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Abstract A naive approach for network traffic measurement is

to maintain state and perform analysis opexr-flow ba-

Sketch is a sublinear space data structure that allows ON&: However. as link speeds and the number of flows in-
to approximately reconstruct the value associated with any, case keepi,ng per-flow state can quickly become either

given key in an input data stream. .It is the basis for answefy, expensive or too slow. As a result, a lot of recent net-
ing a number of fundamental queries on data streams, sugﬁ

ies. findi tiles. f it | orking research efforts have been directed towards de-
as range queries, finding quantiies, frequent rtems, €tc. .Oeloping scalable and accurate techniques for performing
the networking context, sketch has been applied to identi:

fying heavy hitters and changes, which is critical for tiaffi traffic monitoring and analysis without keeping per-flow

L . . state .9, [6]). Meanwhile, computation over massive data
monlto_rlng, accounting, and network anomaly detection. streams has been an active research area in the database re-
Iq th'.s. Paper, we propose a novel app_roach catiqdare search community over the past several years. The emerg-

to significantly improve th(_a reconstruction accuracy of theing field of data stream computaticieals with various as-
sketch data structure. Given a sketch and a set of key ects of computation that can be performed in a space- and

we estimate the values associated with these keys by COyrne_efficient manner when each item in a data stream can

structing a Iinear_syst_em and finding the optimal SOIUtionbe accessed only once (or a small number of times). Arich
for the system using linear least squares method. We usek?ody of algorithms and techniques have been developed.

Iargg amount O.f real Internet traffic data to evaluatpiare A good survey of the algorithms and applications in data
againstcountmin the state-of-the-art sketch scheme. OurStream computation can be found in [11]

results suggest that given the same memory requirement, i ) )

Isquareachieves much better reconstruction accuracy than A Particularly powerful technique isketcH(1, 7, 3, 5], a
countmin Alternatively, given the same reconstruction ac- Probabilistic summary data structure proposed for analyz-
curacy, Isquarerequires significantly less memory. This N9 massive data streams. Sketches avoid keeping per-flow

clearly demonstrates the effectiveness of our approach. State by dimensionality reduction techniques, using jgroje
tions along random vectors. Sketches have some interest-

1 Introduction ing properties that have proven to be very useful in ana-

For many network management applications, it is essentidy2ind data streams: they are space efficient, provide prov-
to accurately monitor and analyze network traffic. For ex-aP!€ probabilistic reconstruction accuracy guarantees, a

ample, Internet service providers need to monitor the usag@'® linéar te., sketches can be combined in an arithmetical
information in order to support usage-based pricing. NetS€nse). These properties have made sketch the basis for an-

work operators need to observe the traffic pattern to per§Wer|ng a number Qf fun_dal_”nental quEres on data stre_ams,
form traffic engineering. Network anomaly detection sys-Such as range queries, finding quantiles and frequent items
tems need to continuously monitor the traffic in order tolL1]- In the networking context, sketch has been success-
uncover anomalous traffic patterns in near real-time, espdUlly applied to detecting heavy hitters and changes [8, 4].

cially those caused by flash crowds, denial-of-service at- A key operation on the sketch data structure is so called
tacks (DoS), worms, and network element failures. Thes@oint estimationi.e., to estimate the accumulated value
applications typically treat the traffic as a collection of associated with a given key. All existing methods per-
flowswith some properties to keep track &.¢, volume, form point estimation for different keys separately and/onl
number of packets). The flows are typically identified by have limited accuracy. In this paper, we propose a novel
certain combination of packet header fieldsg( IP ad- method calledsquareto significantly improve the accu-
dresses, port numbers, and protocol). racy of point estimation on the sketch data structure. In-



stead of estimating values for individual keys separately, H number of hash tables
Isquarefirst extracts a set of keys that is a superset of all K| number of counts per hash table
the heavy hitter flows and then simultaneously estimates n size of the key space
the accumulated values for this set of keys — it does so hi i hash function
by first constructing a linear system and then finding the T1l] bucket; in hash table
optimal solution to the system through linear least squares 0 threshold of heavy hitters
method. m number of top hitters

We use a large amount of real Internet traffic data to Table 1: Sketch Notations

evaluate our method againsbuntmin[5], the best exist- ] .
ing sketch scheme. Our results are encouraging: Given th pdate procedure.. When an update;, u;) arrives,
same memory requiremerggquareyields much more ac- ¢ g update_valueLt IS added.to the corresponding count
curate estimates thamountmin and given the same recon- T{é[hi(ke)] in each hash table

struction accuracysquareuses significantly less memory. Heavy hitter identification: Since the sketch data struc-

The remainder of the paper is organized as follows. Inre only records the values, not the keys, it is a chal-
Section 2, we give an overview of sketch data structure, detenge to identify the heavy-valued keys among all the keys
fine the problem, and survey the related work. In Section 3hashed into the heavy buckets. In order to identify heavy
we describe oulsquaremethod for point estimation on the hitters, we can keep a priority queue to record the top hit-
sketch data structure. In Section 4, we evaluate the praers with values abov(as shown in [5]). An alternative is
posed method using real Internet traffic data. We conclude perform intersections among buckets with heavy counts,
in Section 5. which is proposed by Schwellet al.[14].

2 Background Point estimation: Let S be a sketch and” be a set of keys,

This section provides some background on the problem wi/hich are known to be heavy hitters. The problenpoint
want to solve. First, we briefly describe the underlying datafStimationis to estimate the total update valtig for any
stream model and the sketch data structure. Then we defifY & € X. This problem is the focus of our paper.

the problem of point estimation on sketch and explain thecoynt-Min: As proposed in [5]countminis an existing
existing methods to solve the problem. We will also briefly jyethod to reconstruct the value for any given key. The min-

survey the related work. imum value among all counts corresponding to the key is
2.1 Data Stream Model taken as an estimate of the value. Formally,

LetZ = (k1,u1), (ke2,u2),... be an input stream that ar- pgeuntmin — min T(i][hy (k)]

rives sequentially, item by item. Hetg € {0,...,n — 1} Osi<H

is akey andi, > 0 is the update value associated with theis an estimate for the valué,. Cormode and Muthukrish-
key. LetU} be the sum of update values for a KeyHere, countmin countmin

ih date val i : al nan [5] proved that/, < U}, and that/; <
the update values are non-nega |ve,mea_1n|ngj.‘la ways Ui + ¢||U||; with probability 6, whereH = [¢], K =
increase. This model is called thash register modgL1]. 1 d n_1 h d € .
Many applications of sketches guarantee that counts arQln 51, an ||UH_1 - k:,OtLU’“" In of erwol; sc(()juntmln
non-negative. However, we note that our proposed methofWays overestimates with a certain error bound.

is also applicable to the more genefalnstile mode[11], 2.3 Related Work

in which update values may be negative. L ) i
Common applications of sketches include detecting heavy-

2.2 Count-Min Sketch hitters, finding quantiles, answering range/point queries

Sketch [5, 8, 14] is a sublinear space data structure for sunﬁnd estimating flow size distribution [11].

marizing massive data streams. We use the notations in T?.— Kl:m?;etf?l' [9]_useijq Exg et<_:tat|fon MaX|m|zat|ofn met?Od
ble 1 to specify the sketch data structure. o infer the flow size distribution from an array of counters,

which can be viewed as a special case of sketth(1).
Data structure: A sketchis a two-dimensional countarray  Estan and Varghese [6] suggested an improved sampling
Tl][j] (0 <i< H,0 < j < K),whereH isthe numberof method calledsample-and-holdwith which flow amount
one-dimensional arrays arfd is the number of counts in is recorded only after individual entry for the flow is made.
each array. Each count of sketch is initially set to zero. FoThey also proposethulti-stage filtersfor data summary,
each one-dimensional arrdy:][-], there is a hash function which has the same data structure as sketch but uses a dif-
h;:{0,...,n—1} = {0,..., K — 1}, wherenisthe size  ferent update method callezbnservative update When
of the key space. The hash functions are chosen uniformlgn update arrives, only the minimum valued bucket is in-
at random to be pair-wise independent. We can view the&remented, whereas sketch increments countei abr-
data structure as an array of hash tables. responding buckets. The minimum counter of multi-stage



filter can be used for point estimation, which is similar to 3.2 Formal Description ofIsquare

the countminapproach. _ _ Let S be a sketch andl,, ..., k., be the set of keys of our
. Krishnamurthyet al. [8] prqposed another pqlnt estima- jnterest. Then we have an unknown variables vertar
tion method for sketch, which can be used in the Tump(m+1)x1 _ [ “WIT  wherea, is for the value

i 1 St
stile data stre;\gm model. Thei estimatioff” for a keyk ot ey 1. andy is an additional variable for noise caused
'S_g'VeTTZ_]‘F}f%]7531\4%?(1'6"{% U ZKfl 1}, Where by keys not in{k;}, which is uniformly distributed over
Ui = TR andSUM =} T[0][j]. all buckets. We construct a matrix € {0,1}#Kx(m+1),
showing which keys are hashed into which buckets, and a
3 Our Approach vectorb € RHXX1  containing values of every buckets.

In this section, we explain the proposksguaremethod  The elements oft andb are specified as follows. Fare
for point estimation. Firstjsquarerecords the data flow {0,... 7 — 1} andj € {0,... K — 1},

information in a sketch. Then it constructs a linear system

based on the sketch, and solves the system using linear least
squares method. Below we first give a simple example and *Ki+j+1,¢
then formally describe the method.

3.1 A Simple Example

Suppose we have a data stream fronP addresses. Let
Uy =5,U; =4,U; =3,U3 =9,Uy = 16 be the total
amount of traffic for each IP. We record the flows into a
sketch withH = 2 and K = 3, which has two hash func-
tionsh (k) = k mod 3andhq (k) = (k®3) mod 3, where

@ denotes bitwise-XOR. The sketch is given as:

1 if key ky is hashed intd@[¢][5],
= 1 ifl=m+1,
0 otherwise,

brivje1 = T[]

In generalA is not a square matrix and may be rank
deficient. In this case, a standard solutionA® = b is
the pseudoinverse solution = A*b, where A" is the
pseudoinverse.g., Moore-Penrose inverse [10, 13]) of ma-
trix A. It is known thatx = A*b provides the shortest
length least squares solution to the system of linear equa-
tions Ax = b. More precisely, it solves:

j=0]j=1]j=2
T[0][j] | 14°3 | 20%4 32
T[] | 1493 | 1927 47 where|| - || is theEuclidean norm

Under the cash register data stream model, we can
Here, 14%3 means that/, and U; are hashed into the further improve the estimation accuracy by incorporating
bucket, resulting in a count df4. The goal is to recon- lower-bound and upper-bound constraints into the system.
structUs andU, from the sketch. Specifically, we can usé as a lower bound fox and the
Solution using countmin:  Ugeutmin = min{T[0][0], countminestimation as an upper bound. The pseudo-code

T[][0]} = 14 andUsemntmin = mingT[0][1], T[1][1]} = 19. for the resulting algorithm is given as follows.

minimize||x||3  subject to|| Ax — b||3 is minimal

vector Isquare(matrix A, vector b,

Solution usinglsquare: First, we construct a linear system vector countmin)

Ax = b with the constructed sketch. Vectaxs b and {

matrix A are specified as follows. X = pinv(A)*b; /I pseudoinverse
X = max(x,0); /I non-negativity
14 1 0 1 X = min(x,countmin); // upper bound: countmin
return Xx;
5 20 0 1 1 }
- b — 3 A 0 0 1 ) )
X=1Za b= 4 ["2= 11 0 1 Note that so far we use a single varialyldo capture
Y 19 01 1 the effects of background noise. This assumes that we do
4 0 0 1 not know any keys other than those of our direct interest.

In case we do know extra keys, we can add therfiktg

Here,r3 andz, are variables for key$and4, andy isused  and treat the correspondingas additional noise variables.
to capture noise caused by keys that are not of our interesfve will show in Section 4.3 that the use of additional noise
Matrix A indicates which keys are hashed to which bucketsyariables significantly improves the accuracysafuare
and vectob consists of values of all buckets. For example, .
we have the equations + y = 14 with bucket7'[0][0], 4 Evaluation
which corresponds to the first rows dfandb. In this section we evaluate olsquaremethod on two Inter-

With the constructed linear system, we find the opti-net trace data sets. Our results suggestlfuptaregener-
mal solution of the linear system using linear least squareally produces more accurate estimates tt@mtmin Even
method: x = [10.5,16.0,3.5]T (i.e, z3 = 10.5, 24 = better accuracy can be achieved through the use of addi-
16.0, y = 3.5). In this simple example, our method clearly tional noise variables. In addition, the accuracysgfuare
produces much more accurate estimates toamtmin degrades gracefully when less memory is available.



4.1 Data Sets 1

"countmin ——
The Internet traffic data used in our evaluation is col- 0.8 t Isquare -~
lected by National Laboratory for Applied Network Re- 06 -
search (NLANR) [12]. We choose two sets of data: BELL- 5
02 [2] and TERA-04 [15]. Brief information of the data u 041
sets is given in Table 2. Figure 1 shows the traffic amount £ 027
of top 200 heavy hitters in two data sets. We can seethat & o S Seta VI SIS
the traffic distributions are highly skewed. ool
BELL-02 TERA-04 04y
Time 2002/05/19 (1-2PM)| 2004/02/09 (8-9AM) 0O 5 10 15 20 25 30 35 40 45 50
\olume 8.371 GB 0.106 GB Top m Hitters (BELL-02)
Table 2: Data Set Information 1 ————
countmin ——
08 | Isquare ——— ]
ter10 BELL-02 —+— 0.6
1e+09 TERA-04 - — ] §
o 04
1e+08 |
£ oo % 0.2t
3 let07 f s , Fonx
£ 2 @ 0 SN N
< lev06 | e
) : 02t
% 100000 L 0
= 04 |
10000 F
1000 | 0 5 10 15 20 25 30 35 40 45 50
Top m Hitters (TERA-04)
o b— e iqure 2 K — — A o — E)"
0 20 40 60 80 100 120 140 160 180 200 Figure 2: K = 1024, H = 4,_ m = 50: Isquareshows
Top m Hitters more accurate and stable estimation thanntmin
Figure 1: Traffic amount of top 200 hitters in BELL-02 and
TERA-04

) (Figure 2). We observe that the accuracyofintminfluc-
4.2 Error Metric tuates depending on the data sets, whelsspgareconsis-

We use a relative error metric to evaluate the estimationtently gives more stable and accurate estimates.

When evaluating an estimate for a specific e use
9 P kew We next demonstrate that better accuracy can be

Ust — Uy achieved when we use more variables to capture the noise
= U, effects. In Figure 3 we evaluate the accuracysofuare
with a varying number of noise variables. For each data
This metric gets close t6 when the estimation is accu- set, we calculate the estimation errors of ffpheavy hit-
rate and it can indicate whether we have overestimated ders in three cases. In the case of experimeatlSquare,
underestimated results. When we evaluate the estimatignst one noise variablg is used. Then to@1-50 hitters
result as a whole, we use the average error are considered as noise variables (in additioy) io exper-
iment “50-Isquaré, and top21-200 hitters in experiment

By

1 Ut — Up\ 2 “200-Isquare” As more noise variables are usesguare
E= [HH| Z (T) becomes more stable and accurate. In particldguare
keHH F has almost no errors in the case 860-Isquare”

as a metric, wheréf H is the set of heavy hitters of our  In addition Isquareproduces accurate estimates even for
interest. The square of point error metric is used to avoidlight” hitters. In Figure 4, we calculate the estimation er

cancellation between positive and negative errors. rors for top 200 hitters. In BELL-02 data ssdguareshows
relatively accurate estimation for top 160 hitters, where

4.3 Accuracy countminis only good for top 40 hitters. We observe bigger
We first compare the accuracy tfquare and countmin  accuracy difference between the two methods in TERA-04
when a single variablg is used to capture the background data set:Isquarestill has accurate estimation for top 170
noise (caused by keys notiiH). As a preliminary exper- hitters butcountminhas good performance only for top 20
iment, we calculate the estimation errors for top 50 heawyhitters. Moreover, the accuracy oduntminfor light hitters
hitters using the two methods, witi = 4 and K = 1024 s significantly lower.



0.1 T T T T le+10 T T T
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50-Isquare - countmin
200-Isquare - 1e+09 Isquare -
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i § 1e+08
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% 5 1le+07 ¢
12 =
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1e+06 |
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Figure 3: K = 1024, H = 4, m = 20: Isquareshows Figure 4: K = 1024, H = 4, m = 200: Isquareachieves
better accuracy when we use more noise variables. good accuracy even for light hitters.
- - H 0 countmin 0 countmin
4.4 Tolerance with Limited Memory h bowe B | e~
g 1 g 1
We now evaluate the accuracyaduntminandlsquareun-
. P . .3 3 %X
der the constraint of limited memory. Since a sketch is¢ °1>*—’*f§’.§§ :
usually located within an expensive memory SRAM for § oo g om Y
high-speed traffic monitoring, it is desirable to have accu- s L ’

rate point estimates even if we reduce the size of the sketch. 0. i rases (ctoze, set oo e Namber o Hadh Tables (<1024, TERAGE)
First, we fix the number of buckets in a hash talle

Figure 5: K = 1024, H = 1,2,4,8,16,0 = 0.1%: The
to be 1024 and vary the number of hash tabl&s Next, ! e T
we vary K with fixed H — 4. In Figure 5 and 6, we number of hash tables has little impact on accurbstyuare

consistently shows better accuracy tltauntmin
calculate the average error of the two methods for each y Y

sketch configuration. We can see clearly that the accuracy ) _ )
of Isquaredegrades gracefully as the sketch gets smallefNd @ Pentium3-733MHz machine with 128 MBytes mem-
whereascountmingives inaccurate estimates in memory- Oy, Operated by Linux Debian 3.0. In this experiment, we
limited situations. use a fixed sketch configuration (H=4, K=1024) and vary
To make the experiment more reliable regardless of thdhe ”lﬂmb,er of heavy hitters we \_/vant to estimate. The re-
sketch configuration, we find the optimal combination for SUltS in Figure 8 show that the linear program solver can
countminin the given memory size after trying various compute _pomt es_t|mat|ons_ of 1QO heavy hitters in about 2
combinations off and K. Within the configuration where seconds in the given coqflguratlon. We note that our cur-
countminshows the best accuracy, we evaluate the acc €Nt Matlab implementation has not been fully optimized
racy oflsquare Once again, we observe better accuracy 0fand there is considerable room for further speedup. For

the proposed method (Figure 7). e>_<amp|e_, we can replace the pseudoinverse fungiion
] with an iterative least-squares solver suclsags to take
4.5 Time Performance advantage of the sparsity of matuik

We have implemented olsquaremethod in Matlab. The 5
most time-consuming process in our method is solving the
linear systemdx = b. We make a preliminary evaluation In this paper, we propose a new approach for point estima-
regarding the time performance of our implementation ustion on sketches. Using extensive experiments with real In-

Conclusion and Future Work
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0 = 0.1%: The number of buckets in a hash table has a

big impact on accuracy. The accuracylefuaredegrades
more gracefully as the number of buckets decreases.
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Figure 8:K = 1024, H = 4: This graph shows the elapsed
time to execute the Linear System Solver with various num-
bers of heavy hitters.

(4]

For each memory size, we find the optimal sketch configu-

ration forcountmin In that optimal configuration, we com-
pare the accuracy déquareandcountmin In both data
sets|squareshows better performance.

ternet data sets, we show that the proposed mdtpre
is much more accurate than the best existing metiooeht-
min.

Isquare achieves good reconstruction accuracy for

(5]

(6]

both heavy and light hitters, at the expense of modest com-{7]

putation.

Moreover, we have shown that the accuracy

of Isquaredegrades gracefully as memory decreases. To

achieve accuracy comparabledountmin Isquarein gen-
eral requires much less memory.

(8]

This paper represents an early example on how tradi-

tional statistical inference techniques can be applietién t

pages 693-703, 200ttp://www.cs.princeton.
edu/"moses/papers/frequent.ps

G. Cormode and S. Muthukrishnan. What's hot and what'’s
not: Tracking most frequent items dynamically.Rroceed-
ings of ACM PODC '2003July 2003.

G. Cormode and S. Muthukrishnan. An improved data
stream summary: The count-min sketch and its applica-
tions. Proceedings of Latin American Theoretical Informat-
ics (LATIN) pages 29-38, 2004.

C. Estan and G. Varghese. New directions in traffic mea-
surement and accountingroceedings of ACM SIGCOMM
2002.

P. Gibbons and Y. Matias. Synopsis structures for massiv
data setsDIMACS Series in Discrete Mathematics and The-
oretical Computer Scienc&999.

B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-
based change detection: Methods, evaluation, and applica-
tions. Proceedings of ACM SIGCOMM Internet Measure-
ment Conference2003.

data stream context to infer characteristics of the input [9] A. Kumar, M. Sung, J. Xu, and J. Wang. Data streaming al-
stream. Existing research on data stream computation so
far has mainly focused on developing techniques that pro-

vide provable worst-case accuracy guarantees. StatisticB0]

inference techniques in contrast often pay more attention

to properties like likelihood, unbiasedness, estimatiani-v

ance etc. While these inference techniques may not prd—ll]

vide any worst-case accuracy guarantees, they often per-

form very well on practical problems. In our future work,

we plan to further explore how statistical inference tech-

nigues can be applied to data stream computation.
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