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Practical Network DiagnosisPractical Network Diagnosis
• Ideal

– Every network element is self-monitoring, self-reporting, self-…, 
there is no silent failures …

– Oracle walks through the haystack of data, accurately pinpoints 
root causes, and suggests response actions

• Reality
– Finite resources (CPU, BW, human cycles, …) 
� cannot afford to instrument/monitor every element

– Decentralized, autonomous nature of the Internet 
� infeasible to instrument/monitor every organization

– Protocol layering minimizes information exposure
� difficult to obtain complete information at every layer

Practical network diagnosis: Maximize diagnosis accuracy 
under given resource constraint and information availability
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Design of Diagnosis ExperimentsDesign of Diagnosis Experiments
• Input

– A candidate set of diagnosis experiments
• Reflects infrastructure constraints

– Information availability
• Existing information already available
• Information provided by each new experiment

– Resource constraint
• E.g., number of experiments to conduct (per hour), number of 
monitors available

• Output: A diagnosis experimental plan
– A subset of experiments to conduct
– Configuration of various control parameters

• E.g., frequency, duration, sampling ratio, …
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Example: Example: Network BenchmarkingNetwork Benchmarking
• 1000s of virtual networks over the same physical network
• Wants to summarize the performance of each virtual net

– E.g. traffic-weighted average of individual virtual path performance (loss, delay, jitter, …)
– Similar problem exists for monitoring per-application/customer performance

• Challenge: Cannot afford to monitor all individual virtual paths
– N2 explosion times 1000s of virtual nets

• Solution: monitor a subset of virtual paths and infer the rest
• Q: which subset of virtual paths to monitor?
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Example: ClientExample: Client--based Diagnosisbased Diagnosis
• Clients probe each other
• Use tomography/inference to 
localize trouble spot
– E.g. links/regions with high loss 
rate, delay jitter, etc.

• Challenge: Pair-wise probing too 
expensive due to N2 explosion

• Solution: monitor a subset of 
paths and infer the link 
performance

• Q: which subset of paths to 
probe?
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More ExamplesMore Examples
• Wireless sniffer placement

– Input:
• A set of locations to place wireless sniffers

– Not all locations possible – some people hate to be surrounded by 
sniffers

• Monitoring quality at each candidate location
– E.g. probabilities for capturing packets from different APs

• Expected workload of different APs
• Locations of existing sniffers

– Output:
• K additional locations for placing sniffers

• Cross-layer diagnosis
– Infer layer-2 properties based on layer-3 performance
– Which subset of layer-3 paths to probe?
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Beyond NetworkingBeyond Networking
• Software debugging

– Select a given number of tests to maximize the 
coverage of corner cases

• Car crash test
– Crash a given number of cars to find a maximal 
number of defects

• Medicine design
– Conducting a given number of tests to maximize 
the chance of finding an effective ingredient

• Many more …
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Need Common Solution FrameworkNeed Common Solution Framework
• Can we have a framework that solves them all?

– As opposed to ad hoc solutions for individual problems

• Key requirements:
– Scalable: work for large networks (e.g. 10000 nodes)
– Flexible: accommodate different applications

• Differentiated design 
– Different quantities have different importance, e.g., a subset of paths belong to a major customer

• Augmented design
– Conduct additional experiments given existing observations, e.g., after measurement failures

• Multi-user design
– Multiple users interested in different parts of network or have different objective functions



9

NetQuestNetQuest
• A baby step towards such a framework

– “NetQuest: A flexible framework for large-scale 
network measurement”, Han Hee Song, Lili Qiu and Yin 
Zhang.  ACM SIGMETRICS 2006.

• Achieves scalability and flexibility by combining 
– Bayesian experimental design
– Statistical inference

• Developed in the context of e2e performance 
monitoring 

• Can extend to other network monitoring/ 
diagnosis problems
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What We WantWhat We Want
A function f(x) of link performance x 

– We use a linear function f(x)=F*x in this talk
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Problem FormulationProblem Formulation
What we can measure: e2e performance
Network performance estimation

– Goal: e2e performance on some paths � f(x)
– Design of experiments

• Select a subset of paths S to probe such that we can estimate f(x) based on the observed performance yS, AS, and yS=ASx– Network inference
• Given e2e performance, infer link performance
• Infer x based on y=F*x, y, and F
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Design of ExperimentsDesign of Experiments
• State of the art

– Probe every path (e.g., RON)
• Not scalable since # paths grow quadratically with #nodes

– Rank-based approach [sigcomm04]
• Let A denote routing matrix
• Monitor rank(A) paths that are linearly independent to exactly 
reconstruct end-to-end path properties

• Still very expensive

• Select a “best” subset of paths to probe so that 
we can accurately infer f(x)

• How to quantify goodness of a subset of paths?
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Bayesian Experimental DesignBayesian Experimental Design
• A good design maximizes the expected utility 
under the optimal inference algorithm

• Different utility functions yield different design 
criteria
– Let                              , where           is covariance
matrix of x

– Bayesian A-optimality
• Goal: minimize the squared error 

– Bayesian D-optimality
• Goal: maximize the expected gain in Shannon information
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Search AlgorithmSearch Algorithm
• Given a design criterion         , next step is to 
find s rows of A to optimize  
– This problem is NP-hard
– We use a sequential search algorithm to greedily 
select the row that results in the largest 
improvement in 

– Better search algorithms?
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FlexibilityFlexibility
Differentiated design

– Give higher weights to the important rowsof matrix F

Augmented design
– Ensure the newly selected paths in conjunction with previously monitored paths maximize the utility

Multi-user design
– New design criteria: a linear combination of different users’ design criteria
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Network InferenceNetwork Inference
Goal: find x s.t.  Y=Ax
Main challenge: under-constrained problem
L2-norm minimization

L1-norm minimization

Maximum entropy estimation
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Evaluation MethodologyEvaluation Methodology
Data sets
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Estimating NetworkEstimating Network--Wide Mean RTTWide Mean RTT
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19Comparison of DOE Algorithms: Comparison of DOE Algorithms: 
Estimating PerEstimating Per--Path RTTPath RTT
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20Differentiated Design: Differentiated Design: 
Inference Error on Preferred PathsInference Error on Preferred Paths
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Inference Error on the Remaining PathsInference Error on the Remaining Paths
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Augmented DesignAugmented Design
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MultiMulti--user Designuser Design

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  50  100  150  200  250  300  350  400

n
o
r
m
a
l
i
z
e
d
 
M
A
E

# monitored paths

QR
SVD
A-opt.

A-optimal yields the lowest error.



24

SummarySummary
Our contributions

– Bring Bayesian experimental design to network 
measurement and diagnosis

– Develop a flexible framework to accommodate 
different design requirements

– Experimentally show its effectiveness 

Future work
– Making measurement design fault tolerant
– Applying our technique to other diagnosis problems
– Extend our framework to incorporate additional design 
constraints
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Thank you!Thank you!


