
Fast and Effective Worm Fingerprinting via
Machine Learning

Stewart Yang, Jianping Song, Harish Rajamani, Taewon Cho
Yin Zhang and Raymond Mooney

Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, USA
{windtown, sjp, harishr, khatz, yzhang, mooney}@cs.utexas.edu

Abstract— As Internet worms become ever faster and more
sophisticated, it is important to be able to extract worm sig-
natures in an accurate and timely manner. In this paper, we
apply machine learning to automatically fingerprint polymorphic
worms, which are able to change their appearance across every
instance. Using real Internet traces and synthetic polymorphic
worms, we evaluated the performance of several advanced
machine learning algorithms, including naive Bayes, decision-tree
induction, rule learning (RIPPER), and support vector machines.
The results are very promising. Compared with Polygraph, the
state of the art in polymorphic worm fingerprinting, several
machine learning algorithms are able to generate more accurate
signatures, tolerate more noise in the training data, and require
much shorter training time. These results open the possibility of
applying machine learning to build a fast and accurate online
worm fingerprinting system.

I. I NTRODUCTION AND BACKGROUND WORK

A typical intrusion detection system monitors all the in-
coming and outgoing traffic, while removing traffic flows
that match predefined rules (signatures). However, worm fin-
gerprinting currently requires security experts to manually
analyze captured worm instances and thus can be very slow.
Meanwhile, recent studies have shown that new worms such as
the SQL SLammer can compromise all vulnerable hosts in the
network in as short as 10 minutes. Moreover, worms released
in the past few years have become even more powerful by us-
ing polymorphic techniques to avoid detection. As a result, in
order to effectively stop worm outbreaks, new automated and
robust worm fingerprinting techniques need to be developed.

Among the firstcontent-basedworm fingerprinting systems,
Autograph [1] uses a predetermined heuristic to pre-classify
input flows into suspicious and unsuspicious flows, which are
then fed as training data to a Rabin’s fingerprint based feature
extractor and greedy signature generating algorithm.

In Polygraph [2] Newsome et al. propose three algorithms
which focus on detecting and generating signatures for poly-
morphic worms: sequential signatures, conjunctive signatures
and Bayesian signatures. Polygraph employs a common sub-
string finder instead of Rabin’s fingerprint algorithm to con-
struct features.

II. WORM FINGERPRINTING VIA MACHINE LEARNING

The task of worm fingerprinting can be abstracted to the
problem of constructing a classifier to separate a specific type
of flow (worms) from all other flows (innocuous flows) based

on their content. There is a range of classification algorithms in
the machine learning literature that optimize for classification
accuracy – the percentage of instances that are correctly
classified – as well as for other criteria, such as training time
and noise resistance. In particular, in terms of time complexity,
most of the methods tested here are linear in the size of the
training data, compared to the higher complexity of Polygraph.

As the main contribution of this paper, we conducted ex-
tensive experimental studies to verify our conjecture that other
standard machine learning methods would outperform those
used in Polygraph. The algorithms we tested included Naive
Bayes learners (NaiveBayes and SparseNB), Support Vector
Machines (SVM), Decision Trees (J48), and Rule learners
(JRip). These learners were all used “right out of the box”
from the Weka data-mining package [3], except for sequential-
signature Polygraph (Seq-Poly), which we implemented fol-
lowing the best-performing method from [2].

III. E XPERIMENTAL RESULTS

A. Experimental Design

Our experimental comparisons were conducted on a combi-
nation of network traffic traces and self-generated polymorphic
worm instances. The two network traces – referred to here
as the day trace and the week trace – were collected from a
100Mbps fiber link at ICSI, recorded over the span of one day
and one week respectively. These two traces were previously
used in experiments on Autograph. As preprocessing, we
reassembled packets in the two traces into flows and filtered
out flows that were labeled as worms by the Bro intrusion
detection system; the resulting pool of flows only contained
innocuous flows. Following the studies on Polygraph, we
generated polymorphic worm flows for the Apache-knacker
worm and the Atphttpd worm, headers for these worms were
sampled uniformly from the pool of previously constructed
innocuous flows, and bodies were constructed from known
signatures of these two worms by filling random characters
into the wildcard slots of these signatures.

As the next step, we transformed the string-based flows
into feature-vector representations by employing one of two
feature construction techniques: a common substring finder
like that used in [2] (COM) and ann-gram finder like that
used in [4] (n-GRAM). As in Polygraph, COM looks for
all substrings within a predetermined length limit that appear
in more than a given percentage of flows. Following [4],n-
GRAM finds all n-grams in the payloads and retains the 500

n-grams with the highest information gain with respect to
discriminating between suspicious and unsuspicious flows. In
order to find the best parameters for the two methods, we
conducted development experiments on the day trace.

The experiments were carried out on desktop machines with
3.0GHz Intel Pentium IV processors and running Linux kernel
2.6.13. We compared all six algorithms based on the following
criteria. To measure the accuracy of generated signatures, we
recorded the cross-validated false positive rate (the percentage
of innocuous flows incorrectly classified as worms) as well
as the false negative rate (the percentage of worm flows
misclassified as innocuous). To evaluate the resilience of these
algorithms to unavoidable class noise in the suspicious pool,
we computed noise curves by varying the ratio of innocuous
flows in the suspicious pool and recording the error rates
at each point. Finally, to evaluate the detection speed, we
recorded the time required by each algorithm to process the
training sets. To ensure the reliability of the results, for each
setting we report the results averaged over ten runs.

B. Accuracy of Generated Signatures

1) With a worm-free unsuspicious pool.:Following the
experimental design used to test Polygraph, for different
suspicious pool sizes from the week trace, we generated
a noise curve for different levels of classification noise in
the suspicious pool. From the experiments, we observed that
Polygraph started to generate false positives when the level of
noise in the suspicious pool increased, which agrees with the
results presented in [2].

JRip (the Weka implementation of RIPPER) performed the
best among the contending algorithms, as it achieved zero false
positive rates consistently; in fact, for most runs, JRip just
produced single rules that directly encoded the address of the
security flaw in the server system, required for any worm to
break into it (and not exploited in innocuous flow payloads).
In addition, JRip successfully generated such signatures when
there were only five true worm flows in a suspicious pool of
size 50, which suggests it would be able to detect a new worm
early in its outbreak. Since there seem to be small “smoking
gun” signatures for such worms, it is not surprising that
symbolic rule learning algorithms like JRip are more accurate
than more numerical and probabilistic methods since their bias
for finding simple symbolic descriptions of categories seems
to be a good match for this problem.

2) When the unsuspicious pool contains worms.:The au-
thors of Polygraph make the assumption that the unsuspicious
pool is free of worm flows, in order to use flows from a few
days earlier to form pure unsuspicious pools. To verify the
conjecture that Polygraph will be rendered ineffective if this
assumption is relaxed, we repeated our previous experimental
setting, additionally blending in twenty simulated worm flows
into the unsuspicious pool.

As shown in Figure 1, Polygraph had a consistently high
false negative rate, while JRip generated zero false negative
rates even when the number of innocuous flows increased, and
only began to mislabel worm flows as innocuous when the
number of worm flows in the suspicious pool dropped below
that of the unsuspicious pool.

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 0 10 20 30 40 50 60 70 80 90

F
al

se
 P

os
iti

ve
s

R
at

e

Percentage of Innocuous Flows in Suspicious Pool

Seq-Poly
JRip
J48

SVM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 10 20 30 40 50 60 70 80 90

F
al

se
 N

eg
at

iv
e

R
at

e

Percentage of Innocuous Flows in Suspicious Pool

Seq-Poly
JRip
J48

SVM

Fig. 1. False positive and false negative rates under varying percentage of
noise in the suspicious pool (200 flows). Unsuspicious pool (45,000 flows)
contains 20 worm flows.

Worm authors can disable worm detection algorithms by
slow-poisoning the unsuspicious pool before launching the
attack. On the other hand, the use of recorded innocuous flows
to form the unsuspicious pool may cause worm fingerprinting
algorithms to generate erroneous worm signatures for new
legitimate innocuous flows (with different characteristic pay-
loads) right after their release, because these flows only exist
in the suspicious pool and not in the unsuspicious pool.

C. Training Time

1) Training time for the accuracy experiments.:Figure 2
presents training times for the two experiments presented in
the previous subsection.

The time complexity for sequential Polygraph isO(n2m),
wheren andm are the numbers of suspicious and unsuspicious
flows respectively. This, we believe, is one of the major
limitations of the Polygraph algorithm, because in the outbreak
of a new worm, the suspicious pool can easily grow up to
hundreds or even thousands of flows, and consequently the
time required by Polygraph to train on this suspicious pool
will be too long to effectively quarantine the worm. On the
contrary, the time complexity for JRip isO(m + n), which is
also observed in the graphs, as when the size of suspicious
pool increase from 50 to 200, the training time stays roughly
the same because the number of unsuspicious flows (45,000)
dominates the total number of flows.The training time of J48
lies between that of JRip and Polygraph.

2) End-to-end training time for production use.:Given
the training time of JRip (3 to 10 minutes), we wanted to
verify that our approach can be made fast enough to effec-
tively quarantine a worm outbreak. With a more efficient C-
implementation of RIPPER,n-grams as feature extractors, and

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90

T
ra

in
in

g
T

im
e

(s
ec

)

Percentage of Innocuous Flows in Suspicious Pool

Seq-Poly
JRip
J48

SVM
NaiveBayes

MNNB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70 80 90

T
ra

in
in

g
T

im
e

(s
ec

)

Percentage of Innocuous Flows in Suspicious Pool

Seq-Poly
JRip
J48

SVM

Fig. 2. Training time under varying percentage of noise in suspicious pool.
The above graph depicts suspicious pool of size 50 and pure unsuspicious
pool. The bottom graph depicts suspicious pool of size 200 and unsuspicious
pool with 20 worm flows

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 200 400 600 800 1000 1200 1400 1600 1800 2000
 0

 5

 10

 15

 20

 25

 30

 35

 40

F
al

se
 P

os
iti

ve
/N

eg
at

iv
e

R
at

e

T
ra

in
in

g
T

im
e

(s
ec

)

Number of Unsuspicious Flows

False Positive
False Negative

Training Time

Fig. 3. False positive rate, false negative rate and training time under varying
number of unsuspicious flows.

a more streamlined process, we conducted additional experi-
ments to explore how fast the Ripper algorithm could train on
a minimum number of examples necessary to identify a worm.
We then measured the end-to-end time required to fingerprint
a new worm with this “production level” implementation of
our approach.

From Figure 3 we can see that end-to-end training time
is linear in the number of flows used in training - with
1,000 unsuspicious flows it is 18 seconds and with 2,000
unsuspicious flows it increases to 34 seconds. Moreover, when
there are 1,000 or more unsuspicious flows in training, both
false positive and false negative rates stay at zero consistently.
This result suggests that we can safely bring the number of
unsuspicious flows down to 1,000 and thus reduce the end-to-
end training time to 18 seconds.

D. Introducing a few purer labeled flows

Part of our ongoing research involves replaying randomly
sampled traffic flows on virtual hosts to see if they are worms.
The virtual hosts are equipped with the latest server software,
thus a worm flow, when replayed on a host, will reveal its
malicious nature by exploiting flaws in the software. This
approach, when compared with the suspicious flow capturing
algorithms introduced in Autograph and Polygraph, can obtain
suspicious and unsuspicious flows that are much purer in
nature, but is prohibitive due to the cost of establishing and
maintaining the replay engine, as well as the time needed to
replay each flow.

Hence, we propose to augment existing fingerprinting al-
gorithms by taking the fewer but purer labeled flows into
consideration. One way to incorporate the new flows is to
give them larger weights in training compared to the weights
given to the less pure suspicious flows. We conducted the same
experiments as those done in section III-C.2, while introducing
a set of 10 labeled flows that were all worms. These flows were
added to the original training set but were given a weight of 5.0
instead of 1.0. The results indicated that the minimum number
of unsuspicious flows to ensure zero false positive/negative
rates was lowered from 1,000 to 750, which in turn reduced
the minimum end-to-end training time by 11.1% down to 16
seconds.

IV. CONCLUSIONS AND FUTURE WORK

We verified in this paper that certain machine learning
algorithms work well for the problem of worm fingerprinting.
In particular, we compared the performance of five machine
learning algorithms against the best existing worm finger-
printing algorithm (Polygraph) on a blend of network traces
and simulated polymorphic worm flows. Results showed that
two machine learning algorithms perform significantly better
than Polygraph in terms of resilience to noise and detection
speed. More specifically, RIPPER produced zero negative rates
consistently on noisy training data and was able to capture new
worms with very few worm instances in the suspicious pool.
Moreover, the algorithm runs in time linear in the total number
of training flows, which makes it tractable for containing a
large-scale worm outbreak. As future work, we plan to test our
techniques on worms with even greater polymorphism using
more advanced worm construction ideas.

REFERENCES

[1] Kim, H.A., Karp, B.: Autograph: Toward automated, distributed worm
signature detection. In: Proceedings of the USENIX Security Symposium.
(2004)

[2] Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating
signatures for polymorphic worms. In: Proceedings of the IEEE Sympo-
sium on Security and Privacy. (2005)

[3] Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufman Pub., San
Francisco (1999)

[4] Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables
in the wild. In: KDD ’04: Proceedings of the 2004 ACM SIGKDD
international conference on Knowledge discovery and data mining, New
York, NY, USA, ACM Press (2004) 470–478

