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Abstract. UT Austin Villa has participated in six RoboCup@Home
competitions, performing respectably in each. What is more exciting,
however, is that we have begun a strong program of research that has
been in part inspired by our efforts in this competition. It is our intention
to build a comprehensive service robot system which is used in our labo-
ratories, in real-world deployments, and to compete in RoboCup@Home.
In this Team Description Paper, you will find the highlights of our efforts
and our plans for 2024.

1 Introduction

Using the RoboCup@Home team as a focal point for inter-department and inter-
laboratory collaboration, UT Austin Villa@Home has pursued an ambitious re-
search program towards the goal of the development of a comprehensive service
robot system. We want to enter RoboCup@Home not with a suite of different
programs for each round, but with a single program which is capable of compet-
ing and winning.

UT Austin Villa@Home is a collaborative effort between PIs and students
in the Computer Science, Mechanical Engineering and Aerospace Engineering
departments at the University of Texas at Austin, with a diverse set of re-
search interests driving our team. We have competed in seven RoboCup@Home
events. In 2007, we took second place. In 2017, we entered into the newly-formed
Domestic Standard Platform League (DSPL) and took third place, having re-
ceived our robot only a couple of months before the competition. In 2018, the
team developed a design intended to allow us to develop a single system which
would enter into all of the stages of the competition, encompassing knowledge
representation, mapping, and architectural aspects. The team advanced to the
second stage and was able to score in difficult tasks such as Enhanced Gen-
eral Purpose Service Robot (EGPSR). In 2019, we improved the system with
better perception and manipulation modules. In 2021, we continued to develop
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our object recognition and manipulation capabilities using the HSR simulator,
and finished in the 3rd place in the 2021 competition. In 2022, we continued to
strengthen our perception pipeline and re-designed the person tracking module,
and qualified for the second stage in Bangkok. In 2023, we explored methods to
combine LLMs with task and motion planning for interactive mobile manipu-
lation. While we were unable to demonstrate our capabilities fully at the 2023
competition due to hardware issues, the progress made would set a good starting
point for 2024 and open many research opportunities. Our efforts have resulted
in seven publications [1,2,3,4,5,6,7], with more in progress. Going into 2024, we
plan to further improve the core components of our system and develop more
rigorous approaches to the tasks. We will focus on leveraging state-of-the-art
robot foundation models for perception, planning, and human-robot interaction.

2 Software and Scientific Contributions

This section describes the component technologies we developed across multiple
tasks for our robot architecture, knowledge representation, semantic perception,
object manipulation, and person following on top of the HSR software stack.
To the extent possible, we built our approach in a manner consistent with our
ongoing Building-Wide Intelligence project [8]. While using a different hardware
platform, many of the objectives and capabilities are the same. Indeed we have
previously designed an underlying architecture that is common to the two plat-
forms [6].

2.1 Robot Architecture

Our architecture is designed for service robots to handle dynamic interactions
with humans in complex environments. The three-layer architecture, as shown in
Figure 1, outlines integration of the robot’s skill components, such as perception
and manipulation, with high-level reactive and deliberative controls. The top
layer sequences and executes skills, and is reactive during execution to respond
to changes. A central knowledge base facilitates knowledge sharing from all the
components. The deliberative control layer uses the knowledge base to reason
about the environment, and can be invoked to plan for tasks that cannot be
statically decomposed. Details on implementation of these layers can be found
in our recent paper [6].

2.2 Knowledge Representation and Planning

Our knowledge representation subsystem stores grounded robot knowledge in a
SQL database in order to allow for fast access and easy querying. For instance,
in the GPSR task of the 2023 competition, the knowledge base is used to store
object categories and their corresponding locations. Fig. 2 shows the knowledge
base after the robot has detected a ketchup bottle on the dining table. Queries
can be formed using custom C++ and Python libraries. The knowledge base can
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Fig. 1. Implementation of our robot architecture on HSR.

be interfaced through a simple predicate logic form which can be then imported
for task planning. Our task planning module utilizes Answer Set Programming
(ASP) to describe the rules for planning and reasoning, and the solver Clingo
to generate optimal task plans. Core to our KR subsystem is the ability to
reason about hypothetical objects. This task planning module is crucial to our
solution of GPSR and EGPSR tasks. Details on our knowledge representation
and planning system can be found in our paper [2]. We plan to improve and
integrate this system with our recent work on LLMs and task planning [7] to
enable natural language plan queries.
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Fig. 2. Visualization of a knowledge base grounded in the robot’s perception.

2.3 Perception

We employ a semantic perception module whose purpose is to process raw video
and depth data from the robot’s sensors and extract information that can be
processed by the manipulation, navigation, and knowledge reasoning modules.
The main output representations are a query-able point cloud of objects in the
environment and a partial 3D map of the world.
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The main input to our semantic perception module is RGBD camera data.
Compressed RGB and depth images from the robot are streamed to an offboard
computer that runs the perceptual system. This image data is then consumed
by finding objects via the YOLO object detection network [9]. We have trained
YOLOv5 models and built them in the TensorRT library for high performance
inference. The processing time of one frame is only a few milliseconds on the
backpack laptop. Next, semantic information about the world is synthesized
in two main ways: a partial 3D environmental map and object cloud. For the
former, regions of the point cloud corresponding to detected objects are fused
together over time in a probabilistic Octree representation based on Octomap
[10], which allows for the realtime construction of a partial 3D map of the world.
For the latter, point estimates of the locations of objects are stored in a KD-
Tree and wrapped with an efficient querying interface that integrates with our
knowledge representation system. The synthesized semantic information is then
made available to plugins in an event-based model, where a plugin can request
access to semantic information that it wants to operate on. Plugins used include
custom RANSAC edge detectors used to detect surfaces, and bounding box
fitting on the 3D map for use in manipulation.

A significant limitation is the partial nature of the 3D environmental map.
Only a partial map is constructed due to the realtime processing constraint;
namely, full views of the world cannot be stitched together at framerate using
the Octomap technology. Alternatively, GPU-based techniques for combining
full point clouds could potentially overcome this limitation, and thus provides
a direction for future development. Benefits of having full 3D environmental
maps include the ability to directly localize objects with respect to the robot. In
2024, we plan to improve our semantic perception framework with state-of-the-
art methods to generate open-vocabulary 3D scene graphs. Specifically, we will
use vision-language models to obtain object and relation descriptors instead of
a closed set of YOLO labels. This improvement will enable our system to handle
unknown objects and open-vocabulary queries.

2.4 Manipulation

The purpose of our manipulation system is to enable the pick up and put down of
diverse objects of different shapes and sizes. Our manipulation stack consists of
three main components which we describe below: grasp pose generation, parallel
motion planning, and closed-loop correction.

First, our semantic perception system provides 3D bounding boxes for ob-
jects worth manipulating. Based on these bounding boxes, potential grasp poses
are computed that place the gripper on the top of the object as well as on all
sides, with multiple possible rotations of the wrist. Of these poses, invalid con-
figurations are filtered out by projecting the gripper onto the object and seeing
if there is a collision.

Once grasp poses are determined, motion plans need to be determined in
order for the robot to achieve a desired grasp pose. In order to do this quickly,
we employ a parallel motion planning architecture built on top of the Moveit
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framework [11]. Our motion planning architecture is comprised of primary and
secondary nodes. The secondary nodes handle generating motion plans for each
potential grasp pose, while the primary node coordinates and handles executing
motion plans. Specifically, secondary nodes plan in parallel, and the first motion
plan found is what is executed. The rationale behind this is that different grasp
poses will require different yet unknown amounts of time for finding motion
plans. Since motion planning takes a significant amount of time, reducing this
bottleneck greatly speeds up the entire manipulation pipeline. Furthermore, the
Moveit framework can sometimes crash when trying to find plans. In our setup,
this problem is mitigated: If a secondary node terminates from such a crash,
then the other secondary nodes are still present, allowing the system to continue
functioning.

Next, executing a motion plan precisely is usually not feasible. This is be-
cause, as the plan is executed, the software solely uses odometry to control its
position and the resultant drift can cause errors in how much the robot thinks
it has moved. To overcome this obstacle, we slightly modify desired grasp poses
by having the gripper be some offset away from the object. This way, after a
motion plan is generated and executed, the robot’s gripper is close to the ob-
ject, but there remains a small gap. We take advantage of this small gap by
employing a real-time, closed-loop grasp adjustment based on the fast YOLO
detections applied to images from the HSR’s hand camera. We use the position
of the generated 2D bounding box to align the gripper with the target object. A
proportional controller is used to publish a velocity command to the robot base
based on the distance between the center of the hand camera image and the
center of the bounding box. This practically means that the robot shifts slightly
to align the gripper perfectly with the centroid of the object. The gap is then
closed by moving in a straight line towards the object, leading to a successful
grasp.

2.5 Person Following

To achieve robust and efficient person-following capabilities, perception, robot
gaze control, and navigation must be effectively integrated. Recently, vision-
based human recognition has dramatically improved with new software that
relies on deep learning-based technologies, but these approaches have a limited
range of sight. To resolve this problem, laser-based methods [12][13] and vari-
ous sensor fusion techniques combining face recognition and leg detection have
been employed [14][15]. However, there remain major difficulties include handling
occlusions, identifying target people among crowds, and effectively detecting hu-
man faces. To surpass these limitations, new techniques have been devised that
rely on extra features, such as the detection of clothes, bags, and shoes [16].

Another problem is due to the use of passive perception techniques where
the robot stays stationary, thus losing its target. Therefore, it is highly desirable
for robots to achieve active perception such that people can be followed despite
their movement. Many researchers have studied this problem within the topic of
active perception or visual sensor planning [17]. This kind of problem is usually
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intractable because there are too many variables. However, using prior knowl-
edge, context, and logical assumptions about the environment, it is possible to
find solution approximations. If a robot is aware of the connectivity between
spaces, when the target suddenly disappears from the robot’s view, one strategy
could be to navigate to the anticipated point using the last observed location
to look for the target. This space connectivity can be simplified with the use of
a topology map or graph . One other key factor is that robot skills should be
integrated in harmony with the perceptual processes to improve a robot’s abil-
ity to adapt to the various dynamic circumstances. For example, actions such
as searching for a target, tracking, and navigating should be properly coordi-
nated. To achieve such coordination, we employ the behavior-tree method [18]
to sequence skills.

In summary, we develop person following capabilities using sensor fusion,
active search using trajectory and waypoints predictions, and construct fully
autonomous behaviors to follow people including temporary losses of the target
being followed. Details on our person following approach can be found in our
recent paper [3].

In 2022, we started experimenting with recent deep learning methods for
robust multi-object tracking. We trained a person re-identification model from
a large dataset of labeled person images using triplet loss. We also incorporated
state-of-the-art tracking algorithms on the MOT Challenge [19] such as BoT-
SORT [20]. In 2024, we plan to further improve our person tracking system for
interactive tasks such as Carry My Luggage and Receptionist.

2.6 Object Coreference Through Pointing

The ability to interpret point gestures enables natural human-robot interaction
in Carry My Luggage and Hand Me That (discontinued in 2023). Our solution to
this problem leverages MediaPipe [21], running on RGB-D image data obtained
by the Xtion sensor on the HSR’s head. Identification of a point gesture starts
by using either MediaPipe Pose to track the endpoints of the arms (locating the
hands) or the MediaPipe Palm Detection Model to track the palms directly in
the color image. The region determined to contain each palm is then run through
the MediaPipe Hand Landmark Model, and the landmarks are then turned into
3D landmarks using the registered depth map from the Xtion’s depth sensor.
From these and a ray running from the base through the tip of the index finger is
computed. The distance of the centroid of each tracked object from the Semantic
Perception Module (Section 2.3) is then compared against the computed ray, and
the object that is closest to the ray is determined to be the object indicated by
the point gesture.

3 Conclusion

UT Austin Villa@Home has been a strong competitor and has a tradition of
synergistic research our RoboCup@Home team and our other research efforts.



3. CONCLUSION 7

RoboCup@Home has become a driving force in robotics research at UT Austin.
We look forward to seeing everyone in Eindhoven in summer 2024.
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Fig. 3. HSR

We use a standard Human Support Robot (HSR) from
Toyota. No modifications have been applied.

Robot’s Software Description

We are using the following 3rd party software:

– Object recognition: YOLO, SAM, and TensorRT
– People and activity recognition: OpenPose, Medi-

aPipe, OSNET
– Manipulation: MoveIt
– Knowledge Base: PostgreSQL
– Planning and reasoning: Clingo, PDDLStream
– State Machine: SMACH (ROS)

External Devices

We are using the following external devices:

– Asus ROG Laptop (Backpack)
– MSI Laptop (Backpack)

Cloud Services

We are using the following cloud services:

– Speech recognition: Google Cloud Speech API
– Large language model: GPT4

Robot software and hardware specification sheet
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