points in CPU utilization that associate with the trig-
gers detected by MERCURY (both rare and skewed sessions)

high implying that examining them manually is not feasible. For
each KPI event-series, we identify change-points (CP) using the
recursive detector and thus in some cases like CPU and memory,
the number of change-points is greater than the number of event-
series. Syslogs however, have less number of change-points. But
due to the sheer volume of syslog messages, we still have around
94,849 changes-points in syslogs.

Many changes are genuine mathematically, but they are quite
small to trigger any operations investigation. So, we use a ranking
function on the relative mean differences for the change-points to
prioritize them. This assists the operators to quickly focus on the
top interesting behavior changes. For validating the changes in KPI
induced by the triggers, we choose to ignore the small changes us-
ing the operational significance threshold. Fig.5(a) shows the num-
ber of change-points in router CPU, memory utilization and sys-
logs as the operational significance threshold is varied from 0.05
to 1. The threshold is determined using the relative mean differ-
ence between the before and after mean around the change-point.
For higher change-point significance threshold, we filter out the
changes with lower magnitude and capture only those with higher
magnitude. We show the association between change-points in
router CPU utilization and triggers identified by MERCURY in
Fig.5(b). The curves for router memory utilization and syslogs
are similar and not shown for space reasons. For higher rareness
thresholds, since the number of rare sessions are higher, the num-
ber of change-points that associate with the triggers are higher.

We then use the association output between the trigger and change-
point pairs as input to the RIPPER rule learner. We use 15 attributes
associated with each router ranging from role, model, vendor, and
location to number of routing protocols sessions and customers to
detect commonality across behavior changes. The number of rules
using triggers, change-points and attributes for CPU and memory
are small (10 rules for CPU and 4 for memory). We inspected them
and found all of them to be interesting behavior changes induced
by the triggers. We further drilled down by visualizing some event-
series on individual routers and indeed found significant behavior
changes. The number of syslog rules, however, is still large (520)
for data collected over a time interval of six months. We identi-
fied cases by grouping them into the number of unique triggers and
attributes and found this to be quite manageable (188 cases). We
also found some change-points for which we could not associate
any trigger event. Such change-points might either be caused due
to external network upgrades (in peer networks) or traffic changes.
We consider the investigation of such change-points to future work.

Trigger, KPI KPI Change Operationally Unique cases
Pairs Points (CP) Significant CP triggers

SYSLOG 53,295,540 5,846 3,181 92

Table 5: Aggregate change detection results for syslogs using
time-alignment for distributed triggers and change-point oper-
ational significance threshold of 1.

Table 5 shows the aggregate changes in syslogs induced by the
network upgrades (or triggers). The number of syslog event-series
that have operationally significant changes is 3,181 which is a huge
reduction from 53,295,540 trigger and KPI pairs. We identified the
number of unique triggers to be 92 that induces aggregate change
in at-least one event-series.

5. CASE STUDIES
In this section, we describe case studies on three types of net-

work upgrades. In these case studies, MERCURY successfully re-
vealed interesting network behavior changes caused by network up-
grades. In all of these cases, we were analyzing historical events as
a means of demonstrating the full power of MERCURY and how
it would be applied in operational scenarios. We used MERCURY
to validate expected performance improvements that were a direct
result of network upgrades. We also applied MERCURY to detect
performance changes which were not expected or designed out-
comes of a given network upgrade. Given that this exercise used
historical events, operations had in most situations already identi-
fied the impacts. However, in executing this evaluation, we also
identified some smaller performance changes which had flown un-
der operations’ radar. Given this successful application of MER-
CURY on historical network upgrades, the operations team in the
tier-1 ISP network is using MERCURY on an ongoing basis to
monitor the impact of upgrades on network performance.

5.1 Impact of Router Operating System
Upgrades

Our first case study focuses on Operating System (OS) upgrades
on network routers. Router software is constantly evolving, with
new features and bug fixes being incorporated on a regular ba-
sis. Installing new router software necessarily requires upgrad-
ing routers across the network -a tremendous task across poten-
tially hundreds or even thousands of routers. Extensive lab testing
is performed on each new software version before it is deployed,
and then deployment is carefully and slowly ramped up in a bid
to ensure that any potential latent issue is identified before scale
deployment. New software versions often incorporate enhance-
ments designed to improve network performance. For example, a
router vendor may have incorporated enhancements in a new soft-
ware version in a bid to reduce router CPU utilization, or to reduce
the number of protocol flaps (e.g., BGP flaps). In such cases, it is
imperative that the routers be carefully monitored after upgrades
to validate that the expected improvements are indeed seen across
the network. Similarly, as new software is deployed on network
routers, it is imperative that these routers be carefully monitored
for any potential performance degradations which may be indica-
tive of new software bugs being introduced. Such conditions must
be detected as rapidly as possible so as to minimize customer im-
pact. However, manually monitoring the wide range of potential
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Figure 6: Case Study: Impact of router OS upgrades on mem-
ory utilization. Results shown for 3 aggregate routers (AGG).
The utilization levels shown for each router are normalized by
the maximum value in the six month interval.

performance metrics across hundreds or thousands of routers over
an extended period after the upgrade is a near impossible task. De-
spite significant efforts, it is unavoidable that issues fly under the
radar - degrading customer performance yet eluding detection be-
cause of the immense scale of the issue at hand.

Given the complexity of router software, it can have impact on a
wide range of different performance metrics indicative of network
element health and customer performance. For example, poorly
implemented software may result in higher than desired CPU or
memory utilization. Both are critical and limited resources - if
a router’s CPU is heavily utilized by high priority processes, it
may prevent routing protocol messages from being processed and
thereby put the network control plane at risk. Similarly, if memory
leaks are introduced in the software, the routers may be at risk of
nasty crashes. Thus, it is absolutely critical that both resources be
carefully managed. Router CPU and memory utilization are typ-
ically measured via SNMP at regular intervals (e.g., every 5 min-
utes). Metrics tracking the rate of link flaps, protocol session time-
outs and other customer performance-impacting events also require
careful monitoring to track improvements and detect degradations
over time. The majority of these measures can be readily captured
via router syslogs.

We apply MERCURY on CPU and memory utilizations in SNMP
measurements and syslog messages on routers across the network
and automatically identify behavior changes in CPU/memory uti-
lization and in frequency of certain classes of syslog messages. We
discuss here some of the significant and more interesting changes
observed by MERCURY.

Findings:
1. Downticks in router CPU utilization. Using MERCURY, we

observed significant improvements (downticks) in router CPU uti-
lization across many router classes on recent upgrades. This im-
provement was a direct result of software enhancements imple-
mented by the vendor to improve the router software efficiency. It
was thus a designed and expected improvement, which MERCURY
was able to validate at scale. Given the vast number of routers
being upgraded, manual validation of router CPU utilization im-
provements would typically be achieved by sampling a subset of
routers. However, MERCURY is able to analyze each and every
router across the network. Thus, MERCURY can achieve far more
thorough analysis than what is achievable by hand. The benefit
was clearly evident as MERCURY identified some routers that con-
tradicted the general trend, demonstrating significant degradations
in CPU utilization. Specifically, some individual routers demon-
strated a noticeable and somewhat concerning increase in CPU.
Upon identification by MERCURY, operations was informed of
these and vendor analysis was instigated.
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Figure 7: Case Study: Impact of router firmware upgrades on
line card CPU utilization. Results shown for three line cards -
central CPU, network-facing (NF), and CF (customer facing).

2. Upticks in memory utilization on aggregate routers. For ag-
gregate routers inside the backbone network, we discovered that
there were upticks in router memory utilization after the OS up-
grades. We show the time-series plots for three sample aggregate
routers in Fig.6. The OS upgrades occur at different times across
different routers, but each induces a behavior uptick in memory
utilization. Network operations confirmed that this is a result of a
larger OS image. The same increase in memory utilization was not
observed across other router types with different models and OS
versions and MERCURY automatically identified this.

3. Varying behaviors in layer-1 link flaps across different OS

versions on access routers. In applying MERCURY to blindly an-
alyze all distinct router syslog messages, we observed significant
downticks in layer-1 link flaps as the routers were upgraded from
OS version X to Y and then upticks when upgraded from Y to
Z. On further investigation and interaction with the router vendors,
the vendor confirmed that a bug had been introduced in version Y .
Fortunately, this intermediate version (Y ) had only been rolled out
on very few routers.

4. Protection switching on access routers. Line card protection is
used on access routers to protect customers from line card failures
- if a line card fails, the customers are switched over to a dedicated
backup line card. This switching is known as Automatic Protection
Switching (APS). APS events are rare events - especially if look-
ing at a single router as opposed to aggregated across the network.
In analyzing a series of router upgrades, MERCURY successfully
detected a behavior change (uptick) in the number of APS events
across access routers. This observation confirmed that MERCURY
could indeed detect critical issues that operations had also observed
via manual tracking of events. Interestingly, MERCURY did not
detect the changes on individual routers, but observed it in the ag-
gregate time-series across routers. This was simply because the
time-series was too sparse on a per router basis - meaningful statis-
tical changes could only be observed at the aggregated level.

5.2 Impact of Firmware Upgrades
In our second case study, we apply MERCURY to detect the

impact of firmware upgrades on the line card CPU utilization levels.
The firmware upgrades are applied by the network operations on a
per line card basis. Each router consists of multiple line cards -
typically, two line cards in a router support the central CPU (used
for tasks such as route computation) whilst other cards carry traffic.
However, each of these line cards has a CPU whose utilization must
be monitored. With 16 or more line cards per router, and up to
thousands of routers, this is an extremely large number of line cards
to monitor manually!

Findings: Upticks on some optical carrier line cards. We applied
MERCURY on the line card CPU utilizations and observed that for
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Figure 8: Case Study: Impact of BGP fast fall-over configu-
ration change. Results shown for one access router (AR) and
three event-types.

the majority of the line cards, there is a significant downtick in CPU
utilization. However, on certain classes of routers (namely access
routers), we observed a contradictory uptick in CPU utilization on
specific types of line cards - specifically those which are network-
facing. Fig. 7 shows the time-series plots for three line-card CPU
utilization levels on the same router. As can be seen, there is a
downtick on the central router CPU and the customer-facing cards,
however an uptick on the network-facing cards draws attention for
the network operator. Our current hypothesis is that some route
computation processes might be migrated from the central router
CPU to the network-facing line cards. Without MERCURY, the
network operations team had been unaware of this behavior change.
An investigation is now underway.

5.3 Impact of Configuration Changes
Our third case study focuses on understanding the impact of in-

teresting configuration changes performed on routers within the
tier-1 ISP network. As discussed in Section 4, we analyzed the
ISP workflow (TACACS) logs to detect interesting configuration
changes which correspond to network upgrades. We then system-
atically analyzed each of those triggers to identify those which
caused noticeable behavioral changes. There were a wide range
of interesting scenarios, a number of which are currently undergo-
ing investigation. We show one example to demonstrate how MER-
CURY successfully detected the network upgrade and validated the
intended performance impacts of these upgrades.

In this example, a configuration change in BGP fast external fall-
over policy is categorized by MERCURY as a rare configuration
session across a time interval of six months. This is because the
fast external fall-over configuration is applied on a per-router basis
- it is basically configured once per router to fundamentally change
the behavior of the router on an ongoing basis. If fast external fall-
over is enabled, the BGP peer immediately turns down the session
when the layer-1 link goes down. On the other hand, if disabled, the
peer waits for the default hold timer (3 keep-alives) to expire and
then explicitly reset the peering session. Thus, fast external fall-
over provides immediate response to layer one issues - achieving a
faster failure recovery for these common events.

The act of turning on fast external fallover on a given router
should result in a new set of BGP flaps that are specifically labeled
as being induced by layer-one detection on the router. In Cisco
syslogs, these are referred to “down interface flaps”. The config-
uration change should also demonstrate a comparable degradation
in the number of “timer expired” and “peer closed” events. Be-
fore the change, layer one induced flaps would have been detected
via either “timer expired” or “peer closed” events, while after the
configuration change, the L1 events would have been observed as
“down interface flaps”.

Findings: We observe the behavior change across all access routers
that enabled the fast fall-over policy. Fig. 8 shows the time-series
for BGP flaps, remote peer closing the BGP session and hold timer
expiry on one router. The observation in Fig. 8 demonstrated that
the fast external fallover configuration changes implemented in the
network successfully created the desired behavioral change. As de-
sired, the number of "down interface flaps" went from zero (when
fast external fallover was not configured in the network) to a signif-
icant value. There was a corresponding decrease in the number of
BGP hold timer and peer closed events. Thus, MERCURY proved
that the routers were successfully detecting the layer one events and
responding accordingly. This was consistent behavior across all
configured routers - something which a manual inspection would
not be able to scale to deduce. Furthermore, MERCURY could
quantify the changes across all routers - as can be seen from Fig. 8,
the majority of BGP flaps are induced by what the ISP router con-
siders1 to be layer-one induced failures.

6. RELATED WORK
We present related work on configuration analysis and perfor-

mance troubleshooting and describe the differences with MERCURY.

Configuration Analysis. Recently, there has been a great deal
of work [4, 10, 24, 27, 31] in understanding network configura-
tions and modeling them to better understand and improve network
designs. Misconfigurations are a common source of network prob-
lems. There are several proposals to detect and diagnose miscon-
figurations. PeerPressure [35] builds statistical model of healthy
machines and compares to identify sick machines. Strider [36] uses
state differencing to identify the root causes for different program
behaviors. Chronus [37] uses virtual machine monitors, time travel
testing and search to discover configuration errors. NetPrints[1]
uses decision-tree learning for troubleshooting home network mis-
configurations. Feamster et al. [11] use static analysis to discover
configuration errors in BGP by testing constraints using high-level
specification. WISE [32] provides a what-if analysis tool to es-
timate the effect of network configuration changes on service re-
sponse times. Alimi et al. [2] propose shadow configurations to
evaluate configuration changes. None of the above approaches
describe how to automatically extract interesting upgrade-related
configuration changes from the workflow logs and configurations.
MERCURY does this using the rareness and skewness heuristics
and focuses on trigger induced persistent behavior changes on a
very large number of KPIs in real operational environments.

Performance troubleshooting. Detecting anomalies and trou-
bleshooting network performance has a rich literature. PCA [15,
21, 22, 28] is one of the widely used technique for detecting network-
wide anomalies. Zhang et al. [39] formalize different aspects of
anomaly detection under a single framework. NetMedic [19] uses
OS information to diagnose anomalies using the dependency struc-
ture between the components. Zhang et al. [40] use spatio-temporal
compressive sensing to detect anomalies in traffic matrices. Xu et
al. [38] use PCA to extract features from the console logs and de-
cision trees to learn rules from the PCA output.

For troubleshooting, there have been several recent proposals us-
ing Bayesian network analysis and statistical mining techniques.
SCORE [20] models the fault diagnosis problem using a bipartite
graph and uses risk modeling to map high-level failure notifica-
tions into lower-layer root causes. Shrink [18] extends this model
to deal with probabilistic settings. Sherlock [3] proposes a multi-
level graph inference to discover the service-level dependencies in
enterprise networks. Orion [5] uses delay timing analysis to dis-
cover traffic dependencies. eXpose [17] uses spectral graph parti-

1We say, “considers to be here” because certain failures on a remote
router, such as hardware failures cannot be distinguished locally
from layer one network failures.



tioning and mutual information to discover communication rules in
edge networks. [8, 9, 16] uses network tomography to identify the
location of the failures. Minerals [23] mines correlation patterns
using association data mining. NICE [26] focuses on detecting and
troubleshooting undesirable chronic network conditions using sta-
tistical correlations. Giza [25] applies multi-resolution techniques
to localize regions in IPTV network with significant problems and
l1-norm minimization to discover causality between event-series.
URCA [29] uses feedback from the anomaly detector to elimi-
nate flows that exhibit normal behavior. ASTUTE [30] is a traffic
anomaly detector that uses the equilibrium property and correlation
across anomalous flows to discover a new class of anomalies.

MERCURY differs from all of the above described approaches
in its application of analyzing the impact of upgrades on network
performance. It focuses on detecting persistent behavior changes in
network performance as opposed to short-term transient anomalies.
The time-alignment for distributed triggers is a novel technique in
MERCURY, not explored by any of the previous approaches.

7. CONCLUSIONS AND FUTUREWORK
We presented the design and implementation of MERCURY, a

novel system for monitoring the performance impact of network
upgrades (or triggers) in large operational networks. MERCURY
uses the rareness and skewness properties of configuration to iden-
tify a small list of interesting triggers. It detects behavior changes
in performance event-series using a rank-based statistical test. It
uses a rule learner to identify commonality across the changes at
multiple locations. It uses a novel time-alignment approach for dis-
tributed triggers to identify aggregate changes. We have applied
MERCURY using real network data collected from a large tier-1
ISP network. Our results demonstrate that MERCURY is able to
identify interesting triggers and behavior changes induced by the
triggers. On multiple occasions, MERCURY also discovers previ-
ously unknown behavior changes, highlighting its ability to identify
network conditions flying under the radar.

In the future, we plan to extend MERCURY in several direc-
tions. First, we would like to extend the capability of identify-
ing triggers by closer collaborations with the network operations
team. Second, we plan to expand MERCURY to detect behavior
changes caused by chronic failures or external network conditions.
Finally, we would like to extend MERCURY to discover behavior
changes in correlation structures across different event-series. This
is important when each individual performance event-series does
not undergo significant changes, but the joint distribution does.
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