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Practical Network Diagnosis
+ Idedl

- Every network element is self-monitoring, self-reporting, self-...,
there is no silent failures ...

- Oracle walks through the haystack of data, accurately pinpoints
root causes, and suggests response actions
* Reality
- Finite resources (CPU, BW, human cycles, ...)
- cannot afford to instrument/monitor every element
- Decentralized, autonomous nature of the Internet
- infeasible to instrument/monitor every organization
- Protocol layering minimizes information exposure
- difficult to obtain complete information at every layer

Practical network diagnosis: Maximize diagnosis accuracy
under given resource constraint and information availability




Design of Diagnosis Experiments

* Input
- A candidate set of diagnosis experiments
* Reflects infrastructure constraints

- Information availability
» Existing information already available
* Information provided by each new experiment

- Resource constraint

- E.g., number of experiments to conduct (per hour), number of
monitors available

- Output: A diagnosis experimental plan
- A subset of experiments to conduct

- Configuration of various control parameters
- E.g., frequency, duration, sampling ratio, ...



Example: Network Benchmarking

1000s of virtual networks over the
same physical network

Wants to summarize the performance
of each virtual net

- E.g. traffic-weighted average of
individual virtual path performance
(loss, delay, jitter, ...)

- Similar ,:Jr'oblem exists for monitoring
per-application/customer performance

Challenge: Cannot afford to monitor all
individual virtual paths

- N2 explosion times 1000s of virtual nets

Solution: monitor a subset of virtual
paths and infer the rest

Q: which subset of virtual paths to
monitor?




Example: Client-based Diagnosis

» Clients probe each other

+  Use tfomography/inference to
localize trouble spot

- E.g. links/regions with high loss
rate, delay jitter, etfc.

* Challenge: Pair-wise probing too
expensive due to N? explosion
» Solution: monitor a subset of

paths and infer the link
performance

* Q: which subset of paths to
probe?




More Examples

* Wireless sniffer placement
- Input:
* A set of locations to place wireless sniffers

- Not all locations possible - some people hate to be surrounded by
sniffers

* Monitoring quality at each candidate location
- E.g. probabilities for capturing packets from different APs
+ Expected workload of different APs

* Locations of existing sniffers
- Output:
» K additional locations for placing sniffers
* Cross-layer diagnosis
- Infer layer-2 properties based on layer-3 performance
- Which subset of layer-3 paths to probe?



Beyond Networking

» Software debugging

- Select a given number of tests to maximize the
coverage of corner cases

- Car crash test

- Crash a given number of cars to find a maximal
number of defects

* Medicine design

- Conducting a given humber of tests to maximize
the chance of finding an effective ingredient

* Many more ...



Need Common Solution Framework

- Can we have a framework that solves them all?
- As opposed to ad hoc solutions for individual problems

- Key requirements:
- Scalable: work for large networks (e.g. 10000 nodes)

- Flexible: accommodate different applications

+ Differentiated design

- Different quantities have different importance, e.g., a subset of
paths belong to a major customer

 Augmented design

- Conduct additional experiments given existing observations, e.g.,
after measurement failures

* Multi-user design

- Multiple users interested in different parts of network or have
different objective functions



NetQuest

* A baby step towards such a framework

- "NetQuest: A flexible framework for large-scale
network measurement”, Han Hee Song, Lili Qiu and Yin
Zhang. ACM SIGMETRICS 2006.

» Achieves scalability and flexibility by combining
- Bayesian experimental design
- Statistical inference

+ Developed in the context of e2e performance
monitoring

» Can extend to other network monitoring/
diagnosis problems



What We Want

A function f(x) of link performance x

- We use a linear function f(x)=F*x in this talk

Ex. 1: average link delay
f(x) = (x1+.+x11)/11

X3 Ex. 2: end-to-end delays
(1 0 .. Of x|
1 1 0.. 0| x

0 ... 0 1|x4

Apply to any additive metric,
eg. Log (1 - loss rate)
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Problem Formulation
What we can measure: e2e performance

Network performance estimation
- Goal: e2e performance on some paths > f(x)

- Design of experiments
+ Select a subset of paths S to probe such that we can
estimate f(x) based on the observed performance ysq,
Ag, and y,=AcX
- Network inference
* Given e2e performance, infer link performance
* Infer x based on y=F*x,y, and F



12

Design of Experiments

- State of the art

- Probe every path (e.g., RON)
* Not scalable since # paths grow quadratically with #nodes

- Rank-based approach [sigcommO4]
- Let A denote routing matrix

* Monitor rank(A) paths that are linearly independent to exactly
reconstruct end-to-end path properties

- Still very expensive

+ Select a "best” subset of paths to probe so that
we can accurately infer f(x)

* How to quantify goodness of a subset of paths?
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Bayesian Experimental Design

* A good desigh maximizes the expected utility
under the optimal inference algorithm

+ Different utility functions yield different design
criteria
- Let D(n7) =(ALA +R);where ¢g?R* is covariance
matrix of x
- Bayesian A-optimality
- Goal: minimize the squared error || FX—FX, ||5
@\(17) = trace FD(17)F '}
- Bayesian D-optimality
* Goal: maximize the expected gain in Shannon information

@ (17) = det{ FD(17)F '}



Search Algorithm

+ Given a design criterion ¢(/7), next step is to
find s rows of A to optimize ¢(n)
- This problem is NP-hard

- We use a sequential search algorithm to greedily
select the row that results in the largest
improvement in ¢(/7)

- Better search algorithms?
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Flexibility

Differentiated design

- Give higher weights to the important rows
of matrix F

Augmented design

- Ensure the newly selected paths in
conjunction with previously monitored paths
maximize the utility

Multi-user design

- New design criteria: a linear combination of
different users' design criteria
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Network Inference

Goal: find x s.t. Y=Ax
Main challenge: under-constrained problem
L2-norm minimization

min A || x= g, + |l y— Ax|;

L1-norm minimization
minA || x—u|l, +[ y—Ax]j

Maximum em‘ropy estimation
mmZx logzﬂ +ly - Ax]l;
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Evaluation Methodology
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Data sets
# nodes |# overlay |# paths |# links | Rank
nodes
PlanetLab-RTT 2514 61 3657 5467 |769
Planetlab-loss 1795 60 3270 4628 | 690
Brite-n1000-0200 | 1000 200 39800 |2883 |2051
Brite-n5000-0600 | 5000 600 359400 |14698 |9729

Accuracy metric normalized MAE

_ D linfer, —actual, |

> actual



Comparison of DOE Algorithms:
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0

0

0

0

0

Estimating Per-Path RTT

.45 |
N Random —+—

0.4 W OR e
L sSsvDhD - Koo

3 \ A-opt. I

0.3 %ﬁ \\\ D—Opt ,,,,, -

.25 F \

0.2 b

.15

0.1 r

.05 r

0

100 200 300 400 500 o600 700

# monitored paths

A-optimal yields the lowest error.

19



Inference Error on Preferred Paths

normalized MAE

Differentiated Design:
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Lower error on the paths with higher weights.
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Inference Error on the Remaining Paths

normalized MAE
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Error on the remaining paths increases slightly.
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Augmented Design
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A-optimal 1s most effective in augmenting an existing design.
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normalized MAE

Multi-user Design
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Summary

Our contributions

- Bring Bayesian experimental design to network
measurement and diagnosis

- Develop a flexible framework to accommodate
different design requirements

- Experimentally show its effectiveness

Future work
- Making measurement design fault tolerant
- Applying our technique to other diagnosis problems

- Extend our framework to incorporate additional design
constraints
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Thank you!



