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Abstract There are a group of problems in networking that

can most naturally be described as optimization problems

(network design, traffic engineering, etc.). There has been a

great deal of research devoted to solving these problems, but

this research has been concentrated on intra-domain prob-

lems where one network operator has complete information

and control. An emerging field is inter-domain engineering,

for instance, traffic engineering between large autonomous

networks. Extending intra-domain optimization techniques

to inter-domain problems is often impossible without the in-

formation available within a domain, and providers are often

unwilling to share such information.

This paper presents an alternative: we propose a method

for traffic engineering that does not require sharing of im-

portant information across domains. The method extends the

idea of genetic algorithms to allow symbiotic evolution be-

tween two parties. Both parties may improve their perfor-

mance without revealing their data, other than what would

be easily observed in any case. We show the method pro-

vides large reductions in network congestion, close to the

optimal shortest path routing across a pair of networks. The

results are highly robust to measurement noise, the method

is very flexible, and it can be applied using existing routing.

1 Introduction

Optimization is the natural approach to many problems in

networking. For instance: network design, traffic engineer-

ing, and routing are all optimization problems. We typically
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seek the solution that minimizes some (perhaps abstract)

cost across the network in question.

However, there is no one authority which can perform

such an optimization for “the Internet”. The Internet is bro-

ken into many Autonomous Systems (ASes), each of which

is managed independently, and these individual sub-networks

are often unwilling to co-operate. Hence, many problems in

networking are treated as game-theory problems with self-

ish participants, each trying to optimize for their own benefit

alone. However, it has long been known [1] that selfish be-

haviors can result in poor outcomes.

However, network operators are not entirely ”selfish”.

For instance current Internet routing relies on a certain amount

of co-operation to ensure smooth operation — when net-

works don’t connect properly, the first thing operators do

is talk to each other on the phone. Their apparent unwill-

ingness to co-operate arises frequently from an inability to

share data that might reveal trade secrets, or violate privacy

legislation. Without shared information, it seems we cannot

jointly optimize more than one network, and so the partici-

pants are forced to a more selfish model.

This paper describes an approach based in part on the

idea of privacy-preserving distributed computation. Such com-

putation can be used to create methods for joint optimization

between networks, without the type of “risky” co-operation

that most previous methods of joint optimization require.

We focus here on the inter-domain Traffic Engineering (TE)

problem. In particular, our method is aimed at allowing TE

to proceed without the providers sharing information that

they consider private. This prevents the partners in the op-

timization exploiting information gained about its competi-

tors, prevents gaming of the situation, and provides a basis

for trust.

We exploit two key ideas: firstly, we use an optimiza-

tion heuristic based on the metaphor of Darwinian evolution,

commonly called a Genetic Algorithm (GA). GAs proceed
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Table 1 Comparison of approaches. Communications cost for the privacy-maximization approach are a worst case, with the likely cost being

significantly smaller. Performance is given in terms of average maximum utilization relative to the measured routing case (smaller percentages are

better).

Approach Shared data Communications cost Performance

joint SP Gi, ci, wi, D O(N2 +EK) 46.6%

symbiotic qi, maxe∈Ei
ue O(GPNmax logQ) 51.5%

symbiotic 2 qi, O(GPNmax logQ) 68.4%

privacy-max sel.prob.s p(xi) O(GPE2N2) 51.5%

selfish none zero 91.2%

by describing the optimization variables using a series of

“genes”. A population is created, allowed to compete, and

the most successful are allowed to reproduce. We call our

approach GATEway (Genetic Algorithm Traffic Engineer-

ing). GAs are ideally suited to cases where the objective

function is hard to compute, and we use this feature here

by extending the metaphor to allow symbiosis between pairs

of providers. In nature, symbiotic organisms jointly evolve,

but they do not need to share genetic material to do so.

Analogously, GATEway allows two providers to optimize

their routing without sharing the details of their own net-

works (their genes). Despite this secrecy, we show that on

Rocketfuel networks GATEway dramatically improves per-

formance as compared to existing provider routing, and self-

ish routing procedures. In fact, GATEway provides results

within 5% of a reasonable lower-bound on the possible per-

formance, and about 40% better than the closest equivalent

selfish routing.

As in biology, some information sharing is still required

even in the above approach, primarily in the form of fit-

ness functions. The fitness of each member of the popula-

tion must be evaluated (in biology this would be implicit

in whether individuals survive to breed). We then use tech-

niques from the secure distributed computation community

to substantially reduce even this modicum of information

sharing. This allows the above optimization to be conducted

without leaking any direct information about the providers,

for instance, they do not need to share topology, link capac-

ity, internal traffic, or routing details. In fact, in the strictest

version of GATEway, the providers share almost no infor-

mation at all, though there is a penalty to be paid for such

parsimony. Ironically, despite sharing less information, the

communication cost increases.

In more detail, we compare five alternative techniques

for performing joint TE between several networks. All are

based on shortest-path weight optimization techniques be-

cause of their simplicity, ease of implementation, and ro-

bustness [13,15]. As benchmarks we compare routing where

each network optimizes its own routing selfishly, and rout-

ing where we treat the group of networks as a single large

network over which we perform a joint shortest-paths opti-

mization. Against these, we compare three new algorithms:

– symbiotic: the simple symbiotic approach outlines above.

– symbiotic 2: the symbiotic without shared fitness func-

tion calculation.

– privacy-max: a technique that exploits formal crypto-

graphic techniques for privacy-preservation to minimize

the amount of leaked information.

Table 1 summarizes the results, including the information

that needs to be shared by each algorithm. The notation is

defined later, but in summary, the joint approach requires

sharing of all data (network topologies, link capacities, and

internal traffic matrices though we assume that the inter-

domain traffic matrices between a pair of network operators

are measured by each participant). The selfish approach does

not require any sharing of data, but its performance (91.2%

on average) is poor compared to the joint approach. The first

symbiotic algorithm requires that we share only our choices

of egress points for traffic, and fitness calculations over a

population of possible routing solutions. The resulting per-

formance is 51.5%, which is very close to the joint approach.

The fitness calculation carries relatively little information,

but if we are concerned about this leakage then we can re-

strict transmission of fitness functions, but as noted this re-

duces the performance (to 68.4%). We also present an alter-

native method “privacy-max” which only needs to share se-

lection probabilities across populations. This method there-

fore reduces information leakage, but this time the perfor-

mance is good and the cost is that the communications over-

head increases as N2 (where N is the number of nodes in the

joint network).

Applying symbiosis to GAs represents a new approach

to secure distributed computation. Previously, many of the

algorithms applied for secure distributed computation have

been based on Yao’s two-party protocol, which can compute

any polynomial time function. We show here that we can

find approximate solutions to NP-hard problems. The prob-

lem we consider here is quite specific, but there are many

other fields where similar issues are encountered. Our ap-

proach is quite generic, and so may be applicable to other

problems both in network engineering, and outside.

We further address some of the practical problems of us-

ing such a protocol. We demonstrate the flexibility of the

approach by using alternative optimization objectives and

showing performance improvements increase significantly

with the number of networks using the method, and we also
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find that the method is highly insensitive to measurement

noise. The symbiotic methods also actually improves com-

putation times in comparison to the joint algorithm. Ad-

ditionally, we demonstrate that such an approach could be

practically implemented in today’s networks.

2 Background and Related work

2.1 Traffic Engineering

There are many tasks in network operations which fall un-

der the heading of optimization. In this paper we shall con-

centrate on Traffic Engineering (TE), the process of bal-

ancing one’s traffic across the existing links in a network.

One may think of this as optimizing the routing parameters

of a network, such that the resulting routing is “beneficial”

in some sense. The routing parameters determine, for each

source-destination pair, the fraction of traffic going on dif-

ferent paths from the source to the destination. Many TE

techniques have been presented (for examples see [2–15]).

The majority of the TE literature concerns intra-domain TE.

That is, optimization of routing parameters within a single

network. There are many approaches to this problem, though

the two most prevalent are given below.

Explicit path where the traffic is arbitrarily routed to sat-

isfy the results of a multi-commodity flow optimization [16,

Chapter 17]. Explicit path routing is generally instantiated

through MPLS (Multi-Protocol Label Switching) or IP-in-

IP encapsulation [17].

Shortest-path where the routing uses shortest-paths, but the

link weights are arbitrarily chosen as the result of some op-

timization. Shortest-path routing is appealing because it can

be implemented easily using today’s most commonly used

Interior Gateway Protocols (IGPs) In these protocols each

link is associated with a positive weight, and path length is

defined as the sum of the weights of all the links on that

path. Traffic is routed along the shortest paths. In cases of

ties the flow is generally split (roughly evenly) across Mul-

tiple Equal-Cost Paths (MECP).

Explicit path optimization has less constraints, and there-

fore must achieve a superior solution to the shortest-path

optimization. Naively, one supposes that explicit path op-

timization will perform significantly better. However, there

is now substantial literature supporting shortest-path opti-

mization. It has been shown that (for realistic networks) one

can get within a few percent of the performance of explicit

path routing [6], even where the inputs contain prediction

or inference errors [13, 15]. What’s more shortest-path opti-

mization can choose sets of weights that perform well over

a range of traffic (say the variations over the course of a

day) [9, 15] or under link failures [14, 18, 19].

Either technique is appropriate within a single network,

but both have flaws for inter-domain TE, a topic of recent

interest [17, 20–28]. The Internet has a broad two-level hi-

erarchy in its routing, separating intra-domain routing from

inter-domain routing. BGPv4 (the Border Gateway Proto-

col version 4) is the de facto standard for inter-domain rout-

ing. When considering inter-domain routing, one must con-

sider the interactions between IGP and BGP [29, 30]. Inter-

domain MPLS solutions could in theory avoid some of the

problems of interaction, but there are still practical com-

plexities in using MPLS in inter-domain routing [26, 27].

Shortest-paths routing cannot be used because it might vi-

olate BGP policies. For example, peering agreements typi-

cally prohibit transit traffic (i.e. traffic that use backbone B

to transit between two points on backbone A), but shortest-

path routing allows transit.

There is another problem: traditional traffic engineering

algorithms require complete topology and traffic informa-

tion from all networks. ISPs are typically unwilling to share

information such as their topology, link capacities, internal

traffic volumes, and routing policies, particularly with po-

tential competitors. As noted in [27] optimization methods

which do not have complete information often fall short in

performance. Similarly [31] shows that if ISPs co-operate

in determining inter-domain routing they can achieve better

performance. Can we still attain this improved performance

if the ISPs will not share information? It is this problem that

we concentrate on here. How may we perform inter-domain

traffic engineering without sharing detailed topological and

traffic information? This is the major difference between our

work and the majority of the literature on TE.

The primary problem we consider here is a connected

pair of ISPs who wish to optimize the routing of traffic on

their joint network. We do not separate the problem into sep-

arate intra- and inter-domain TE problems, but regard the

joint TE problem. The most closely related works to our own

are [31, 32]. Our results agree completely with [31] in that

ISPs may gain much larger benefits from TE if they coop-

erate. We attempt to go further in providing secrecy for the

parties. In [31] the providers must reveal opaque preference

classes per flow. These certainly hide a great deal of the in-

ternal information of a network, but still open the network

to indirect inference about its properties if not very carefully

implemented. We aim to show just how little information

needs to be shared to perform a joint optimization, and the

tradeoffs between sharing information and performance.

GATEway is pragmatic in the sense that we aim to solve

the problem in a way implementable using current routing

protocols without modification. The primary constraint this

applies to our work is that we use BGP for inter-domain

routing. BGP provides quite good means to control outgo-

ing traffic, but only limited means to control an ISP’s in-

coming traffic. However, if two network operators jointly

control their outgoing traffic the effect is control in both di-

rections. In [31] this is achieved through negotiation of the
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exit points. We shall also aim to control exit points for traf-

fic, though the choices will only be negotiated implicitly.

We will refer to the type of routing solution we consider as

pinned-exit routing, because the ISPs pin the exit point of

particular flows. However, we will use shortest-path routing

within an ISP, and we will not allow path sharing other than

across MECPs.

Evolutionary algorithms have been applied in this con-

text before [28], but that paper is concerned with quite a dif-

ferent issue, namely the fact that there can be multiple objec-

tives when performing inter-domain TE. The paper searches

for non-dominated fronts in order to describe characteristics

of inter-domain routing, whereas we are looking for partic-

ular solutions to a single objective optimization problem.

2.2 Privacy Preserving Computation

The problem we consider comes under the heading of secure

distributed computation, i.e. computing some function of

several pieces of data without explicitly combining data (and

thus revealing it). Another term used to describe this would

be privacy-preserving multiparty computation (we use the

terms synonymously).

The area of secure distributed computation has been heav-

ily influenced by Yao’s two party protocol [33,34], which is

a protocol between two peers that can compute any polynom-

ial-time function pair ( fx(x,y), fy(x,y)), where x and y are

the inputs and fX (·) and fY (·) are the functions of interest to

the two parties X and Y , respectively. The impressive thing

about the protocol is that neither party learns the other’s in-

put data, or their output, i.e. X only learns fX , not fY or y.

The classic example of Yao’s protocol is the computation

of the minimum of two values. The protocol requires two

rounds of communication and has O(n) computation and

communication cost (where the numbers are represented in

n bits). However, the protocol is not always efficient, and so

many techniques have been developed to improve compu-

tational complexity and communications costs for specific

problems. This area is now well developed – see [35] for

a listing of a number of significant papers. Relatively little

work has been done on privacy preserving computation for

Internet applications. Brickell and Shmatikov [36] provide

an algorithm to solve the shortest-paths through a pair of

connected networks, and Machiraju and Katz [32] consider

the flow maximization problem for a pair of networks. Note

though that these both have polynomial time algorithms for

the non-distributed problem. Yao’s two party protocol, and

related approaches provide methods for computing polyno-

mial time functions. The problems here are NP hard.

Also importantly, note that in some problems, even though

an algorithm leaks no side-information, X or Y might still

derive information about the inputs from the output alone.

A good example is the shortest-path problem: the privacy-

preserving algorithm for shortest paths on a pair of con-

nected networks is strictly privacy preserving [36]. How-

ever, knowledge of the output (shortest-paths) is sufficient

to derive information about the weights of the joint net-

work [37]. There is an important distinction between ensur-

ing that the computation is private as opposed to the results

being something that the two parties are willing for their

partner to know.

On the other hand some of the input data may be easily

observable by both parties in any case. For instance, in the

shortest-path example when the routing is implemented we

could simply measure it. Hence leakage of this information

is inconsequential. Given these two features, we do not con-

cern ourselves with strict privacy-preservation here. Instead,

we seek to minimize the leakage (by the algorithm or solu-

tions) of information that could not be otherwise observed

by the participants. It is no longer a formal, provable defini-

tion (as is strict privacy-preservation) but it’s consistent with

the aims of potential participants in GATEway.

2.3 Assumptions

Most approaches to inter-domain traffic engineering can be

characterized as selfish (where one provider acts unilater-

ally to improve its own performance), or as co-operative

where the providers are willing to share information and co-

operate (exceptions being [31, 32]). In GATEway we aim

to get the best of both worlds. Note, we may still assume

that the providers are selfish, but not in quite the same sense

meant elsewhere. They will seek to maximize their own gains.

However, in the approach we propose, we change the out-

come of problems such as the Prisoner’s Dilemma by intro-

ducing a type of trust. If the prisoners can trust each other,

then they can achieve the global optimum. Note that both are

still acting selfishly, but given the additional information, the

correct selfish choice is also the global optimum.

The model we assume for network operators is some-

times called ”semi-honest”. It assumes that the providers are

not malicious, i.e. they will not deliberately aim to cause

damage other network operators, without any positive gain

for themselves. They will not act like a “Dog in the Manger”

(Aesop). Such participants are sometimes called “honest but

curious”, because they may seek to find out information, and

exploit this information to their own benefit (and possibly to

the detriment of other operators). This is a fair assumption

because given BGP’s current security limitations, the current

Internet relies on honest participants.
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2.4 GAs

The concept of a Genetic Algorithm (GA) (see [38] and the

vast number of publication since) is based on the metaphor

of Darwinian evolution — survival of the fittest. The idea,

in brief, is to create a population of solutions to a problem,

and then let them reproduce and evolve such that we tend to

keep better solutions to the problem.

One key advantage of a GA is that the fitness need not

be specified in closed form. For instance, GAs are often used

in optimizing strategies for games where the fitness is deter-

mined by competition between the members of a population.

This advantage is key in our application because it allows

the parties involved in the computation to share only limited

information about fitnesses, rather than the details of each

others networks.

GAs may have the disadvantage that of being slow. Al-

gorithms that are carefully tuned to the application in ques-

tion often perform faster than GAs, particularly where large

parameter spaces must be explored. However, the GA ap-

proach we develop has broadly similar performance to [6].

We extend the use of biological metaphors in GATE-

way to the use of the term symbiosis. In biology, symbio-

sis (sometimes mutualism) refers to two different organisms

that form a mutually beneficial union. A classical example

occurs in coral reefs [39]. Coral polyps are a small colonial

organism that build large endo-skeletal reefs out of calcium

carbonate. However, they get the majority of their food sup-

ply from photo-synthetic algae (zooxanthellae) which reside

inside them, and incidentally provide them with their attrac-

tive coloration. The algae gain a safe home, while the coral

polyps gain a food supply – both parties benefit from the in-

teraction. Typically such organisms co-evolve to this state,

i.e. both evolve together jointly (ancient corals did not ex-

hibit this relationship). Co-evolution is not restricted to sym-

biotic relationships — it can also occur for competitors for

instance — but the key is that the two organisms don’t need

to share genetic material to perform such a co-evolution. We

exploit this in GATEway.

3 Evaluation Methodology

3.1 Test networks

We have tested GATEway on two sets of topology data. Ran-

dom networks, and Rocketfuel networks. While we also use

random networks to validate GATEway these tests are omit-

ted, because they are consistent with and add little to the

findings on more realistic topologies.

The Rocketfuel topologies [37] consist of a large num-

ber of networks and their peering links mapped primarily

using traceroutes. The network maps produced are not per-

fect, however, they represent the best current maps show-

Table 2 The Rocketfuel networks used in this study, listed by Au-

tonomous System Number (ASN).

ASN Name PoPs (degree ≥ 2) links

1 Genuity 24 74

701 UUNet 48 368

1239 Sprint 33 130

2914 Verio 47 176

3356 Level 3 46 536

3561 Cable & Wireless 59 592

7018 AT&T 35 136

ing both the intra-domain and inter-domain topologies of a

significant number of large networks, and we avoid some

of the problems in these network maps by considering the

networks at the Points-of-Presence (PoP) level. We concen-

trate on a group of tier-1 networks, based primarily in North

America (though some have significant components in Eu-

rope, Asia and the Pacific). We choose these because they

all peer with each other with multiple physical connections.

In addition, these networks are the largest, and thus provide

the best test of the scalability of GATEway. The result is

that we consider 7 networks, which each interconnect re-

sulting in 21 possible pairs on which to trial the method.

Additionally, there is little point in trying to optimize rout-

ing for degree one nodes (there is only one link they can

use), and so we eliminate such nodes from the networks un-

der consideration. The networks used are shown in Table 2,

along with parameters such as the number of links and PoPs,

which form the nodes in the graph.

The Rocketfuel data do not contain link bandwidths, and

so in the absence of this information, we shall use the sim-

plest possible assumption of equal bandwidth links (as in

[27]). One exception to this policy is that we will investigate

the impact of varying the peering link capacities because

these links are often considerably different from backbone

links in a number of respects, as a result of being created

through negotiations between multiple parties.

3.2 Traffic generation

The units of traffic we shall manipulate will be flows. A flow

represents the traffic between some source and destination

during some time interval. We shall ignore time dependence

here for simplicity, though some methods of optimization

have been shown to be applicable to solving temporal prob-

lems [9, 15], and these methods could be easily generalized

to apply here. Sources and destinations of traffic in IP net-

works are groups of IP addresses, often with a common pre-

fix. Note though, that the groupings we use here are arbi-

trarily decided by the network operators, i.e. they do not

have to correspond to a particular prefix, customer, router,

or other logical structure in the network. The only constraint
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is that we will not divide flows when routing them, other

than across intra-domain MECPs.

For simplicity, we shall use flows aggregated to the level

of traffic between PoP pairs. Note that this is not a require-

ment for the method. In general an operator might wish to

conceal the addresses allocated to particular PoPs, or sim-

ply the number of PoPs in the network. Hence, they could

use arbitrarily de-aggregated prefixes, (for instance break

the ISP’s address space into /24’s), or they could aggregate

address space allocated to routers. The choice depends on

the balance between complexity and the level of optimiza-

tion required (finer granularity requires more computation,

but perhaps allows a greater degree of optimization).

We need to synthesize traffic matrices for our simula-

tions, and so we extend the simple from [40]. We gener-

ate the traffic demand matrix between nodes using a grav-

ity model with randomly chosen local traffic vectors. That

is, we generate independent (mean one) exponential random

variables

Xk
i,m = the traffic at PoP i in network m in direction k,

where k ∈ {in,out}. The demand matrix elements giving

the traffic from i to j in networks m and n are Dm,n(i, j) =

X
(in)
i,m X

(out)
j,n . Although this method is extremely simple, it was

shown in [40] to match real traffic-matrix statistics well.

Note that the mean of the exponential random variables is

set to one because this is a scale parameter, and as such con-

trols the total traffic. As we will see below, we report relative

performance metrics, so that the total traffic volume is not a

key parameter.

3.3 Performance metrics

We evaluate the performance by measuring maximum uti-

lizations. However, the maximum utilization on its own may

reveal only the size of the traffic, which is being generated

via a randomization process. In order to create a basis for fair

comparisons we will output the performance (the maximum

utilization) relative to the measured routing in the Rocket-

fuel data. Performance results are reported as a percentage

showing the maximum utilization of a technique relative to

the maximum utilization of the same traffic matrix given

the measured routing. Smaller values indicate better perfor-

mance. In some places we report the distribution of these rel-

ative performance values, in others, the average over some

set of results.

4 Weight Optimization using Genetic Algorithms

The problem of intra-domain traffic engineering can be ex-

pressed thus: find the network routing parameters that bal-

ances loads on the existing links in a “beneficial” way. There

is a very simple approach to solving the intra-domain traf-

fic engineering problem, namely by using the shortest-path

routing with a set of optimized link weights. This has the

advantage of being easily implemented using current IGPs.

We call this approach the shortest-path link-weight opti-

mization problem and it has been extensively studied [4–12,

15]. Despite the apparent limitation of shortest-path rout-

ing, the method has been shown (for realistic networks) to

perform almost as well as the most general approaches to

routing available, and to have many other advantages (see

Section 2.1 for more details).

Take a network described by a graph G =(N ,E ), where

N is the set of nodes and E is the edges of the graph. We de-

note the number of nodes in the graph by N and the number

of edges by E. We seek to choose a function w : E → IR+,

giving the link weights of each link, such that when we solve

the All-Paths Shortest Path (APSP) problem, the solution

minimizes the maximum utilization of the links in the net-

work. We use the notation we, ce, and fe to denote link e’s

weight, capacity, and load, and the link utilization is defined

to be ue = fe/ce. Given a set of link weights, the APSP rout-

ing is the routing that minimizes for all i, j ∈ N the dis-

tances di j = ∑e∈pi j
we between nodes i and j, where pi j is

the set of links along the path chosen between i and j.

The problem of finding an optimal weight setting is NP

hard [6], and so we must find heuristic approaches to the so-

lution of the problem. Several proposed heuristic are based

on GAs [7, 8, 11]. We use a slightly different GA here in

order to make it easier to generalize to the joint TE prob-

lem. The chromosome for each member of the population is

a vector containing we for each edge. We restrict these el-

ements to be represented by K bits, restricting the range of

values to we ∈ [0,1, . . . ,2K −1]. The GA algorithm is then:

1. initialization: create (randomly) an initial set of N

solutions called the population, P = {xi}
2. while not finished

a. evaluate fitness: f (xi) of each xi ∈ P

b. generate a new population: the offspring

i. selection: select two parents from the popula-

tion based on fitness.
ii. crossover: combine the parents genes to form

offspring.
iii. mutation: with a probability q mutate each

gene.

c. replace old population with offspring.

However, in designing a GA there is a great deal of flex-

ibility in each of the mechanisms listed here. We take the

approach here of using simple techniques with the aim of

demonstrating the concept rather than providing the best pos-

sible optimization algorithm:

1. Crossover: We use a single (random) point crossover.
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2. Mutation: We perform mutation gene by gene indepen-

dently, with some small probability q.

3. Selection: Selection is determined from the fitness func-

tion f (·) based on the maximum utilization of a given

routing f (xi) = 1/max e∈E ue, and Roulette Wheel Se-

lection, i.e., given a set of solutions {xi}, we select a

member of the population with probability

pi = f (xi)/∑
i∈P

f (xi).

4. Termination criteria: We terminate the algorithm after

a fixed number G of generations.

In addition, there are many tweaks one can apply to GAs

to improve performance. The only one we use here is elitism,

i.e. the retention of the best member of the population during

each generation with no crossover or mutation. This results

in a non-increasing maximum fitness for each generation (a

property not guaranteed otherwise).

We use the measured routing as an initial value, seeded

into the population. This initial value does not have quite the

same importance as in many other optimization techniques,

because it replaces only one of the initial population. Note

we confine our weight values to a smaller range of integers

than the Rocketfuel data, so our initial solution may have

different routing from the measured routing, and hence our

results will not all start at 100% performance.

4.1 Validation of the GA approach

We tested the above approach on a range of simulated net-

works in order to choose reasonable parameter settings (re-

sults omitted because of space restrictions). Our main pa-

rameters are the probability of mutation q = 0.01, the popu-

lation size P = 50, the number of bits to use in represen-

tation of a weight K = 4, and 2 elite solutions were re-

tained. We compared our results to those of Fortz and Tho-

rup (FaT) using their code, performing G = 10000 iterations

for both algorithms. Figure 1 (a) shows the performance

of our approach and FaT as defined in Section 3.3 by the

maximum utilization of the approach relative to the maxi-

mum utilization for the measured routing on the Rocketfuel

networks. Both approaches produce similar improvements

(though FaT performs 2% better overall). Figure 1 (b) shows

the computation times. The GA times are better by 27% on

average. Although these computation times are not insignif-

icant in some cases, weight optimization techniques have

a number of advantages. For instance, Roughan et al. [15]

showed that one could get a large part of the improvement

of weight optimization using a much smaller number of iter-

ations, thereby creating a potentially favorable tradeoff be-

tween time and performance — we demonstrate the same

phenomena in Section 5.3.1. Furthermore, [15] also showed

that weight optimization could be performed to create a set

of weights that were robust over a period of at least 24 hours

(taking into account prediction errors, and daily variations).

Hence, significant computation times can be amortized over

such periods.

In some cases we observe that the performance of both

algorithms was somewhat limited. For instance, in Figure 1,

the performance improvement for ASN 7018 was only around

70%. In this particular case we investigated the reason, which

was that there were two components of the graph that were

poorly connected. In particular, three PoPs in Florida were

connected to the rest of the North American nodes via a sin-

gle pair of links. Given only two links, the opportunities for

load balancing are somewhat limited. In the real network

this would be reflected in the fact that the two links in ques-

tions would either have increased capacity, or the poorly

connected network segment would have little traffic. This

appears to be a relatively common occurrence in the Rock-

etfuel topologies, and hence we wished to assess how much

our results were biased by such features. To do so, we ex-

cise the 3 Florida nodes (and 8 edges) from Rocketfuel ASN

7018, and perform the optimization on this new network.

The results are shown in Figure 1 under the heading ASN

7018a. Clearly a great improvement was obtained for the re-

duced network. In the remaining work in this paper we will

continue to work with ASN 7018a, the Rocketfuel topology

without the Florida nodes, but we leave the other topologies

untouched, thus providing some contrast as to the impact of

this issue.
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Fig. 1 Simple weight optimization using the GA for G = 10000, and

Fortz and Thorup (FaT) also using 10000 iterations. The results show

the mean relative performance for 30 random simulations, and compute

times.

4.2 Computational complexity

The algorithm proceeds in a number of iterations G, with

population size P, hence its computational cost is propor-

tional to PG, but the critical factor in the computational cost
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is the cost of evaluating the fitness function, which requires

the solution to the APSP problem. We use a simple imple-

mentation of the Floyd-Warshall algorithm to perform this

step (the algorithm has O(N3) computational complexity)

and Figure 8 confirms cubic complexity. The all-paths short-

est path problem can be solved more efficiently using better

implementations of Dijkstra’s algorithm but other elements

GATEway will require O(N3) computations and so we do

not try to improve the APSP algorithm here.

5 Symbiotic Optimization

The previous section considered optimization over only a

single network, and similar results have been described else-

where. We now describe the generalization of this approach

to a pair of networks joined together at a set of peering

links. The GA algorithm is extended to allow joint evolution

of two “symbiotic” populations of solutions, one for each

ISP. As in biological symbiosis the participants don’t have

to share all their genetic material. However, there is some

information leakage in our initial approach, and we consider

how to limit it in Section 6.

5.1 The problem

The problem we wish to solve here is the problem of opti-

mizing the routing of two connected networks. In principle

this is no more complex than optimizing one large network

(comprised of the two inter-connected networks). However,

business constraints restrict the type of routing allowed. For

instance, transit routing is not allowed between peers. One

peer cannot use another network’s backbone to transit its

traffic across the country using its own network only at the

end points. Hence the simple generalization of shortest-path

routing to the joint network created from inter-connecting

the two peers will create unacceptable solutions.

Furthermore, as noted earlier, we wish to limit the ex-

change of information between the two peers. The joint shortest-

path solution would require each network to share its topol-

ogy, and traffic in detail. More precisely, take two networks

G1 =(N1,E1), and G2 =(N2,E2), which are inter-connected

by a set of peering links Q, where for q ∈ Q we have q =

(n1,n2) where n1 ∈ N1 and n2 ∈ N2. We can create a joint

network G = (N ,E ), where N = N1 ∪N2, and E = E1 ∪
E2 ∪Q. We shall use the solution to the shortest-path (SP)

link-weight optimization problem on a joint network as a ba-

sis of comparison, because we have substantial evidence [6,

9, 15] that it will be close to the best possible routing so-

lution. To be clear, in this solution (which we call joint SP),

the peering links have no special role, and we do not attempt

to prevent transit traffic. Hence the solution is an unrealiz-

able idealization, but we use it as a loose lower bound on

performance, for comparison.

At the other end of the spectrum, we will also compare

results with selfish routing, where each provider optimizes

its own routing with information it can measure itself. This

selfish solution will be poor because each provider cannot

anticipate the changes the other will make to its inbound

traffic. On the other hand, GATEway

1. can be computed with limited sharing of information;
2. prevents transit; and
3. is reasonably simple to implement with standard rout-

ing protocols (e.g. shortest-path IGPs and BGP).

We do this using the mechanism of exit point pinning. Given

a traffic flow from network 1 to 2, we would choose a par-

ticular exit point, and pin this flow so that it uses that exit

point. There are a number of mechanism one could use to

implement such a pinning (see Section 5.5), and the pinning

could be performed at a variety of granularities. As we have

previously discussed, we shall consider PoP level flows. We

also simplify by pinning based solely on source or destina-

tion, not both. In the examples we show source based rout-

ing, as it is slightly simpler to explain, though destination

based routing (which is an equivalent, though transposed

problem) would be easier to implement. For example, traffic

from node i in network 1, to node j in network 2, would be

pinned to peering link q(i) ∈Q (note we can specify a peer-

ing link by its end points q = (k,m), k,m ∈ N or its index

in the set, e.g. q = j ∈ [1, . . . ,Q]). The exit point chosen for a

given traffic flow is not necessarily the closest to the point of

origin, so this is not hot-potato routing, but we do not need

the full flexibility of a scheme like TIE [17].

Before we can continue, we must also briefly discuss the

difference between Origin-Destination (OD) demand matri-

ces, and Ingress-Egress (IE) traffic matrices. As noted earlier

we will simulate using an OD demand matrix generated via

a gravity model, which specifies the traffic from origin to

destination in the joint network G , and so is a N×N matrix,

where N = N1 +N2 and Ni = |Ni| is the number of nodes in

network i. Denote the OD matrix by D where its elements

D(i, j) are the traffic from origin i to destination j, and we

can write D in the form

D =

(

D1,1 D1,2

D2,1 D2,2

)

,

where Dm,n is the matrix whose elements Dm,n(i, j) give the

traffic from node i to j in networks m and n.

The IE traffic matrix describes the traffic matrix as seen

internally on a single one of the networks, which is not the

same as the demands (see [41] for detailed explanations of

this phenomena). For instance, for network 1, the observed

traffic matrix will not be D1,1. Using pinning, we can easily

construct an IE traffic matrix T (k) for network k from the
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OD matrix. We simply take, for example

T (1)(i, j) = D1,1(i, j)+
N2

∑
m=1

D1,2(i,m)I(q(i) = ( j,∗))

+
N2

∑
m=1

D2,1(m, j)I(q(m) = (∗, i)),

for all nodes i, j ∈ N1, where ∗ is a wildcard, and I(·) de-

notes an indicator function, i.e. I(A) = 1 if A is true, and 0

otherwise. The computation for T (2) is similar. Notice that

the matrices T (i) may not follow a gravity model even where

D does. Computing T (1) takes O(N3
1 + N2

1 N2) operations,

and so the resulting computation is of similar order to the

shortest-paths computation. The demands D1,2 and D2,1 are

measurable by either party using flow collection. The inter-

nal demands Di,i do not have to be shared.

In addition, we need to be able to compute the traffic on

each peering link q, which we can do by

r
(1,2)
j =

N1

∑
k=1

N2

∑
m=1

D1,2(k,m)I(q(k) = j),

r
(2,1)
j =

N2

∑
k=1

N1

∑
m=1

D2,1(k,m)I(q(k) = j),

where r(1,2) and r(2,1) are vectors of the loads on peering

links. Both providers know the capacity of peering links.

Network operator i can now compute the shortest paths

via the APSP, and hence compute the internal links loads

on network Gi using only local information: the IE traffic

matrices, a set of exit points, and link weights on Ei.

5.2 GA solution

Consider the problem above. We wish to find a solution that

limits the sharing of information to the necessary minimum,

and yet allows optimization to take place. We shall apply

the metaphor of symbiosis here, allowing each network to

co-evolve without sharing all their genetic material.

We start by specifying the chromosomes — there will

be four. For each network we use one chromosome to de-

scribe its weights, and another to describe the pinning posi-

tions. We separate the two groups of information as we may

wish to perform cross-over and mutation in different ways

for each type of gene. More specifically, each member of the

population will be described by the vectors wi, and qi, giv-

ing the links weights, and pinned exit points, respectively,

for networks i = 1,2. As before, the weights are restricted

to [1, . . . ,2K −1] and qi ∈ [1, . . . ,Q], where there are Q peer-

ing links. Network operator i holds wi and qi. The values

of the pinnings are shared, but the network weights are not,

thereby keeping secret each networks’ internal topology.

Each network uses the traffic matrices, pinnings, and its

own internal weights to compute its own internal link utiliza-

tion, and the peering link utilization. The information nec-

essary to compute the joint fitness function (the maximum

utilizations) is shared, so that each network knows the joint

fitness of all members of the population. From this each per-

forms selection, sharing the seeds used in pseudo-random

number generation such that they each select the same pop-

ulation members. The two then perform cross-over, and mu-

tation independently (only on the chromosomes they hold).

5.3 Evaluation

5.3.1 Performance

We test the performance of techniques by simulating us-

ing the methodology described in Section 3. That is, we

choose a pair of networks whose topologies and intercon-

nects are given by the Rocketfuel data, assume link capaci-

ties are equal, and we generate a random (joint) traffic ma-

trix describing traffic inside each network, and between the

two. We perform 10 realizations of each of the 21 possible

pairs of network leading to a total of 210 simulations. For

each simulation we compute performance, defined in Sec-

tion 3.3 to be the maximum utilization of a technique rela-

tive to the maximum utilization of the measured Rocketfuel

routing (smaller percentages are preferred).

The Cumulative Distribution Function (CDF) of the per-

formance of each technique is shown in Figure 2. The y-

axis show the proportion of tests with performance below

the specified performance, so curves further to the left indi-

cate better performance and there is no averaging over sim-

ulations in this figure. Note that we shall defer discussion

of the “symbiotic 2” algorithm until Section 6, where we

present an alternative algorithm that improves privacy (at a

cost in terms of performance).

Unsurprisingly, the joint SP (Shortest-Paths) algorithm

has the best performance. It is noteworthy that its perfor-

mance ranges between 20 and 100% with an average of

46.6% (Table 1 summarizes the average performance). Sum-

marizing, joint SP routing always improves performance in

comparison to the measured routing on these networks, and

the improvement ranges from being fairly small, to a factor

of five, with the average being around a factor of 2. How-

ever, as earlier noted, the joint SP solution is unrealizable.

Given that this routing is unrealizable, and that the net-

works in question were not specifically designed to carry the

simulated traffic, it is natural to ask how important the above

improvement is. We can see this by considering how well we

do using selfish routing, which should in principle account

for the simulated traffic. The performance of selfish routing

ranges to values greater than 120% (values over 100% indi-

cate that we are actually worse off with this routing scheme).

In about one third of cases, providers are worse off if they

act selfishly. This result contrasts strongly with that of joint
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SP routing, and so we use the joint solution as a benchmark

against which to compare our approach.

The performance of the symbiotic approach is close to

that of the joint SP algorithm. Its average performance rel-

ative to measured routing is 51.5%, so our method provides

roughly a factor of two performance improvement, but it is

realizable even with the privacy constraint.

Figure 3 shows the performance after each iteration for

a single simulation of a specific network pair. Most impor-

tantly we learn from this graph that the majority of improve-

ments in performance occur early on in the optimization.

Hence, one could find useful tradeoffs between performance

and speed. Graphs for other provider pairs, and other simu-

lated traffic matrices also support this view.
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Fig. 2 The CDFs showing the performance of the TE techniques with

respect to the measured routing with G = 5000.
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Fig. 4 Performance of the symbiotic algorithm as a function of the

joint network size.

Additionally, we considered how various characteristics

of the networks influenced performance. Figure 4, shows

that the performance was correlated with the network size.

We speculate that this is because larger networks provide

more opportunities for route diversity, which may be benefi-

cial for shortest-path routing optimization (we see a similar

phenomena in Section 5.4 for larger networks).

5.3.2 Peering vs internal links

In the work above, we have deliberately kept things sim-

ple in having all link capacities equal. However, anecdotally,

peering links are often supposed to be smaller than internal

links. Peering links are built through negotiation between

competitors. Neither party wishes to pay for the links, and

so they are sometimes allowed to reach a state of congestion

before any action is taken to upgrade the links. In compari-

son, anecdotal evidence suggests that most major backbones

are relatively lightly utilized, and are likely to remain so un-

der due to the requirements for failover capacity.

Figure 5 shows the relative performance of the algo-

rithm as peering link capacity varies with respect to back-

bone capacity. The figure shows the maximum link utiliza-

tion relative to the measured routing for the Rocketfuel net-

works 1239, and 7018 averaged over 10 simulations. The

figure also shows the maximum peering link, and internal

link utilizations. For normalized peering link capacities be-

low about 0.4 the performance of the algorithm is dominated

by the peering link performance, i.e. the maximum link load

occurs on a peering link. Under such circumstances, the rel-

ative performance is dominated by a bin-packing problem,

which unsurprisingly can be solved significantly better than

the measured routing. On the other hand, as the peering ca-

pacity increases, the network performance becomes domi-

nated by the internal link capacities.

Note that as the normalized peering capacity becomes

large, the performance approaches the individual performance

of network 1239 (shown in Figure 1) indicating that this net-

work is the bottleneck in this scenario. However, despite the

dominance of this component of the network, other link traf-

fics are being reasonably balanced (as shown by the compar-

isons between the purely peering, and internal performance

shown in the figure). This might be even better accomplished

if we used a less simple performance metric such as consid-

ered below

5.3.3 Alternative metrics

The algorithm above has been shown to find a good min-

max link utilization solution to the routing problem. How-

ever, network operators may not share this goal; they may

wish to optimize other objective functions. A key advan-

tage of GAs is their flexibility with respect to objective func-

tions. We have tested our approach against the metrics drawn
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Fig. 5 Maximum utilizations of the network, internal links, and peer-

ing links as the normalized peering capacity varies.

from [6, 9]. It has the advantage that it incorporates conges-

tion information from the whole network, not just the max-

imally utilized link. The metric of [6, 9] is given by a sum

∑e C(ue), where C(0) = 0 and C is a piecewise-linear, in-

creasing function of utilization (with increasing derivative).

We then use fitness f (u) = 1/∑e C(ue).

Figure 6 clearly shows that the new metric is optimized

(in fact given the log y-axis the improvement is much faster

than for the max-utilization). The figure shows not just the

total congestion function, but also the function for each indi-

vidual network, for a particular pair of Rocketfuel networks.

The reason for showing the individual networks results is

to show that gains are made for both networks, and that the

gains do not depend on the ordering of the two (i.e. the max-

imum and minimum congestion functions are both being op-

timized simultaneously). Link utilization results are omitted

but support the same view.
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5.3.4 Robustness

TE is typically applied predictively, i.e. one measures the

network, determines the routing to be used, and then this is

applied in some future time interval where the traffic may

not be identical to that measured. In addition, measurements

themselves may contain errors, for instance where sampling

or inference is used in data collection. Hence, robustness to
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Fig. 7 Robustness results for Rocketfuel networks 1239 and 7018, av-

eraged over 100 simulations.

measurement or prediction noise is a highly desirable char-

acteristic of any TE algorithm. One of the advantages of op-

timal weight assignment is robustness to noise [5, 13, 15].

We test the robustness of GATEway by determining the

optimal (or near optimal) routing using the symbiotic GA,

but then measuring its performance on a network where a

different traffic matrix is applied. For each initial OD de-

mand matrix D(i, j), we measure performance on a traf-

fic matrix with multiplicative noise, i.e. Derr(i, j) = D(i, j)

[1+σN(i, j)] , where N(i, j) is an independent standard nor-

mal random variable, for each i and j, where we vary σ such

that the standard deviation of the noise relative to the ini-

tial traffic varies from 0 to 20%. For each of the 10 initial

traffic matrices we repeat this experiment 10 times, adding

different noise each time, for a total of 100 experiments. Fig-

ure 7 shows the results for the Rocketfuel networks 1239 and

7018. The figure shows both the average performance, and

the worst case performance (max). Even the worst perfor-

mance over the set of 100 experiments shows great insen-

sitivity to the errors. Similar results are observed for other

values of peering capacity. It may seem surprising that the

results are quite so insensitive to the input traffic, but this

is roughly consistent with the results of [5, 13, 15], which

showed remarkable insensitivity to noise in the simple weight

assignment problem.

5.3.5 Computational Complexity

The issues surrounding computational complexity of this

algorithm are essentially the same as those for the simple

intra-domain problem, resulting in O(N3) complexity. Note

though that the size of the network on which we evaluate

shortest paths is the individual networks, not the joint net-

work, and so the computational time is O(N3
1 +N3

2 ) which is

much faster than the O((N1 + N2)
3) computational time for

the joint network. Given two equal sized networks the reduc-

tion in computation time is a factor of 4. Figure 8 confirms

the algorithms’ complexities, showing computation times

and fitted cubic curves.
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of nodes for the Rocketfuel topologies (G = 5000), and fitted cubic

polynomials.

5.3.6 Communications Cost

The implementation of this algorithm as a distributed al-

gorithm requires a transfer of information between the two

peers. The information to be transferred consists of:

1. The pinning points for each member of the population,

for each generation.

2. The information needed to compute the fitness function

(in our case, the maximum link utilizations).

The information require to compute fitnesses is small com-

pared to the pinning information. The pinning information

requires vectors of size Ni to be transmitted for each net-

work i, for each member of the population, and at each gen-

eration. Hence the communication volume is O(NmaxPG).

Note also that each value to be transmitted is an integer

in the range [1, . . . ,Q], where Q is typically small (< 16),

and can therefore be represented with around 4 bits without

compression. However, after an initial random selection, the

pinning vectors are not random, but are the result of a highly

non-random process of evolution, and so are quit compress-

ible. We tested this by writing the population of pinning vec-

tors for each network to a file (for the example considered

above with the two networks ASN 7018 and 1239), and us-

ing gzip to compress the files. Figure 9 shows the results

with respect to the number of iterations (generations) of the

GA. Compression ratios of around 4:1 were achieved within

10-15 generations. Thus the pinning data can be communi-

cated with around 2 bits per value. Given parameter values

used here (for instance P = 50, Q ∼ 10, N ∼ 50), the com-

munications cost is < 1 kB per generation.

5.3.7 Other violations of assumptions

The largest assumption in all of this work is the “honest but

curious” assumption. It is a fair assumption — the current

Internet relies on this as well, given the relatively insecure

nature of inter-domain routing at present. However, it is in-

teresting to consider what happens if this assumption is vi-

olated. Imagine that one of the ISPs either lies about, or is
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Fig. 9 The achieved compression ratios as a function of the number of

generations of the GA (P = 50, Q = 10, N = 50).

mistaken in the data it provides to the algorithm, or chooses

not to follow the routing determined by the algorithm. It is

a simple matter then for the other ISP to measure the traffic

across its peering links using flow capture, and from this de-

termine that a problem has occurred. If the problem reduces

their performance, then they may either renegotiate a new

routing (via our algorithm or otherwise), or go back to their

old routing, so they are no worse off than before commenc-

ing the use of this algorithm. The other ISP may possibly

be better off in the short run through its dishonest behavior,

but in the long run they are unlikely to make any more gains

than they would by violating current BGP policies.

5.4 Multiple-party optimizations

The extension of this work to more than one party is quite

straight-forward. N peers (in the sense of neighboring net-

works that do not allow transit) can perform the same type of

optimization, such that each network retains the information

about its own link weights, and shares appropriate pinnings

with each peer. Given the GAs ability to cope with arbitrary

fitness functions, the generalization is obvious. Figure 10

shows relative performance of the optimization as the num-

ber of participants increases. Again this seems to be a result

of the increased diversity of routes in a larger network.

5.5 Implementation

The GA would use a protocol independent of the routing

protocol. The optimization only requires concrete instanti-

ation in routing once an optimal solution has been deter-

mined. There are two approaches to instantiate the derived

routing using standard, existing routing mechanisms. Firstly,

tunnelling techniques such as MPLS, or IP over IP encapsu-

lation allow explicit choice of exit points. Such techniques

have already been proposed for use in [17]. Tunnelling gives

a high degree of control both over the exit points, and the
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participants, relative to performance for two participants.

path taken by traffic, though in GATEway the route of tun-

nels would be chosen using shortest-paths (only exit points

are fixed).

Alternatively, one could use BGP mechanisms to alter

exit points. Mechanisms such as local preference, and MEDs

are used to control exit points. These apply control across a

whole network (e.g. the exit point for all source nodes for

a particular destination would be the same), which implies

a destination based pinning. We showed that such a pinning

would still provide excellent gains in performance. Even if

BGP is used, only exit points are changed, so announce-

ments outside the AS are not needed, and iBGP convergence

times will be much shorter than eBGP convergence times.

At present TE is typically performed as needed, in a

rather ad hoc fashion. However, with automated optimiza-

tion it could be performed regularly. The time interval at

which we perform TE is a tradeoff between more precise

optimization (using a fine-time grain), and the cost (poten-

tial packet loss during routing reconvergence) of frequently

changing network routing. As noted, we do not need to wait

for slow eBGP reconvergence, and so the impact of routing

changes would be quite small. On the other hand, shortest-

path routing optimization has been shown to work well over

for traffic with daily variations [9, 15]. So it seems reason-

able (as a starting point) that the TE should be performed

once per day.

There could be a short period between the optimiza-

tion and implementation phases where the routing on the

two networks not synchronized (in the sense that the two

are not both using the same optimized polices). This cannot

cause route loops as the routing protocols are synchronized,

but may result in a brief period of suboptimal routing. The

length of this period would be determined by how quickly

the agreed routing can be implemented in the respective net-

works. With automation this could be accomplished in sec-

onds to minutes, but once again note that the only effect

would be some suboptimality in routing, and we have al-

ready shown that the shortest-path routing approach is quite

insensitive to noise, and so we should no expect serious con-

sequences during this phase.

Furthermore, network providers often have a maintenance

window (in the early morning when traffic is light) for mak-

ing network changes so that they have minimal impact on

customers. It would be desirable to schedule TE activities at

the end of this interval. As the maintenance window is cho-

sen to be during a period when traffic is light, some small

degree of suboptimality in routing will have negligible im-

pact. Furthermore, most network changes happen during the

maintenance interval, and so performing TE at the end of

this interval allows the network to adapt in a timely fashion

to any topology changes.

6 Privacy Maximization

The above approach to joint network optimization limits in-

formation sharing, but there is still some leakage through

the pinning vectors and fitness functions. The joint fitness

calculation requires the ISPs to share maximum utilization

data. This problem is alleviated in part through the use of

the utilization metric of [6, 9], but can be improved further.

One of the advantages of the GAs is that the fitness func-

tion can be arbitrarily chosen. All we really need to know

are the selection probabilities for each member of the popu-

lation of possible solutions. We have a polynomial-time al-

gorithm for constructing these probabilities, and therefore

Yao’s two party protocol applies. This is now a well re-

searched area (for instance see some of the reference at [35]),

and so, given space limitations, we only briefly describe the

approach. There are three steps: firstly, we must solve the

APSP for each network, given its internal weights. This can

be done internally by each provider. Then these routes must

be used to compute the load on each link from the OD de-

mands. For internal links fe = ∑
N
i, j=1 D(i, j)I(e ∈ pi j). This

can be directly computed where i, j ∈Nk, but for i ∈Nk and

j ∈ Nm, k 6= m we need to break the indicator into two parts

I(e ∈ pi j) = ∑
k

I(e ∈ pik)I(q(i) = (k,∗))

+∑
m

I(e ∈ pm j)I(q(i) = (∗,m)),

where q(i) is the peering link for traffic originating at node

i. The number of bits for D(i, j) is O(nN2) where we rep-

resent the values with n bits, while for the indicator func-

tions there are O(EN2 +N logQ) bits. Yao’s protocol’s com-

munications cost is linear in the number of bits [34], and

so requires O(nN2 + EN2 + N logQ) overhead. The above

computation has to be performed for each edge, so given

that typically E > n, and we can write the complexity as

O(E2N2). The third step is to compute the maximum of

these values, for which a standard version of Yao’s protocol

is sufficient, and with comparably negligible overhead (as
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is the overhead of computing the peering link loads). Ad-

ditionally, secure operations can be composed, hiding inter-

mediate data. Hence it is possible to perform a step of the

symbiotic algorithm which satisfies the definition of privacy

preserving, in the sense that the two ISPs need not share

(i) utilization data, (ii) pinning data, (iii) any other details of

their internal network. We call this solution privacy-max and

note its performance is the same as the previous symbiotic

solution. The cost for using this approach is an increased

communications cost associated with performing Yao’s pro-

tocol.

An alternative to strict privacy preservation via Yao’s

protocol is to separate selection into the two networks. More

precisely, each network computes its own fitness function,

and each uses this to select one parent for cross-over. The

two networks share the pinning information which is needed

to compute link utilizations (again Yao’s protocol could be

used here to avoid this information being shared). However,

the two network use completely independent fitness func-

tions — the fitness functions need not even be the same, thus

avoiding any need to share this information. There is a cost

in performance. The method (which we refer to as “symbi-

otic 2”), does not perform as well as the simpler algorithm.

The results for this independent symbiosis are shown in Fig-

ures 2 and 3, and Table 1 summarizes the performance of

all methods considered here. The average performance after

5000 generations is 68.4% as compare to 51.5% for the pre-

vious algorithm, though still a considerable improvement on

the selfish solution. The performance reduction occurs be-

cause, although we still use elitism, each network chooses

its own elite member of the population without knowledge

of the fitness function of the other network. As a result, the

chosen elite members of the population are not necessar-

ily elite from the point of view of the other network or a

joint fitness function. Hence performance (as measured by

the joint maximum utilization) is no longer monotonic. Fig-

ure 3 shows this non-monotonicity. The final solution is ac-

tually worse than some of the solutions chosen along the

way, but without knowledge of the joint fitness, we have no

way to know this, and choose the better solution.

Note that the results for “symbiotic 2” also illustrate an-

other important point. In these examples we use different

fitness functions in the two networks. The fitness are com-

puted independently, so this is easily incorporated.

7 Conclusions and Future work

This paper presents GATEway, a set of algorithms for joint

TE between two networks who do not wish to make disclo-

sure of information about their networks. We demonstrate a

distinct advantage to combining information, but we present

methods here that allow combination of data, without need-

ing to share it. Such approaches could have a significant im-

pact on the way network operators interact.

There is a great deal of interesting work leading on from

this paper. Initially we may find improvements of the GA,

but the GA is highly flexible, so we anticipate being able

to apply modifications to solve more sophisticated problems

considered in the TE literature, for instance optimized rout-

ing that works well for failure scenarios [18, 19]; that can

find single weight settings for a range of traffic matrices [9,

15]; where additional constraints are imposed; or applied to

TIE routing [17].

The approach we have proposed here for a specific prob-

lem is actually quite general. It could be applied to other

network problems, for instance inter-ISP capacity planning,

and perhaps it is also possible to extend these methods out-

side of the networking world. The important point is that

GAs make the approach inherently flexible to a range of

problems where information sharing is undesirable.
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