On the Effect of Server Adaptation for Web Content Delivery

Yin Zhang (AT&T)

Joint work with

Balachander Krishnamurthy (AT&T)
Craig Wills (WPI)

IMW '02, Marseille, Nov. 2002

Motivation

- Web sites have a strong incentive to reduce time-to-glass
- Challenge
 - client connectivity is heterogeneous
- Natural solution server adaptation
 - client connectivity + content characteristics + client capability + server load + ...
 - → action to take

Study: What?

- Basic question What exactly is the performance impact of server adaptation?
 - When and how much can server adaptation help?
 - Which action should the server take?
- Lots of previous work ... but typically focusing on one individual action
- This study -
 - Provides a unified framework for assessing the impact of different server actions
 - Obtains useful insights through multi-site widearea measurements

Factors Considered

- Client connectivity
 - Latency, bandwidth
- Content characteristics
 - Criteria: total bytes, container bytes, #objects
 - 3x3x3 = 27 buckets
 - derived from large proxy logs
 - further justified by examining popular Websites' pages
- Server actions
 - Altering the content
 - reducing number of images, reducing image size
 - Altering the location of the content
 - using a Content Distribution Network (CDN)
 - Altering manner of delivery
 - compression, bundling
 - Altering protocol options
 - using persistent connections
 - Combination of different actions

Experiment Methodology

- A multi-site study
 - Server: Apache
 - West coast: icir
 - East coast: wpi
 - Client: httperf
 - US: att, modem, isdn
 - Intl: de, au, uk
- Canonical content served at each site
 - covering the space of buckets
- Experiments repeated at different times of day

Results

- Compression of HTML is not universally useful
 - It only works for bandwidth-constrained clients
- Persistent connections alone has limited benefit
 - Little improvement for all client/server combo
- Pipelining gives significant improvement
 - Exception: bandwidth-constrained clients
- Bundling gives significant improvement
 - Bundling alone is similar to pipelining
 - Compressed bundles help a lot under all conditions
 - CDN-served bundles good idea for well-connected clients
- Reducing image size by half has little benefit
- Reducing the number of objects by half helps a lot under most conditions

Baseline: 4 parallel HTTP/1.0 connections

Contribution and Further Work

Contribution

- A unified framework for evaluating the impact of server adaptation
 - Can be applied by individual Web site
- Insights we gained can be useful for improving client performance

Further work

- Evaluation of the feasibility of online client classification and server adaptation through real implementation
 - Our results are encouraging

Acknowledgments

People who gave us accounts / logs