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Motivation

¥ Dominance of Web data transfers

= Short & bursty [Mah97]
= Small downloading time is important!

¥ Dominance of TCP

¥ Problem: Short data transfers
interact poorly with TCP |




TCP/Reno Basics

AWindow Qervice 4 ¥ Slow S’rar"r. |
Size W(D Rate Si{t) = Exponential growth in
- congestion window,
o = Slow: log(n) round trips

for n segments
# Congestion Avoidance
= Linear probing of BW

Tlmet ¥ Fast Retransmission

+ Triggered by 3
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Related Work

& P-HTTP [PM94]

= Avoid repeated probing only for components within the
SAME page.

¥ T/TCP [Bra94]

= Cache connection count, RTT

¥ TCP Control Block Interdependence [Tou97]:

= Cache cwnd, but large bursts cause losses

¥ Rate Based Pacing [VH97]
¥ 4K Initial Window [AFP98]
¥ Fast Start [PK98, Pad98]

= Most similar to our work, but need router support to
ensure TCP friendliness
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Optimal Initial cwnd

¥ Minimize completion time by having the

transfer end at an Epoch boundary.
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Shift Optimization

% Minimize initial cwnd while keeping the
same infeger number of RTT's

]

Before optimization: After optimization:
cwnd = 9 cwnd = 5




Effect of Shift Optimization

Effect of Shift Optimization (file size=30 packets
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TCP/SPAND

% Estimate network state by sharing
performance information

= SPAND: Shared PAssive Network
Discovery [SSK97]

% Directly enter Congestion Avoidance,
starting with the optimal initial cwnd

% Avoid large bursts by pacing
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Implementation Issues

¥ Scope for sharing and aggregation

= 24-bit heuristic

= network-aware clustering [KWOQO]

¥ Collecting performance information
= New TCP option, Windmill's approach, ...

% Information aggregation
= Sliding window average

% Retrieving estimation of network state
= Explicit query, active push, ...

¥ Pacing

= Leaky bucket based pacing
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Opportunity for Sharing

& MSNBC: 90% requests arrive within 5 minutes
since the most recent request from the same
client network (using 24-bit heuristic)

Cumulative Fraction of the Time between Consecutive Requests from the Same Network
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Cost for Sharing

¥ MSNBC: 15,000-25,000 different client networks

in a 5-minute interval during peak hours (using 24-
bit heuristic)

Cumulative Fraction

Cumulative Distribution for the Number of Different Client Networks Seen in 5 Minutes
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Simulation Results

¥ Methodology

= Download files in rounds

¥ Performance Metric
= Average completion time

¥ TCP flavors considered

= reno-ssr: Reno with slow start restart
= reno-nssr: Reno w/o slow start restart
= newreno-ssr: NewReno with slow start restart
= newreno-nssr: NewReno w/o slow start restart
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Simulation Topologies
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Average Completion Time (second)

Single Bottleneck

Scenario 1 with 40 competing UDPs (transfer size = 30KE)
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Average Completion Time (second)

T1 Terrestrial WAN Link with
Multiple Bottlenecks

Scenario 4 with 12 Kbps ON/OFF UDP cross traffic (transfer size = 30KB
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T1 Terrestrial WAN Link with Multiple
Bottlenecks and Heavy Congestion
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TCP Friendliness (I)
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TCP Friendliness (II)
ainst reno-ssr with 200-ms Timer

Scenario 1 (transfer size=30KB)
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Conclusions

% TCP/SPAND significantly reduces latency
for short data transfers
r 35-65% compared to reno-ssr / newreno-ssr
r 20-50% compared to reno-nssr / newreno-nssr
= Even higher for fatter pipes

% TCP/SPAND is TCP-friendly
% TCP/SPAND is incrementally deployable
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% Understand pacing for short flows

% Real implementation for TCP/SPAND
= Exponential decay when there is not

¥ Better informat
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