String Matching: Boyer-Moore Algorithm

Greg Plaxton
Theory in Programming Practice, Spring 2005
Department of Computer Science
University of Texas at Austin
Notation

• We abbreviate \(\min\{\bar{p} - \bar{r} \mid r \in R\} \) as \(\min(\bar{p} - R) \)

• In general, if \(S \) is a set of strings and \(e(S) \) an expression that includes \(S \) as a term, then \(\min(e(S)) = \min\{e(i) \mid i \in S\} \), where \(e(i) \) is obtained from \(e \) by replacing \(S \) by \(i \)

• We adopt the convention that the minimum of the empty set is \(\infty \)
Basic Definitions

- Let R denote $R' \cup R''$, where R' is
 \[
 \{ r \text{ is a proper prefix of } p \land r \text{ is a suffix of } s \}
 \]
 and R'' is
 \[
 \{ r \text{ is a proper prefix of } p \land s \text{ is a suffix of } r \}
 \]
- Recall that
 \[
 b(s) = \min\{\overline{p} - \overline{r} | r \in R\}
 \]
- Thus
 \[
 b(s) = \min(\min(\overline{p} - R'), \min(\overline{p} - R''))
 \]
Properties of $b(s)$

- **P1:** $c(p) \in R$
- **P2:** $\min(\overline{p} - R') \geq \overline{p} - \overline{c(p)}$
- **P3:** If $V = \{v \mid v \text{ is a suffix of } p \land c(v) = s\}$
 then $\min(\overline{p} - R'') = \min(V - \overline{s})$
Proof of Property P1

• P1: \(c(p) \in R \)

• From the definition of core, \(c(p) \prec p \)

• Hence, \(c(p) \) is a proper prefix of \(p \)

• Also, \(c(p) \) is a suffix of \(p \), and, since \(s \) is a suffix of \(p \), they are totally ordered, i.e., either \(c(p) \) is a suffix of \(s \) or \(s \) is a suffix of \(c(p) \)

• Hence, \(c(p) \in R \)
Proof of Property P2

- P2: \(\min(\bar{p} - R') \geq \bar{p} - c(p) \)
- Consider any \(r \) in \(R' \)
- Since \(r \) is a suffix of \(s \) and \(s \) is a suffix of \(p \), \(r \) is a suffix of \(p \)
- Also, \(r \) is a proper prefix of \(p \), so \(r \prec p \)
- From the definition of core, \(r \preceq c(p) \), and hence \(\bar{p} - \bar{r} \geq \bar{p} - c(p) \) for every \(r \) in \(R' \)
Proof of Property P3

- P3: If
 \[V = \{ v \mid v \text{ is a suffix of } p \land c(v) = s \} \]
 then \(\min(\bar{p} - R'') = \min(V - \bar{s}) \)

- We split the proof into two parts:
 - First, we show that \(\min(\bar{p} - R'') \leq \min(V - \bar{s}) \)
 - Then, we show that \(\min(\bar{p} - R'') \geq \min(V - \bar{s}) \)
Proof that \(\min(\overline{p} - R'') \leq \min(V - \overline{s}) \)

- If \(V \) is empty, the inequality holds since the RHS is \(\infty \); in what follows, assume that \(V \) is nonempty and let \(v \) be an arbitrary element of \(V \)

- It is sufficient to exhibit an \(r \) in \(R'' \) such that \(\overline{p} - \overline{r} = \overline{v} - \overline{s} \)

- Let \(r \) be the length-\((\overline{p} - \overline{v} + \overline{s})\) prefix of \(p \)
 - Note that \(r \) is a proper prefix of \(p \) since \(c(v) = s \) implies \(\overline{v} > \overline{s} \)
 - Furthermore, \(s \) is a suffix of \(r \) since \(c(v) = s \) implies that \(s \) is a prefix of \(v \)
 - So \(r \) belongs to \(R'' \), as required
Proof that $\min(\overline{p} - R'') \geq \min(V - \overline{s})$

• If R'' is empty, the inequality holds since the LHS is ∞; in what follows, assume that R'' is nonempty and let r be the string in R'' minimizing the LHS

• It is sufficient to exhibit a v in V such that $\overline{p} - \overline{r} = \overline{v} - \overline{s}$

• Let v denote the length-$(\overline{p} - \overline{r} + \overline{s})$ suffix of p
 – Note that $\overline{v} > \overline{s}$ since r is a proper prefix of p
 – Furthermore, $s \prec v$, so $s \preceq c(v)$
 – If $s \prec c(v)$, then we obtain a contradiction to the definition of r since the length-$(\overline{r} + c(v) - \overline{s})$ prefix r' of p also belongs to R'' and yields a smaller value for the LHS
 – Thus $s = c(v)$ and hence v belongs to V, as required
A Formula for $b(s)$

- We now derive a formula for $b(s)$, where

$$V = \{v \mid v \text{ is a suffix of } p \land c(v) = s\}$$

$$b(s) = \begin{cases} \text{definition of } b(s) \\ \min(\bar{p} - R) \end{cases}$$

$$= \begin{cases} \text{from (P1): } c(p) \in R \\ \min(\bar{p} - c(p), \ min(\bar{p} - R)) \end{cases}$$

$$= \begin{cases} \text{from (P2): } \min(\bar{p} - R') \geq \bar{p} - c(p) \\ \min(\bar{p} - c(p), \ min(\bar{p} - R')) \end{cases}$$

$$= \begin{cases} \text{from (P3): } \min(\bar{p} - R'') = \min(V - \bar{s}) \\ \min(\bar{p} - c(p), \ min(V - \bar{s})) \end{cases}$$
Computation of b: Towards An Abstract Program

- We now develop an abstract program to compute $b(s)$, for all suffixes s of p
- We employ an array b where $b[s]$ ultimately holds the value of $b(s)$, though it is assigned different values during the computation
- Initially, we set $b[s]$ to $\overline{p} - c(p)$
- Next, for each suffix v of p (in arbitrary order)
 - Let $s = c(v)$
 - Update $b[s]$ to $\min(b[s], \overline{v} - \overline{s})$
Computation of b: An Abstract Program

Here is our abstract program for computing $b(s)$ for all suffixes s of p

assign $\overline{p} - c(p)$ to all elements of b;

for all suffixes v of p do
 $s := c(v)$;
 if $b[s] > \overline{v} - \overline{s}$ then $b[s] := \overline{v} - \overline{s}$ endif
endfor
Computation of b: Towards a Concrete Program

- The goal of the concrete program is to compute an array e, where $e[j]$ is the amount by which the pattern is to be shifted when the matched suffix is $p[j..p]$, $0 \leq j \leq p$
 - $e[j] = b[s]$, where $j + s = p$, or
 - $e[p - s] = b[s]$, for any suffix s of p

- We have no need to keep explicit prefixes and suffixes; instead, we keep their lengths, s in i and v in j

- Let array f hold the lengths of the cores of all suffixes of p suffixes v of p, i.e., $f[\bar{v}] = c(v)$
Computation of b: A Concrete Program

• Here is our concrete program for computing $b(s)$ for all suffixes s of p

 assign $\bar{p} - c(p)$ to all elements of e;

 for j, $0 \leq j \leq \bar{p}$, do

 $i := f[j]$;

 if $e[\bar{p} - i] > j - i$ then $e[\bar{p} - i] := j - i$ endif

 endfor

• It remains to compute f
Computation of f

- Here we are asked to compute the (length of the) core of every suffix of p
- Recall that the preprocessing phase of the KMP algorithm computes the core of every prefix of p in $O(\overline{p})$ time
- A symmetric approach can be used to compute the core of every suffix of p in $O(\overline{p})$ time
Computation of b: Time Complexity

- The computation of $b(s)$, for all suffixes s of p, requires computing array f and executing the concrete program presented earlier
 - Note that $c(p) = f[p]$

- As we have indicated on the previous slide, the array f can be computed in $O(p)$ time

- Given f, the concrete program runs in $O(p)$ time since the loop iterates $O(p)$ times, and each execution of the loop body takes constant time